Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Multiway sparse distance weighted discrimination

Wed, 28/06/2023 - 12:00
J Comput Graph Stat. 2023;32(2):730-743. doi: 10.1080/10618600.2022.2099404. Epub 2022 Aug 30.ABSTRACTModern data often take the form of a multiway array. However, most classification methods are designed for vectors, i.e., 1-way arrays. Distance weighted discrimination (DWD) is a popular high-dimensional classification method that has been extended to the multiway context, with dramatic improvements in performance when data have multiway structure. However, the previous implementation of multiway DWD was restricted to classification of matrices, and did not account for sparsity. In this paper, we develop a general framework for multiway classification which is applicable to any number of dimensions and any degree of sparsity. We conducted extensive simulation studies, showing that our model is robust to the degree of sparsity and improves classification accuracy when the data have multiway structure. For our motivating application, magnetic resonance spectroscopy (MRS) was used to measure the abundance of several metabolites across multiple neurological regions and across multiple time points in a mouse model of Friedreich's ataxia, yielding a four-way data array. Our method reveals a robust and interpretable multi-region metabolomic signal that discriminates the groups of interest. We also successfully apply our method to gene expression time course data for multiple sclerosis treatment. An R implementation is available in the package MultiwayClassification at http://github.com/lockEF/MultiwayClassification.PMID:37377729 | PMC:PMC10292743 | DOI:10.1080/10618600.2022.2099404

Fructus gardeniae ameliorates anxiety-like behaviors induced by sleep deprivation via regulating hippocampal metabolomics and gut microbiota

Wed, 28/06/2023 - 12:00
Front Cell Infect Microbiol. 2023 Jun 12;13:1167312. doi: 10.3389/fcimb.2023.1167312. eCollection 2023.ABSTRACTFructus gardeniae (FG) is a traditional Chinese medicine and health food for thousands of years of application throughout Chinese history and is still widely used in clinical Chinese medicine. FG has a beneficial impact on anxiety, depression, insomnia, and psychiatric disorders; however, its mechanism of action requires further investigation. This study aimed to investigate the effects and mechanisms of FG on sleep deprivation (SD)-induced anxiety-like behavior in rats. A model of SD-induced anxiety-like behavior in rats was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). This was accompanied by neuroinflammation and metabolic abnormalities in the hippocampus and disturbance of intestinal microbiota. However reduced SD-induced anxiety-like behavior and decreased levels of pro-inflammatory cytokines including TNF-α and IL-1β were observed in the hippocampus of rats after 7 days of FG intervention. In addition, metabolomic analysis demonstrated that FG was able to modulate levels of phosphatidylserine 18, Phosphatidylinositol 18, sn-glycero-3-phosphocholine, deoxyguanylic acid, xylose, betaine and other metabolites in the hippocampus. The main metabolic pathways of hippocampal metabolites after FG intervention involve carbon metabolism, glycolysis/gluconeogenesis, pentose phosphate, and glycerophospholipid metabolism. 16S rRNA sequencing illustrated that FG ameliorated the dysbiosis of gut microbiota in anxious rats, mainly increased the abundance of Muribaculaceae and Lactobacillus, and decreased the abundance of Lachnospiraceae_NK4A136_group. In addition, the correlation analysis demonstrated that there was a close relationship between hippocampal metabolites and intestinal microbiota. In conclusion, FG improved the anxiety behavior and inhibited of neuroinflammation in sleep-deprived rats, and the mechanism may be related to the FG regulation of hippocampal metabolites and intestinal microflora composition.PMID:37377643 | PMC:PMC10291143 | DOI:10.3389/fcimb.2023.1167312

Tumor-infiltrating Leukocyte Profiling Defines Three Immune Subtypes of NSCLC with Distinct Signaling Pathways and Genetic Alterations

