Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

QC<em>omics</em>: Recommendations and Guidelines for Robust, Easily Implementable and Reportable Quality Control of Metabolomics Data

Fri, 05/01/2024 - 12:00
Anal Chem. 2024 Jan 5. doi: 10.1021/acs.analchem.3c03660. Online ahead of print.ABSTRACTThe implementation of quality control strategies is crucial to ensure the reproducibility, accuracy, and meaningfulness of metabolomics data. However, this pivotal step is often overlooked within the metabolomics workflow and frequently relies on the use of nonstandardized and poorly reported protocols. To address current limitations in this respect, we have developed QComics, a robust, easily implementable and reportable method for monitoring and controlling data quality. The protocol operates in various sequential steps aimed to (i) correct for background noise and carryover, (ii) detect signal drifts and "out-of-control" observations, (iii) deal with missing data, (iv) remove outliers, (v) monitor quality markers to identify samples affected by improper collection, preprocessing, or storage, and (vi) assess overall data quality in terms of precision and accuracy. Notably, this tool considers important issues often neglected along quality control, such as the need of separately handling missing values and truly absent data to avoid losing relevant biological information, as well as the large impact that preanalytical factors may elicit on metabolomics results. Altogether, the guidelines compiled in QComics might contribute to establishing gold standard recommendations and best practices for quality control within the metabolomics community.PMID:38179935 | DOI:10.1021/acs.analchem.3c03660

Metabolic Profiling Identifies 1-MetHis and 3-IPA as Potential Diagnostic Biomarkers for Patients With Acute and Chronic Heart Failure With Reduced Ejection Fraction

Fri, 05/01/2024 - 12:00
Circ Heart Fail. 2024 Jan 5:e010813. doi: 10.1161/CIRCHEARTFAILURE.123.010813. Online ahead of print.ABSTRACTBACKGROUND: Metabolomics has become a valuable tool for identifying potential new biomarkers and metabolic profiles. It has the potential to improve the diagnosis and prognosis of different phenotypes of heart failure. To generate a distinctive metabolic profile, we assessed and compared the metabolic phenotypes of patients with acute decompensated heart failure (ADHF), patients with chronic heart failure (CHF), and healthy controls.METHODS: Plasma metabolites were analyzed by liquid-chromatography mass spectrometry/mass spectrometry and the MxP Quant 500 kit in 15 patients with ADHF, 50 patients with CHF (25 with dilated cardiomyopathy, 25 with ischemic cardiomyopathy), and 13 controls.RESULTS: Of all metabolites identified to be significantly altered, 3-indolepropionic acid and 1-methyl histidine showed the highest concentration differences in ADHF and CHF compared with control. Area under the curve-receiver operating characteristic analysis showed an area under the curve ≥0.8 for 3-indolepropionic acid and 1-methyl histidine, displaying good discrimination capabilities between control and patient cohorts. Additionally, symmetrical dimethylarginine (mean, 1.97±0.61 [SD]; P=0.01) was identified as a suitable biomarker candidate for ADHF and kynurenine (mean, 1.69±0.39 [SD]; P=0.009) for CHF when compared with control, both demonstrating an area under the curve ≥0.85.CONCLUSIONS: Our study provides novel insights into the metabolic differences between ADHF and CHF and healthy controls. We here identify new metabolites for potential diagnostic and prognostic purposes.PMID:38179791 | DOI:10.1161/CIRCHEARTFAILURE.123.010813

ATF4 Responds to Metabolic Stress in <em>Drosophila</em>

Fri, 05/01/2024 - 12:00
Front Biosci (Landmark Ed). 2023 Dec 26;28(12):344. doi: 10.31083/j.fbl2812344.ABSTRACTBACKGROUND: Activating transcription factor 4 (ATF4) is a fundamental basic-leucine zipper transcription factor that plays a pivotal role in numerous stress responses, including endoplasmic reticulum (ER) stress and the integrated stress response. ATF4 regulates adaptive gene expression, thereby triggering stress resistance in cells.METHODS: To characterize the metabolic status of atf4-⁣/- Drosophila larvae, we conducted both metabolomic and microarray analyses.RESULTS: Metabolomic analysis demonstrated an increase in lactate levels in atf4-⁣/- mutants when compared to wild-type flies. However, there was a significant reduction in adenosine triphosphate (ATP) synthesis in the atf4-⁣/- flies, suggesting an abnormal energy metabolism in the mutant larvae. Microarray analysis unveiled that Drosophila ATF4 controls gene expression related to diverse biological processes, including lipase activity, oxidoreductase activity, acyltransferase, immune response, cell death, and transcription factor, particularly under nutrient-restricted conditions. In situ hybridization analysis further demonstrated specific augmentation of CG6283, classified as a gastric lipase, within the gastric caeca of nutrient-restricted flies. Moreover, overexpression of lipases, CG6283 and CG6295, made the flies resistant to starvation.CONCLUSIONS: These findings underscore the role of Drosophila ATF4 in responding to metabolic fluctuations and modulating gene expression associated with metabolism and stress adaptation. Dysregulation of ATF4 may detrimentally impact the development and physiology of Drosophila.PMID:38179767 | DOI:10.31083/j.fbl2812344

Metabolite Profiling and Comparative Metabolomics Analysis of Jiaozhou Chinese Cabbage (<em>Brassica rapa</em> L. <em>ssp. pekinensis</em>) Planted in Different Areas

Fri, 05/01/2024 - 12:00
Front Biosci (Landmark Ed). 2023 Dec 26;28(12):345. doi: 10.31083/j.fbl2812345.ABSTRACTBACKGROUND: Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most popular vegetables in China because of its taste and health benefits. The area of production has obvious effects on the quality of Chinese cabbage. However, metabolite profiling and variations in different production areas are still unclear.METHODS: Here, widely targeted metabolite analyses based on the ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach were performed to study the metabolite profiling of Chinese cabbage planted in the Jiaozhou and Jinan areas.RESULTS: A total of 531 metabolites were detected, of which 529 were present in the Chinese cabbage from both areas, 108 were found to be chemicals related to Chinese traditional medicine, and 79 were found to correspond to at least one disease. Chinese cabbage is rich in nutritious substances such as lipids, phenolic acids, amino acids and derivatives, nucleotides and derivatives, organic acids, flavonoids, glucosinolates, saccharides, alcohols, and vitamins. Comparative analysis showed that the metabolic profiles differed between areas, and 89 differentially altered metabolites (DAMs) were characterized. Of these, 78 DAMs showed higher levels in Jinan Chinese cabbage, whereas 11 had higher levels in Jiaozhou Chinese cabbage. Two metabolites, S-(Methyl)glutathione and nicotinic acid adenine dinucleotide, were unique in Jiaozhou Chinese cabbage. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the DAMs were enriched into 23 pathways, of which tryptophan metabolism and thiamine metabolism were the significant enrichment pathways.CONCLUSIONS: This study provides new insights into the metabolite profiles and production areas affecting the metabolite variations of Chinese cabbage, which will be useful for functional Chinese cabbage cultivation.PMID:38179748 | DOI:10.31083/j.fbl2812345

The Potential Transcriptomic and Metabolomic Mechanisms of ATO and ATRA in Treatment of FLT3-ITD Acute Myeloid Leukemia

Fri, 05/01/2024 - 12:00
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338231223080. doi: 10.1177/15330338231223080.ABSTRACTBACKGROUND: Acute myeloid leukemia (AML) with Fms-like tyrosine kinase 3 gene internal tandem duplication (FLT3-ITD) mutations has a poor prognosis. The combination of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) has a synergistic killing effect on leukemia cells with FLT3-ITD mutation. However, the mechanism, especially the changes of gene expression and metabolic activity remain unclear. Here we explore the transcriptome and metabolomics changes of FLT3-ITD AML cells treated with ATO/ATRA.METHODS: RNA-seq was used to identify differential expressed genes (DEGs), and ultra-high performance liquid chromatography-quadrupole electrostatic field orbital trap mass spectrometry (UHPLC-QE-MS) nontargeted metabolomics method was used to screen out the differential metabolites in FLT3-ITD mutant cell lines treated with ATRA and ATO. KEGG pathway database was utilized for pathway exploration and Seahorse XF24 was used to detect extracellular acidification rate (ECAR). Metabolic polymerase chain reaction (PCR) array and real-time quantitative PCR (RT-qPCR) were used to detect mRNA levels of key metabolic genes of glycolysis and fatty acid after drug treatment.RESULTS: A total of 3873 DEGs were identified and enriched in 281 Gene Ontology (GO) terms, among which 210 were related to biological processes, 43 were related to cellular components, and 28 were related to molecular functions. Besides, 1794 and 927 differential metabolites were screened in positive and negative ion mode separately, and 59 different metabolic pathways were involved, including alanine-aspartate-glutamate metabolic pathway, arginine, and proline metabolic pathway, glycerophospholipid metabolic pathways, etc. According to KEGG Pathway analysis of transcriptome combined with metabolome, glycolysis/gluconeogenesis pathway and fatty acid metabolism pathway were significantly founded enriched. ATRA + ATO may inhibit the glycolysis of FLT3-ITD AML cells by inhibiting FLT3 and its downstream AKT/HK2-VDAC1 signaling pathway.CONCLUSIONS: The gene transcription profile and metabolites of FLT3-ITD mutant cells changes significantly after treatment, which might be related to the anti-FLT3-ITD AML effect. The screened DEGs, differential metabolites pathway are helpful in studying the mechanism of anti-leukemia effects and drug targets.PMID:38179723 | DOI:10.1177/15330338231223080