Wed, 28/06/2023 - 12:00
Cancer Res Commun. 2023 Jun 13;3(6):1026-1040. doi: 10.1158/2767-9764.CRC-22-0415. eCollection 2023 Jun.ABSTRACTResistance to immune checkpoint blockade remains challenging in patients with non-small cell lung cancer (NSCLC). Tumor-infiltrating leukocyte (TIL) quantity, composition, and activation status profoundly influence responsiveness to cancer immunotherapy. This study examined the immune landscape in the NSCLC tumor microenvironment by analyzing TIL profiles of 281 fresh resected NSCLC tissues. Unsupervised clustering based on numbers and percentages of 30 TIL types classified adenocarcinoma (LUAD) and squamous cell carcinoma (LUSQ) into the cold, myeloid cell-dominant, and CD8+ T cell-dominant subtypes. These were significantly correlated with patient prognosis; the myeloid cell subtype had worse outcomes than the others. Integrated genomic and transcriptomic analyses, including RNA sequencing, whole-exome sequencing, T-cell receptor repertoire, and metabolomics of tumor tissue, revealed that immune reaction-related signaling pathways were inactivated, while the glycolysis and K-ras signaling pathways activated in LUAD and LUSQ myeloid cell subtypes. Cases with ALK and ROS1 fusion genes were enriched in the LUAD myeloid subtype, and the frequency of TERT copy-number variations was higher in LUSQ myeloid subtype than in the others. These classifications of NSCLC based on TIL status may be useful for developing personalized immune therapies for NSCLC.SIGNIFICANCE: The precise TIL profiling classified NSCLC into novel three immune subtypes that correlates with patient outcome, identifying subtype-specific molecular pathways and genomic alterations that should play important roles in constructing subtype-specific immune tumor microenvironments. These classifications of NSCLC based on TIL status are useful for developing personalized immune therapies for NSCLC.PMID:37377611 | PMC:PMC10263066 | DOI:10.1158/2767-9764.CRC-22-0415

Mitochondria Transfer from Mesenchymal Stem Cells Confers Chemoresistance to Glioblastoma Stem Cells through Metabolic Rewiring

Wed, 28/06/2023 - 12:00
Cancer Res Commun. 2023 Jun 14;3(6):1041-1056. doi: 10.1158/2767-9764.CRC-23-0144. eCollection 2023 Jun.ABSTRACTGlioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ.SIGNIFICANCE: Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.PMID:37377608 | PMC:PMC10266428 | DOI:10.1158/2767-9764.CRC-23-0144

The Association between Circulating 25-Hydroxyvitamin D and Carotid Intima-Media Thickness Is Mediated by Gut Microbiota and Fecal and Serum Metabolites in Adults

Wed, 28/06/2023 - 12:00
Mol Nutr Food Res. 2023 Jun 28:e2300017. doi: 10.1002/mnfr.202300017. Online ahead of print.ABSTRACTSCOPE: Vitamin D is vital to cardiovascular health. This study examines the association between plasma 25-hydroxyvitamin D (25[OH]D) and the progression of carotid intima-media thickness (cIMT) and identifies the potential mediating biomarkers of gut microbiota and metabolites in adults.METHODS AND RESULTS: This 9-year prospective study includes 2975 subjects with plasma 25(OH)D at baseline and determined cIMT every 3 years. Higher circulating 25(OH)D is associated with decreased odds of higher (≥median) 9-year cIMT changes at the common carotid artery (hΔCCA-cIMT) (p-trend < 0.001). Multivariable-adjusted OR (95%CI) of hΔCCA-cIMT for tertiles 2 and 3 (vs. 1) of 25(OH)D is 0.87 (0.73-1.04) and 0.68 (0.57-0.82). Gut microbiome and metabolome analysis identify 18 biomarkers significantly associated with both 25(OH)D and hΔCCA-cIMT, including three microbial genera, seven fecal metabolites, eight serum metabolites, and pathway of synthesis and degradation of ketone bodies. Mediation/path analyses show the scores generated from the overlapped differential gut microbiota, fecal and serum metabolites, and serum acetoacetic acid alone could mediate the beneficial association between 25(OH)D and hΔCCA-cIMT by 10.8%, 23.1%, 59.2%, and 62.0% (all p < 0.05), respectively.CONCLUSIONS: These findings show a beneficial association between plasma 25(OH)D and the CCA-cIMT progression. The identified multi-omics biomarkers provide novel mechanistic insights for the epidemiological association.PMID:37377073 | DOI:10.1002/mnfr.202300017