Metabolome combined with transcriptome profiling reveals the dynamic changes in flavonoids in red and green leaves of <em>Populus</em> × <em>euramericana</em> 'Zhonghuahongye'

Fri, 05/01/2024 - 12:00
Front Plant Sci. 2023 Dec 21;14:1274700. doi: 10.3389/fpls.2023.1274700. eCollection 2023.ABSTRACTFlavonoids are secondary metabolites that have economic value and are essential for health. Poplar is a model perennial woody tree that is often used to study the regulatory mechanisms of flavonoid synthesis. We used a poplar bud mutant, the red leaf poplar variety 2025 (Populus × euramericana 'Zhonghuahongye'), and green leaves as study materials and selected three stages of leaf color changes for evaluation. Phenotypic and biochemical analyses showed that the total flavonoid, polyphenol, and anthocyanin contents of red leaves were higher than those of green leaves in the first stage, and the young and tender leaves of the red leaf variety had higher antioxidant activity. The analyses of widely targeted metabolites identified a total of 273 flavonoid metabolites (114 flavones, 41 flavonols, 34 flavonoids, 25 flavanones, 21 anthocyanins, 18 polyphenols, 15 isoflavones, and 5 proanthocyanidins). The greatest difference among the metabolites was found in the first stage. Most flavonoids accumulated in red leaves, and eight anthocyanin compounds contributed to red leaf coloration. A comprehensive metabolomic analysis based on RNA-seq showed that most genes in the flavonoid and anthocyanin biosynthetic pathways were differentially expressed in the two types of leaves. The flavonoid synthesis genes CHS (chalcone synthase gene), FLS (flavonol synthase gene), ANS (anthocyanidin synthase gene), and proanthocyanidin synthesis gene LAR (leucoanthocyanidin reductase gene) might play key roles in the differences in flavonoid metabolism. A correlation analysis of core metabolites and genes revealed several candidate regulators of flavonoid and anthocyanin biosynthesis, including five MYB (MYB domain), three bHLH (basic helix-loop-helix), and HY5 (elongated hypocotyl 5) transcription factors. This study provides a reference for the identification and utilization of flavonoid bioactive components in red-leaf poplar and improves the understanding of the differences in metabolism and gene expression between red and green leaves at different developmental stages.PMID:38179486 | PMC:PMC10764563 | DOI:10.3389/fpls.2023.1274700

Gut microbiome and plasma metabolome alterations in myopic mice

Fri, 05/01/2024 - 12:00
Front Microbiol. 2023 Dec 21;14:1251243. doi: 10.3389/fmicb.2023.1251243. eCollection 2023.ABSTRACTBACKGROUND: Myopia is one of the most common eye diseases leading to blurred distance vision. Inflammatory diseases could trigger or exacerbate myopic changes. Although gut microbiota bacteria are associated with various inflammatory diseases, little is known about its role in myopia.MATERIALS AND METHODS: The mice were randomly divided into control and model groups, with the model group being attached-30D lens onto the eyes for 3 weeks. Then, mouse cecal contents and plasma were collected to analyze their intestinal microbiota and plasma metabolome.RESULTS: We identified that the microbial composition differed considerably between the myopic and non-myopic mice, with the relative abundance of Firmicutes phylum decreased obviously while that of Actinobacteria phylum was increased in myopia. Furthermore, Actinobacteria and Bifidobacterium were positively correlated with axial lengths (ALs) of eyeballs while negatively correlated with refractive diopters. Untargeted metabolomic analysis identified 141 differentially expressed metabolites, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed considerable enrichment mainly in amino acid metabolism pathways. Notably, pathways involved glutamate metabolism including "Glutamine and D-glutamate metabolism" and "Alanine, aspartate and glutamate metabolism" was changed dramatically, which presented as the concentrations of L-Glutamate and L-Glutamine decreased obviously in myopia. Interestingly, microbiome dysbiosis and metabolites alternations in myopia have a disrupting gut barrier feature. We further demonstrated that the gut barrier function was impaired in myopic mice manifesting in decreased expression of Occludin, ZO-1 and increased permeation of FITC-dextran.DISCUSSION: Myopic mice had obviously altered gut microbiome and metabolites profiles compared to non-myopic mice. The dysbiosis and plasma metabolomics shift in myopia had an interrupting gut barrier feature. Our study provides new insights into the possible role of the gut microbiota in myopia and reinforces the potential feasibility of microbiome-based therapies in myopia.PMID:38179454 | PMC:PMC10764480 | DOI:10.3389/fmicb.2023.1251243

Integrated metabolomics and transcriptomics to reveal biomarkers and mitochondrial metabolic dysregulation of premature ovarian insufficiency

Fri, 05/01/2024 - 12:00
Front Endocrinol (Lausanne). 2023 Dec 21;14:1280248. doi: 10.3389/fendo.2023.1280248. eCollection 2023.ABSTRACTBACKGROUND: The metabolic characteristics of premature ovarian insufficiency (POI), a reproductive endocrine disease characterized by abnormal sex hormone metabolism and follicle depletion, remain unclear. Metabolomics is a powerful tool for exploring disease phenotypes and biomarkers. This study aims to identify metabolic markers and construct diagnostic models, and elucidate the underlying pathological mechanisms for POI.METHODS: Non-targeted metabolomics was utilized to characterize the plasma metabolic profile of 40 patients. The metabolic markers were identified through bioinformatics and machine learning, and constructed an optimal diagnostic model by classified multi-model analysis. Enzyme-linked immunosorbent assay (ELISA) was used to verify antioxidant indexes, mitochondrial enzyme complexes, and ATP levels. Finally, integrated transcriptomics and metabolomics were used to reveal the dysregulated pathways and molecular regulatory mechanisms of POI.RESULTS: The study identified eight metabolic markers significantly correlated with ovarian reserve function. The XGBoost diagnostic model was developed based on six machine learning models, demonstrating its robust diagnostic performance and clinical applicability through the evaluation of receiver operating characteristic (ROC) curve, decision curve analysis (DCA), calibration curve, and precise recall (PR) curve. Multi-omics analysis showed that mitochondrial respiratory chain electron carrier (CoQ10) and enzyme complex subunits were down-regulated in POI. ELISA validation revealed an elevation in oxidative stress markers and a reduction in the activities of antioxidant enzymes, CoQ10, and mitochondrial enzyme complexes in POI.CONCLUSION: Our findings highlight that mitochondrial dysfunction and energy metabolism disorders are closely related to the pathogenesis of POI. The identification of metabolic markers and predictive models holds significant implications for the diagnosis, treatment, and monitoring of POI.PMID:38179298 | PMC:PMC10764474 | DOI:10.3389/fendo.2023.1280248

Bayesian dynamic network modelling: an application to metabolic associations in cardiovascular diseases

Fri, 05/01/2024 - 12:00
J Appl Stat. 2022 Sep 2;51(1):114-138. doi: 10.1080/02664763.2022.2116746. eCollection 2024.ABSTRACTWe propose a novel approach to the estimation of multiple Graphical Models to analyse temporal patterns of association among a set of metabolites over different groups of patients. Our motivating application is the Southall And Brent REvisited (SABRE) study, a tri-ethnic cohort study conducted in the UK. We are interested in identifying potential ethnic differences in metabolite levels and associations as well as their evolution over time, with the aim of gaining a better understanding of different risk of cardio-metabolic disorders across ethnicities. Within a Bayesian framework, we employ a nodewise regression approach to infer the structure of the graphs, borrowing information across time as well as across ethnicities. The response variables of interest are metabolite levels measured at two time points and for two ethnic groups, Europeans and South-Asians. We use nodewise regression to estimate the high-dimensional precision matrices of the metabolites, imposing sparsity on the regression coefficients through the dynamic horseshoe prior, thus favouring sparser graphs. We provide the code to fit the proposed model using the software Stan, which performs posterior inference using Hamiltonian Monte Carlo sampling, as well as a detailed description of a block Gibbs sampling scheme.PMID:38179161 | PMC:PMC10763914 | DOI:10.1080/02664763.2022.2116746

Mechanism of simulated lunar dust-induced lung injury in rats based on transcriptomics