Metabolism disturbance by light/dark cycle switching depends on the rat health status: the role of grape seed flavanols

Wed, 28/06/2023 - 12:00
Food Funct. 2023 Jun 28. doi: 10.1039/d3fo00260h. Online ahead of print.ABSTRACTChanges in light/dark cycles and obesogenic diets are related to the disruption of circadian rhythms and metabolic disorders. Grape seed flavanols have shown beneficial effects on metabolic diseases and, recently, a circadian system modulation has been suggested to mediate their health-enhancing properties. Therefore, the aim of this study was to evaluate the grape seed (poly)phenol extract (GSPE) effects in healthy and obese rats after a light/dark cycle disruption. Forty-eight rats were fed a standard (STD) or cafeteria (CAF) diet for 6 weeks under STD conditions of a light/dark cycle (12 h light per day, L12). Then, animals were switched to a long (18 h light per day, L18) or short (6 h light per day, L6) photoperiod and administered a vehicle (VH) or GSPE (25 mg kg-1) for 1 week. The results showed changes in serum lipids and insulin and metabolomic profiles dependent on the photoperiod and animal health status. GSPE administration improved serum parameters and increased the Nampt gene expression in CAF rats and modified the metabolomic profile in a photoperiod-dependent manner. Metabolic effects of light/dark disturbance depend on the health status of the rats, with diet-induced CAF-induced obese rats being more affected. Grape seed flavanols improve the metabolic status in a photoperiod-dependent manner and their effects on the circadian system suggest that part of their metabolic effects could be mediated by their action on biological rhythms.PMID:37377055 | DOI:10.1039/d3fo00260h

Identification of a potential prognostic plasma biomarker of acute ischemic stroke via untargeted LC-MS metabolomics

Wed, 28/06/2023 - 12:00
Proteomics Clin Appl. 2023 Jun 27:e2200081. doi: 10.1002/prca.202200081. Online ahead of print.ABSTRACTPURPOSE: Stroke is the sudden death of brain cells in a localized area due to an inadequate blood flow or blood vessel rupture, and it seriously affects the quality of life. The metabolite biomarkers are needed for predicting the functional outcome of acute ischemic stroke (AIS).EXPERIMENTAL DESIGN: To identify biomarkers for AIS, untargeted LC/MS metabolomics was performed on plasma samples from subjects with favorable prognosis (mRS ≤ 2) and unfavorable prognosis (mRS > 2). The identified markers were further absolutely quantified by a targeted MRM approach.RESULTS: There were 10 upregulated and 26 downregulated markers. Among these candidates, one was successfully identified as glycocholic acid and then absolutely quantified in plasma samples. Glycocholic acid could discriminate between subjects with favorable and unfavorable prognosis with an area under the curve (AUC) of 0.68 and odds ratio of 5.88.CONCLUSIONS AND CLINICAL RELEVANCE: Glycocholic acid was identified as a potential plasma metabolite marker of non-progressive outcomes after ischemic stroke and could serve as predictive prognostic markers for clinical acute stroke outcomes.PMID:37376802 | DOI:10.1002/prca.202200081

Gastrointestinal Manifestations of SARS-CoV-2: Transmission, Pathogenesis, Immunomodulation, Microflora Dysbiosis, and Clinical Implications