Fri, 05/01/2024 - 12:00
Toxicol Res (Camb). 2023 Dec 2;13(1):tfad108. doi: 10.1093/toxres/tfad108. eCollection 2024 Feb.ABSTRACTLunar dust particles are an environmental threat to lunar astronauts, and inhalation of lunar dust can cause lung damage. The current study explored the mechanism of lunar dust simulant (CLDS-i) inducing inflammatory pulmonary injury. Wistar rats were exposed to CLDS-i for 4 h/d and 7d/week for 4 weeks. Pathological results showed that a large number of inflammatory cells gathered and infiltrated in the lung tissues of the simulated lunar dust group, and the alveolar structures were destroyed. Transcriptome analysis confirmed that CLDS-i was mainly involved in the regulation of activation and differentiation of immune inflammatory cells, activated signaling pathways related to inflammatory diseases, and promoted the occurrence and development of inflammatory injury in the lung. Combined with metabolomics analysis, the results of joint analysis of omics were found that the genes Kmo, Kynu, Nos3, Arg1 and Adh7 were involved in the regulation of amino acid metabolism in rat lung tissues, and these genes might be the key targets for the treatment of amino acid metabolic diseases. In addition, the imbalance of amino acid metabolism might be related to the activation of nuclear factor kappaB (NF-κB) signaling pathway. The results of quantitative real-time polymerase chain reaction and Western blot further confirmed that CLDS-i may promote the occurrence and development of lung inflammation and lead to abnormal amino acid metabolism by activating the B cell activation factor (BAFF)/ B cell activation factor receptor (BAFFR)-mediated NF-κB signaling pathway.PMID:38179001 | PMC:PMC10762671 | DOI:10.1093/toxres/tfad108

A high-fat eucaloric diet induces reprometabolic syndrome of obesity in normal weight women

Fri, 05/01/2024 - 12:00
PNAS Nexus. 2023 Dec 18;3(1):pgad440. doi: 10.1093/pnasnexus/pgad440. eCollection 2024 Jan.ABSTRACTWe examined the effects of 1 month of a eucaloric, high-fat (48% of calories) diet (HFD) on gonadotropin secretion in normal-weight women to interrogate the role of free fatty acids and insulin in mediating the relative hypogonadotropic hypogonadism of obesity. Eighteen eumenorrheic women (body mass index [BMI] 18-25 kg/m2) were studied in the early follicular phase of the menstrual cycle before and after exposure to an HFD with frequent blood sampling for luteinizing hormone (LH) and follicle-stimulating hormone (FSH), followed by an assessment of pituitary sensitivity to gonadotropin-releasing hormone (GnRH). Mass spectrometry-based plasma metabolomic analysis was also performed. Paired testing and time-series analysis were performed as appropriate. Mean endogenous LH (unstimulated) was significantly decreased after the HFD (4.3 ± 1.0 vs. 3.8 ± 1.0, P < 0.01); mean unstimulated FSH was not changed. Both LH (10.1 ± 1.0 vs. 7.2 ± 1.0, P < 0.01) and FSH (9.5 ± 1.0 vs. 8.8 ± 1.0, P < 0.01) responses to 75 ng/kg of GnRH were reduced after the HFD. Mean LH pulse amplitude and LH interpulse interval were unaffected by the dietary exposure. Eucaloric HFD exposure did not cause weight change. Plasma metabolomics confirmed adherence with elevation of fasting free fatty acids (especially long-chain mono-, poly-, and highly unsaturated fatty acids) by the last day of the HFD. One-month exposure to an HFD successfully induced key reproductive and metabolic features of reprometabolic syndrome in normal-weight women. These data suggest that dietary factors may underlie the gonadotrope compromise seen in obesity-related subfertility and therapeutic dietary interventions, independent of weight loss, may be possible.PMID:38178979 | PMC:PMC10766410 | DOI:10.1093/pnasnexus/pgad440

Serum metabolomics characteristics and fatty-acid-related mechanism of cirrhosis with histological response in chronic hepatitis B

Fri, 05/01/2024 - 12:00
Front Pharmacol. 2023 Dec 21;14:1329266. doi: 10.3389/fphar.2023.1329266. eCollection 2023.ABSTRACTBackground and aims: The serum metabolites changes in patients with hepatitis B virus (HBV)-related cirrhosis as progression. Peroxisome proliferator-activated receptor gamma (PPARγ) is closely related to lipid metabolism in cirrhotic liver. However, the relationship between fatty acids and the expression of hepatic PPARγ during cirrhosis regression remains unknown. In this study, we explored the serum metabolic characteristics and expression of PPARγ in patients with histological response to treatment with entecavir. Methods: Sixty patients with HBV-related cirrhosis were selected as the training cohort with thirty patients each in the regression (R) group and non-regression (NR) group based on their pathological changes after 48-week treatment with entecavir. Another 72 patients with HBV-related cirrhosis and treated with entecavir were collected as the validation cohort. All of the serum samples were tested using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Data were processed through principal component analysis and orthogonal partial least square discriminant analysis. Hepatic PPARγ expression was observed using immunohistochemistry. The relationship between serum fatty acids and PPARγ was calculated using Pearson's or Spearman's correlation analysis. Results: A total of 189 metabolites were identified and 13 differential metabolites were screened. Compared to the non-regression group, the serum level of fatty acids was higher in the R group. At baseline, the expression of PPARγ in hepatic stellate cells was positively correlated with adrenic acid (r 2 = 0.451, p = 0.046). The expression of PPARγ in both groups increased after treatment, and the expression of PPARγ in the R group was restored in HSCs much more than that in the NR group (p = 0.042). The adrenic acid and arachidonic acid (AA) in the R group also upgraded more than the NR group after treatment (p = 0.037 and 0.014). Conclusion: Baseline serum differential metabolites, especially fatty acids, were identified in patients with HBV-related cirrhosis patients who achieved cirrhosis regression. Upregulation of adrenic acid and arachidonic acid in serum and re-expression of PPARγ in HSCs may play a crucial role in liver fibrosis improvement.PMID:38178856 | PMC:PMC10764421 | DOI:10.3389/fphar.2023.1329266

ATP citrate lyase (ACLY)-dependent immunometabolism in mucosal T cells drives experimental colitis in vivo

Thu, 04/01/2024 - 12:00
Gut. 2024 Jan 4:gutjnl-2023-330543. doi: 10.1136/gutjnl-2023-330543. Online ahead of print.ABSTRACTOBJECTIVE: Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD.DESIGN: ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models.RESULTS: ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis.CONCLUSION: ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.PMID:38176897 | DOI:10.1136/gutjnl-2023-330543

Unlocking the hidden potential: Enhancing the utilization of stems and leaves through metabolite analysis and toxicity assessment of various parts of Aconitum carmichaelii

Thu, 04/01/2024 - 12:00
J Ethnopharmacol. 2024 Jan 2:117693. doi: 10.1016/j.jep.2023.117693. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Aconitum carmichaelii is widely used in traditional Chinese medicine clinics as a bulk medicinal material. It has been used in China for more than two thousand years. Nevertheless, the stems and leaves of this plant are usually discarded as non-medicinal parts, even though they have a large biomass and exhibit therapeutic properties. Thus, it is crucial to investigate metabolites of different parts of Aconitum carmichaelii and explore the relationship between metabolites and toxicity to unleash the utilization potential of the stems and leaves.AIM OF THE STUDY: Using plant metabolomics, we aim to correlate different metabolites in various parts of Aconitum carmichaelii with toxicity, thereby screening for toxicity markers. This endeavor seeks to offer valuable insights for the development of Aconitum carmichaelii stem and leaf-based applications.MATERIALS AND METHODS: UHPLC-Q-Orbitrap MS/MS-based plant metabolomics was employed to analyze metabolites of the different parts of Aconitum carmichaelii. The cardiotoxicity and hepatotoxicity of the extracts from different parts of Aconitum carmichaelii were also investigated using zebrafish as animal model. Toxicity markers were subsequently identified by correlating toxicity with metabolites.RESULTS: A total of 113 alkaloids were identified from the extracts of various parts of Aconitum carmichaelii, with 64 different metabolites in stems and leaves compared to daughter root (Fuzi), and 21 different metabolites in stems and leaves compared to mother root (Wutou). The content of aporphine alkaloids in the stems and leaves of Aconitum carmichaelii is higher than that in the medicinal parts, while the content of the diester-diterpenoid alkaloids is lower. Additionally, the medicinal parts of Aconitum carmichaelii exhibited cardiotoxicity and hepatotoxicity, while the stems and leaves have no obvious toxicity. Finally, through correlation analysis and animal experimental verification, mesaconitine, deoxyaconitine, and hypaconitine were used as toxicity markers.CONCLUSION: Given the low toxicity of the stems and leaves and the potential efficacy of aporphine alkaloids, the stems and leaves of Aconitum carmichaelii hold promise as a valuable medicinal resource warranting further development.PMID:38176669 | DOI:10.1016/j.jep.2023.117693

A very-low carbohydrate content in a high-fat diet modifies the plasma metabolome and impacts systemic inflammation and experimental atherosclerosis