Wed, 28/06/2023 - 12:00
Viruses. 2023 May 24;15(6):1231. doi: 10.3390/v15061231.ABSTRACTThe clinical manifestation of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in the respiratory system of humans is widely recognized. There is increasing evidence suggesting that SARS-CoV-2 possesses the capability to invade the gastrointestinal (GI) system, leading to the manifestation of symptoms such as vomiting, diarrhea, abdominal pain, and GI lesions. These symptoms subsequently contribute to the development of gastroenteritis and inflammatory bowel disease (IBD). Nevertheless, the pathophysiological mechanisms linking these GI symptoms to SARS-CoV-2 infection remain unelucidated. During infection, SARS-CoV-2 binds to angiotensin-converting enzyme 2 and other host proteases in the GI tract during the infection, possibly causing GI symptoms by damaging the intestinal barrier and stimulating inflammatory factor production, respectively. The symptoms of COVID-19-induced GI infection and IBD include intestinal inflammation, mucosal hyperpermeability, bacterial overgrowth, dysbiosis, and changes in blood and fecal metabolomics. Deciphering the pathogenesis of COVID-19 and understanding its exacerbation may provide insights into disease prognosis and pave the way for the discovery of potential novel targets for disease prevention or treatment. Besides the usual transmission routes, SARS-CoV-2 can also be transmitted via the feces of an infected person. Hence, it is crucial to implement preventive and control measures in order to mitigate the fecal-to-oral transmission of SARS-CoV-2. Within this context, the identification and diagnosis of GI tract symptoms during these infections assume significance as they facilitate early detection of the disease and the development of targeted therapeutics. The present review discusses the receptors, pathogenesis, and transmission of SARS-CoV-2, with a particular focus on the induction of gut immune responses, the influence of gut microbes, and potential therapeutic targets against COVID-19-induced GI infection and IBD.PMID:37376531 | DOI:10.3390/v15061231

Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases

Wed, 28/06/2023 - 12:00
Pharmaceutics. 2023 May 31;15(6):1630. doi: 10.3390/pharmaceutics15061630.ABSTRACTA biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.PMID:37376078 | DOI:10.3390/pharmaceutics15061630

Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions

Wed, 28/06/2023 - 12:00
Plants (Basel). 2023 Jun 20;12(12):2387. doi: 10.3390/plants12122387.ABSTRACTPlant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.PMID:37376010 | DOI:10.3390/plants12122387

<em>Abelmoschus eculentus</em> Seed Extract Exhibits In Vitro and In Vivo Anti-Alzheimer's Potential Supported by Metabolomic and Computational Investigation

Wed, 28/06/2023 - 12:00
Plants (Basel). 2023 Jun 20;12(12):2382. doi: 10.3390/plants12122382.ABSTRACTAbelmoschus esculentus Linn. (okra, F. Malvaceae) is a fruit widely consumed all over the world. In our study, the anti-Alzheimer's potential of A. esculentus was evaluated. An in vitro DPPH free radical assay on A. esculentus seed's total extract and AChE inhibition potential screening indicated a significant anti-Alzheimer's activity of the extract, which was confirmed through an in vivo study in an aluminum-intoxicated rat model. Additionally, in vivo results demonstrated significant improvement in Alzheimer's rats, which was confirmed by improving T-maze, beam balance tests, lower serum levels of AChE, norepinephrine, glycated end products, IL-6, and MDA. The levels of dopamine, BDNF, GSH, and TAC returned to normal values during the study. Moreover, histological investigations of brain tissue revealed that the destruction in collagen fiber nearly returns back to the normal pattern. Metabolomic analysis of the ethanolic extract of A. esculentus seeds via LC-HR-ESI-MS dereplicated ten compounds. A network pharmacology study displayed the relation between identified compounds and 136 genes, among which 84 genes related to Alzheimer's disorders, and focused on AChE, APP, BACE1, MAPT and TNF genes with interactions to all Alzheimer's disorders. Consequently, the results revealed in our study grant potential dietary elements for the management of Alzheimer's disorders.PMID:37376007 | DOI:10.3390/plants12122382