Thu, 04/01/2024 - 12:00
J Nutr Biochem. 2024 Jan 2:109562. doi: 10.1016/j.jnutbio.2023.109562. Online ahead of print.ABSTRACTBACKGROUND AND AIMS: Ketogenic diets (KD) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD).MATERIAL AND METHODS: Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal: 81:1:18, fat/carbohydrates/protein) or a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal: 40:42:18, fat/carbohydrates/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system.RESULTS: KD was atherogenic when compared to the control diet, but KD mice when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines than HFD mice, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic and increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; (4) presented significantly lower aortic plaque burden.CONCLUSION: KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.PMID:38176626 | DOI:10.1016/j.jnutbio.2023.109562

Novel Effects of Prohibitin 1 Expression Level on Cholesterol and Lipid Homeostasis

Thu, 04/01/2024 - 12:00
J Nutr Biochem. 2024 Jan 2:109561. doi: 10.1016/j.jnutbio.2023.109561. Online ahead of print.ABSTRACTProhibitin 1 (PHB1) plays an important role in maintaining liver health and function. The PHB1 level is decreased in patients with various liver diseases. In this study, liver cancer was induced in liver-specific Phb1 knock-out mice, which were then subjected to hepatic gene and metabolomic analysis. The reduced expression of mRNA expression level of Phb1 induced downregulation of cholesterol and lipid metabolism. This result was confirmed in a cell model. The expression of Hmgcr and Srebp2 in normal cells decreased when they were treated with cholesterol. In HepG2 cells in which the expression of Phb1 was lowered using siPhb1, the mRNA expression of Hmgcr and Srebp2 also decreased when the cells were treated with cholesterol. Furthermore, in the Phb1 knock-out group, the expression of Fasn and Srebp1 related to lipid metabolism increased but the expression of Ldlr decreased. The expression of Cat and Gpx in cells increased when the expression of Phb1 decreased. Altogether, a decreased expression of Phb1 induces downregulation of cholesterol- and lipid metabolism-related genes and cholesterol homeostasis is not achieved, particularly in a cholesterol-rich environment. The decrease in Phb1 expression causes excessive oxidative stress in cholesterol and lipid metabolism. Therefore, maintaining a normal level of PHB1 expression is crucial for maintaining cholesterol homeostasis in the liver. Thus, PHB1 may become an important target for non-alcoholic fatty liver disease and lipid metabolism in the future.PMID:38176624 | DOI:10.1016/j.jnutbio.2023.109561

Transcriptomics integrated with metabolomics reveal the competitive relationship between co-cultured Trichoderma asperellum HG1 and Bacillus subtilis Tpb55

Thu, 04/01/2024 - 12:00
Microbiol Res. 2024 Jan 2;280:127598. doi: 10.1016/j.micres.2023.127598. Online ahead of print.ABSTRACTMicrobial co-culture has proven to be an effective way to improve the ability of microorganisms to biocontrol. However, the interactive mechanisms of co-cultural microbes, especially between fungi and bacteria, have rarely been studied. By comparative analysis of morphology, transcriptomics and metabolomics, the interactive mechanisms of a sequential co-culture system of Trichoderma asperellum HG1 and Bacillus subtilis Tpb55 was explored in this study. The results revealed that co- culture has no significant effect on the growth and cell morphology of the two strains, but lead to mycelium wrinkling of HG1. RNA-seq analysis showed that co-culture significantly upregulated the HG1 genes concerning amino acid degradation and metabolism, proteolysis, resisting environmental stress, cell homeostasis, glycolysis, the glyoxylate cycle, and the citric acid (TCA) cycle, while Tpb55 genes related to cell homeostasis, spore formation and membrane fluidization were significantly upregulated, but genes associating to TCA, glycolytic cycles and fatty acid β-oxidation were significantly downregulated. Metabolomic results revealed that some amino acids related to energy metabolism were significantly altered in HG1, whereas palmitic acid, which is related to cell membrane functions, was upregulated in Tpb55. These results indicated that HG1 could interfere with carbon metabolism and cell membrane fluidity, but accelerate spore formation of Tpb55. Biophysical assays further convinced that co-culture could decrease ATP content and inhibit ATPase activity in HG1, and could promote spore formation and reduce the cell membrane fluidity of Tpb55. In addition, co-culture also accelerated the production of intracellular anti-oomycete compound octhilinone. The above results indicate that HG1 and Tpb55 are mainly in a competitive relationship in the co culture system. These findings provide new insights for understanding the interaction mechanism between co cultured microbes.PMID:38176360 | DOI:10.1016/j.micres.2023.127598

Lactobacillus acidophilus suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma through producing valeric acid