CRISPR/Cas9 Based Cell-Type Specific Gene Knock-Out in <em>Arabidopsis</em> Roots

Wed, 28/06/2023 - 12:00
Plants (Basel). 2023 Jun 19;12(12):2365. doi: 10.3390/plants12122365.ABSTRACTCRISPR/Cas9 (hereafter Cas9)-mediated gene knockout is one of the most important tools for studying gene function. However, many genes in plants play distinct roles in different cell types. Engineering the currently used Cas9 system to achieve cell-type-specific knockout of functional genes is useful for addressing the cell-specific functions of genes. Here we employed the cell-specific promoters of the WUSCHEL RELATED HOMEOBOX 5 (WOX5), CYCLIND6;1 (CYCD6;1), and ENDODERMIS7 (EN7) genes to drive the Cas9 element, allowing tissue-specific targeting of the genes of interest. We designed the reporters to verify the tissue-specific gene knockout in vivo. Our observation of the developmental phenotypes provides strong evidence for the involvement of SCARECROW (SCR) and GIBBERELLIC ACID INSENSITIVE (GAI) in the development of quiescent center (QC) and endodermal cells. This system overcomes the limitations of traditional plant mutagenesis techniques, which often result in embryonic lethality or pleiotropic phenotypes. By allowing cell-type-specific manipulation, this system has great potential to help us better understand the spatiotemporal functions of genes during plant development.PMID:37375990 | DOI:10.3390/plants12122365

Multi-Omics Analysis of <em>Vicia cracca</em> Responses to Chronic Radiation Exposure in the Chernobyl Exclusion Zone

Wed, 28/06/2023 - 12:00
Plants (Basel). 2023 Jun 14;12(12):2318. doi: 10.3390/plants12122318.ABSTRACTOur understanding of the long-term consequences of chronic ionising radiation for living organisms remains scarce. Modern molecular biology techniques are helpful tools for researching pollutant effects on biota. To reveal the molecular phenotype of plants growing under chronic radiation exposure, we sampled Vicia cracca L. plants in the Chernobyl exclusion zone and areas with normal radiation backgrounds. We performed a detailed analysis of soil and gene expression patterns and conducted coordinated multi-omics analyses of plant samples, including transcriptomics, proteomics, and metabolomics. Plants growing under chronic radiation exposure showed complex and multidirectional biological effects, including significant alterations in the metabolism and gene expression patterns of irradiated plants. We revealed profound changes in carbon metabolism, nitrogen reallocation, and photosynthesis. These plants showed signs of DNA damage, redox imbalance, and stress responses. The upregulation of histones, chaperones, peroxidases, and secondary metabolism was noted.PMID:37375943 | DOI:10.3390/plants12122318

Jujube Fruit Metabolomic Profiles Reveal Cultivar Differences and Function as Cultivar Fingerprints

Wed, 28/06/2023 - 12:00
Plants (Basel). 2023 Jun 14;12(12):2313. doi: 10.3390/plants12122313.ABSTRACTJujube is a nutritious fruit, and is high in vitamin C, fiber, phenolics, flavonoids, nucleotides, and organic acids. It is both an important food and a source of traditional medicine. Metabolomics can reveal metabolic differences between Ziziphus jujuba fruits from different jujube cultivars and growth sites. In the fall of 2022, mature fresh fruit of eleven cultivars from replicated trials at three sites in New Mexico-Leyendecker, Los Lunas, and Alcalde-were sampled from September to October for an untargeted metabolomics study. The 11 cultivars were Alcalde 1, Dongzao, Jinsi (JS), Jinkuiwang (JKW), Jixin, Kongfucui (KFC), Lang, Li, Maya, Shanxi Li, and Zaocuiwang (ZCW). Based on the LC-MS/MS analysis, there were 1315 compounds detected with amino acids and derivatives (20.15%) and flavonoids (15.44%) as dominant categories. The results reveal that the cultivar was the dominant factor in metabolite profiles, while the location was secondary. A pairwise comparison of cultivar metabolomes revealed that two pairs had fewer differential metabolites (i.e., Li/Shanxi Li and JS/JKW) than all the other pairs, highlighting that pairwise metabolic comparison can be applied for cultivar fingerprinting. Differential metabolite analysis also showed that half of drying cultivars have up-regulated lipid metabolites compared to fresh or multi-purpose fruit cultivars and that specialized metabolites vary significantly between cultivars from 35.3% (Dongzao/ZCW) to 56.7% (Jixin/KFC). An exemplary analyte matching sedative cyclopeptide alkaloid sanjoinine A was only detected in the Jinsi and Jinkuiwang cultivars. Overall, our metabolic analysis of the jujube cultivar's mature fruits provides the largest resource of jujube fruit metabolomes to date and will inform cultivar selection for nutritional and medicinal research and for fruit metabolic breeding.PMID:37375938 | DOI:10.3390/plants12122313

Use of Multivariate Analysis to Unravel the Differences between Two Chamomile Varieties and Their Anticancer and Antioxidant Activities

Wed, 28/06/2023 - 12:00
Plants (Basel). 2023 Jun 12;12(12):2297. doi: 10.3390/plants12122297.ABSTRACTBACKGROUND: Plants from the Asteraceae family were commonly used to treat various diseases. The metabolomic profile of this family consisted of bioactive flavonoids and other phenolics. Chamomile is a member of the Asteraceae family. Jordanian and European chamomile are two varieties of Matricaria chamomilla (German chamomile), which were grown under different environmental conditions, were studied. Many examples of plant varieties with significant distinction in the secondary metabolite they afford have been described in the literature. Multivariate statistical analysis was employed to measure the depth of this variation in two chamomile varieties.METHODS: From both types, crude extracts were prepared using solvents of different polarities and tested for their biological activity. The semipolar fraction of the European variety showed anticancer and antioxidant activity. Meanwhile, the semipolar fraction of the Jordanian type exhibited only antioxidant activity. Both extracts were fractionated, and then the biological activity was again assayed.RESULTS: European and Jordanian chamomile fractions produced dicaffeoylquinic acid isomers exhibiting antioxidant capability. Additionally, Z-glucoferulic acid was produced from the European chamomile, demonstrating antioxidant activity. The European samples afforded two major compounds, chrysosplenetin and apigenin, that displayed anticancer activity.CONCLUSIONS: Different environmental conditions between Jordanian and European chamomile affected the type of isolated compounds. Structure elucidation was performed with HPLC-MS coupled with dereplication techniques and 2D NMR experiments.PMID:37375922 | DOI:10.3390/plants12122297

The Impact of Growth Years on the Medicinal Material Characteristics and Metabolites of <em>Stellaria dichotoma</em> L. var. <em>lanceolata</em> Bge. Reveals the Optimal Harvest Age