Thu, 04/01/2024 - 12:00
EBioMedicine. 2024 Jan 3;100:104952. doi: 10.1016/j.ebiom.2023.104952. Online ahead of print.ABSTRACTBACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC.METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids.FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC.INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC.FUNDING: Shown in Acknowledgments.PMID:38176203 | DOI:10.1016/j.ebiom.2023.104952

Mucosal and systemic physiological changes underscore the welfare risks of environmental hydrogen sulphide in post-smolt Atlantic salmon (Salmo salar)

Thu, 04/01/2024 - 12:00
Ecotoxicol Environ Saf. 2024 Jan 3;270:115897. doi: 10.1016/j.ecoenv.2023.115897. Online ahead of print.ABSTRACTAtlantic salmon (Salmo salar) might encounter toxic hydrogen sulphide (H2S) gas during aquaculture production. Exposure to this gas can be acute or chronic, with heightened levels often linked to significant mortality rates. Despite its recognised toxicity, our understanding of the physiological implications of H2S on salmon remains limited. This report details the mucosal and systemic physiological consequences in post-smolt salmon reared in brackish water at 12 ppt after prolonged exposure to elevated H2S levels over 4 weeks. The fish were subjected to two concentrations of H2S: 1 µg/L (low group) and 5 µg/L (high group). An unexposed group at 0 µg/L served as the control. Both groups exposed to H2S exhibited incremental mortality, with cumulative mortality rates of 4.7 % and 16 % for the low and high groups, respectively. Production performance, including weight and condition factors, were reduced in the H2S-exposed groups, particularly in the high group. Mucosal response of the olfactory organ revealed higher tissue damage scores in the H2S-exposed groups, albeit only at week 4. The high group displayed pronounced features such as increased mucus cell density and oedema-like vacuoles. Transcriptome analysis of the olfactory organ unveiled that the effects of H2S were more prominent at week 4, with the high group experiencing a greater magnitude of change than the low group. Genes associated with the extracellular matrix were predominantly downregulated, while the upregulated genes primarily pertained to immune response. H2S-induced alterations in the metabolome were more substantial in plasma than skin mucus. Furthermore, the number of differentially affected circulating metabolites was higher in the low group compared to the high group. Five core pathways were significantly impacted by H2S regardless of concentration, including the phenylalanine, tyrosine, and tryptophan biosynthesis. The plasma levels of phenylalanine and tyrosine were reduced following exposure to H2S. While there was a discernible distinction in the skin mucus metabolomes among the three treatment groups, only one metabolite - 4-hydroxyproline - was significantly impacted by H2S. Furthermore, this metabolite was significantly reduced in the plasma and skin mucus of H2S-exposed fish. This study underscores that prolonged exposure to H2S, even at concentrations previously deemed sub-lethal, has discernible physiological implications that manifest across various organisational levels. Given these findings, prolonged exposure to H2S poses a welfare risk, and thus, its presence must be maintained at low levels (<1 µg/L) in salmon land-based rearing systems.PMID:38176182 | DOI:10.1016/j.ecoenv.2023.115897

Individualized microbiotas dictate the impact of dietary fiber on colitis sensitivity

Thu, 04/01/2024 - 12:00
Microbiome. 2024 Jan 5;12(1):5. doi: 10.1186/s40168-023-01724-6.ABSTRACTBACKGROUND: The observation that the intestinal microbiota is central in the development of IBD suggests that dietary fiber, the microbiota's primary source of nourishment, could play a central role in these diseases. Accordingly, enriching diets with specific soluble fibers remodels microbiota and modulates colitis sensitivity. In humans, a recent study suggests that the microbiota of select IBD patients might influence the impacts they would experience upon fiber exposure. We sought here to define the extent to which individual microbiotas varied in their responsiveness to purified soluble fiber inulin and psyllium. Moreover, the extent to which such variance might impact proneness to colitis.RESULTS: We observed a high level of inter-individual variation in microbiota responsiveness to fiber inulin and psyllium: while microbiotas from select donors exhibited stark fiber-induced modulation in composition, pro-inflammatory potential, and metabolomic profile, others were only minimally impacted. Mice transplanted with fiber-sensitive microbiomes exhibited colitis highly modulated by soluble fiber consumption, while mice receiving fiber-resistant microbiotas displayed colitis severity irrespective of fiber exposure.CONCLUSION: The extent to which select soluble fibers alter proneness to colitis is highly influenced by an individual's microbiota composition and further investigation of individual microbiota responsiveness toward specific dietary fiber could pave the way to personalized fiber-based intervention, both in IBD patients and healthy individuals. Video Abstract.PMID:38178260 | DOI:10.1186/s40168-023-01724-6

Pages