Wed, 28/06/2023 - 12:00
Plants (Basel). 2023 Jun 12;12(12):2286. doi: 10.3390/plants12122286.ABSTRACTThe original plant of Chinese medicine Stellariae Radix (Yin Chai Hu) is Stellaria dichotoma L. var. lanceolata Bge (abbreviated as SDL). SDL is a perennial herbaceous plant and a characteristic crop in Ningxia. Growth years are vital factors that affect the quality of perennial medicinal materials. This study aims to investigate the impact of growth years on SDL and screen for the optimal harvest age by comparing the medicinal material characteristics of SDL with different growth years. Additionally, metabolomics analysis using UHPLC-Q-TOF MS was employed to investigate the impact of growth years on the accumulation of metabolites in SDL. The results show that the characteristics of medicinal materials and the drying rate of SDL gradually increase with the increase in growth years. The fastest development period of SDL occurred during the first 3 years, after which the development slowed down. Medicinal materials characteristics of 3-year-old SDL exhibited mature qualities with a high drying rate, methanol extract content, and the highest content of total sterols and total flavonoids. A total of 1586 metabolites were identified, which were classified into 13 major classes with more than 50 sub-classes. Multivariate statistical analysis indicated significant differences in the diversity of metabolites of SDL in different growth years, with greater differences observed in metabolites as the growth years increased. Moreover, different highly expressed metabolites in SDL at different growth years were observed: 1-2 years old was beneficial to the accumulation of more lipids, while 3-5 years old was conducive to accumulating more alkaloids, benzenoids, etc. Furthermore, 12 metabolites accumulating with growth years and 20 metabolites decreasing with growth years were screened, and 17 significantly different metabolites were noted in 3-year-old SDL. In conclusion, growth years not only influenced medicinal material characteristics, drying rate, content of methanol extract, and total sterol and flavonoid contents, but also had a considerable effect on SDL metabolites and metabolic pathways. SDL planted for 3 years presented the optimum harvest time. The screened significantly different metabolites with biological activity, such as rutin, cucurbitacin e, isorhamnetin-3-o-glucoside, etc., can be utilized as potential quality markers of SDL. This research provides references for studying the growth and development of SDL medicinal materials, the accumulation of metabolites, and the selection of optimal harvest time.PMID:37375910 | DOI:10.3390/plants12122286

Chlorogenic Acid Induced Neuroblastoma Cells Differentiation via the ACAT1-TPK1-PDH Pathway

Wed, 28/06/2023 - 12:00
Pharmaceuticals (Basel). 2023 Jun 14;16(6):877. doi: 10.3390/ph16060877.ABSTRACTBACKGROUND: Chlorogenic acid (CHA) has been shown to have substantial biological activities, including anti-inflammatory, antioxidant, and antitumor effects. However, the pharmacological role of CHA in neuroblastoma has not yet been assessed. Neuroblastoma is a type of cancer that develops in undifferentiated sympathetic ganglion cells. This study aims to assess the antitumor activity of CHA against neuroblastoma and reveal its mechanism of action in cell differentiation.METHODS: Be(2)-M17 and SH-SY5Y neuroblastoma cells were used to confirm the differentiation phenotype. Subcutaneous and orthotopic xenograft mouse models were also used to evaluate the antitumor activity of CHA. Seahorse assays and metabolomic analyses were further performed to investigate the roles of CHA and its target ACAT1 in mitochondrial metabolism.RESULTS: CHA induced the differentiation of Be(2)-M17 and SH-SY5Y neuroblastoma cells in vivo and in vitro. The knockdown of mitochondrial ACAT1, which was inhibited by CHA, also resulted in differentiation characteristics in vivo and in vitro. A metabolomic analysis revealed that thiamine metabolism was involved in the differentiation of neuroblastoma cells.CONCLUSIONS: These results provide evidence that CHA shows good antitumor activity against neuroblastoma via the induction of differentiation, by which the ACAT1-TPK1-PDH pathway is involved. CHA is a potential drug candidate for neuroblastoma therapy.PMID:37375824 | DOI:10.3390/ph16060877

Study on the Intervention Mechanism of Cryptotanshinone on Human A2780 Ovarian Cancer Cell Line Using GC-MS-Based Cellular Metabolomics

Wed, 28/06/2023 - 12:00
Pharmaceuticals (Basel). 2023 Jun 9;16(6):861. doi: 10.3390/ph16060861.ABSTRACTCryptotanshinone (CT), an active component of the traditional Chinese medicine Salvia miltiorrhiza Bunge, exhibits a wide range of biological and pharmacological activities. Although the anticancer activity of CT is well known, the knowledge of its effect on the regulation of cancer cell metabolism is relatively new. The present study investigated the anticancer mechanism of CT in ovarian cancer with a focus on cancer metabolism. CCK8 assays, apoptosis assays, and cell cycle assays were conducted to reveal the growth-suppressive effect of CT on ovarian cancer A2780 cells. To explore the potential underlying mechanisms of CT, the changes in endogenous metabolites in A2780 cells before and after CT intervention were investigated using the gas chromatography-mass spectrometry (GC-MS) approach. A total of 28 important potential biomarkers underwent significant changes, mainly involving aminoacyl-tRNA biosynthesis, energy metabolism, and other pathways. Changes in the ATP and amino acid contents were verified with in vitro and in vivo experiments. Our results indicate that CT may exert an anti-ovarian cancer effect by inhibiting ATP production, promoting the protein catabolic process, and inhibiting protein synthesis, which may lead to cell cycle arrest and apoptosis.PMID:37375808 | DOI:10.3390/ph16060861

Metabolomics and Network Analyses Reveal Phenylalanine and Tyrosine as Signatures of Anthracycline-Induced Hepatotoxicity

Wed, 28/06/2023 - 12:00
Pharmaceuticals (Basel). 2023 May 26;16(6):797. doi: 10.3390/ph16060797.ABSTRACTThe chemotherapy drug doxorubicin (DOX) is an anthracycline with over 30% incidence of liver injury in breast cancer patients, yet the mechanism of its hepatotoxicity remains unclear. To identify potential biomarkers for anthracycline-induced hepatotoxicity (AIH), we generated clinically-relevant mouse and rat models administered low-dose, long-term DOX. These models exhibited significant liver damage but no decline in cardiac function. Through untargeted metabolic profiling of the liver, we identified 27 differential metabolites in a mouse model and 28 in a rat model. We then constructed a metabolite-metabolite network for each animal model and computationally identified several potential metabolic markers, with particular emphasis on aromatic amino acids, including phenylalanine, tyrosine, and tryptophan. We further performed targeted metabolomics analysis on DOX-treated 4T1 breast cancer mice for external validation. We found significant (p < 0.001) reductions in hepatic levels of phenylalanine and tyrosine (but not tryptophan) following DOX treatment, which were strongly correlated with serum aminotransferases (ALT and AST) levels. In summary, the results of our study present compelling evidence supporting the use of phenylalanine and tyrosine as metabolic signatures of AIH.PMID:37375744 | DOI:10.3390/ph16060797

Dietary Docosahexaenoic Acid and Glucose Systemic Metabolic Changes in the Mouse

Wed, 28/06/2023 - 12:00
Nutrients. 2023 Jun 8;15(12):2679. doi: 10.3390/nu15122679.ABSTRACTThe endocannabinoid system (ECS) participates in regulating whole body energy balance. Overactivation of the ECS has been associated with the negative consequence of obesity and type 2 diabetes. Since activators of the ECS rely on lipid-derived ligands, an investigation was conducted to determine whether dietary PUFA could influence the ECS to affect glucose clearance by measuring metabolites of macronutrient metabolism. C57/blk6 mice were fed a control or DHA-enriched semi-purified diet for a period of 112 d. Plasma, skeletal muscle, and liver were collected after 56 d and 112 d of feeding the diets for metabolomics analysis. Key findings characterized a shift in glucose metabolism and greater catabolism of fatty acids in mice fed the DHA diet. Glucose use and promotion of fatty acids as substrate were found based on levels of metabolic pathway intermediates and altered metabolic changes related to pathway flux with DHA feeding. Greater levels of DHA-derived glycerol lipids were found subsequently leading to the decrease of arachidonate-derived endocannabinoids (eCB). Levels of 1- and 2-arachidonylglcerol eCB in muscle and liver were lower in the DHA diet group compared to controls. These findings demonstrate that DHA feeding in mice alters macronutrient metabolism and may restore ECS tone by lowering arachidonic acid derived eCB.PMID:37375583 | DOI:10.3390/nu15122679

Pages