Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

NME4 mediates metabolic reprogramming and promotes nonalcoholic fatty liver disease progression

Thu, 04/01/2024 - 12:00
EMBO Rep. 2023 Dec 14. doi: 10.1038/s44319-023-00012-6. Online ahead of print.ABSTRACTNonalcoholic fatty liver disease (NAFLD) is mainly characterized by excessive fat accumulation in the liver, and it is associated with liver-related complications and adverse systemic diseases. NAFLD has become the most prevalent liver disease; however, effective therapeutic agents for NAFLD are still lacking. We combined clinical data with proteomics and metabolomics data, and found that the mitochondrial nucleoside diphosphate kinase NME4 plays a central role in mitochondrial lipid metabolism. Nme4 is markedly upregulated in mice fed with high-fat diet, and its expression is positively correlated with the level of steatosis. Hepatic deletion of Nme4 suppresses the progression of hepatic steatosis. Further studies demonstrated that NME4 interacts with several key enzymes in coenzyme A (CoA) metabolism and increases the level of acetyl-CoA and malonyl-CoA, which are the major lipid components of the liver in NAFLD. Increased level of acetyl-CoA and malonyl-CoA lead to increased triglyceride levels and lipid accumulation in the liver. Taken together, these findings reveal that NME4 is a critical regulator of NAFLD progression and a potential therapeutic target for NAFLD.PMID:38177901 | DOI:10.1038/s44319-023-00012-6

Integrated metabolomic and transcriptomic analyses reveal the molecular mechanism of amino acid transport between source and sink during tea shoot development

Thu, 04/01/2024 - 12:00
Plant Cell Rep. 2024 Jan 5;43(1):28. doi: 10.1007/s00299-023-03110-w.ABSTRACTThe weighted gene co-expression network analysis and antisense oligonucleotide-mediated transient gene silencing revealed that CsAAP6 plays an important role in amino acid transport during tea shoot development. Nitrogen transport from source to sink is crucial for tea shoot growth and quality formation. Amino acid represents the major transport form of reduced nitrogen in the phloem between source and sink, but the molecular mechanism of amino acid transport from source leaves to new shoots is not yet clear. Therefore, the composition of metabolites in phloem exudates collected by the EDTA-facilitated method was analyzed through widely targeted metabolomics. A total of 326 metabolites were identified in the phloem exudates with the richest variety of amino acids and their derivatives (93), accounting for approximately 39.13% of the total metabolites. Moreover, through targeted metabolomics, it was found that the content of glutamine, glutamic acid, and theanine was the most abundant, and gradually increased with the development of new shoots. Meanwhile, transcriptome analysis suggested that the expression of amino acid transport genes changed significantly. The WGCNA analysis identified that the expression levels of CsAVT1, CsLHTL8, and CsAAP6 genes located in the MEterquoise module were positively correlated with the content of amino acids such as glutamine, glutamic acid, and theanine in phloem exudates. Reducing the CsAAP6 in mature leaves resulted in a significant decrease in the content of glutamic acid, aspartic acid, alanine, leucine, asparagine, glutamine, and arginine in the phloem exudates, indicating that CsAAP6 played an important role in the source to sink transport of amino acids in the phloem. The research results will provide the theoretical basis and genetic resources for the improvement of nitrogen use efficiency and tea quality.PMID:38177567 | DOI:10.1007/s00299-023-03110-w

Comparison of LC-MS-based methods for the determination of carboxylic acids in animal matrices

Thu, 04/01/2024 - 12:00
Anal Bioanal Chem. 2024 Jan 5. doi: 10.1007/s00216-023-05113-8. Online ahead of print.ABSTRACTCarboxylic acids (CAs) are key players in human and animal metabolism. As they are hardly retained under reversed-phase liquid chromatography (RP-LC) conditions in their native form, derivatization is an option to make them accessible to RP-LC and simultaneously increase their response for mass spectrometric detection. In this work, two RP-LC tandem mass spectrometry-based methods using aniline or 3-nitrophenylhydrazine (3-NPH) as derivatization agents were compared with respect to several factors including completeness of derivatization, apparent recoveries (RAs) in both cow feces and ruminal fluid, and concentrations obtained in feces and ruminal fluid of cows. Anion exchange chromatography coupled to high-resolution mass spectrometry (AIC-HR-MS) served as reference method. Derivatization efficiencies were close to 100% for 3-NPH derivatization but variable (20-100%) and different in solvent solutions and matrix extracts for aniline derivatization. Likewise, average RAs of 13C-labeled short-chain fatty acids as internal standards were around 100% for 3-NPH derivatization but only 45% for aniline derivatization. Quantification of CAs in feces and ruminal fluid of cows initially fed a forage-only diet and then transitioned to a 65% high-grain diet which yielded similar concentrations for 3-NPH derivatization and AIC-HR-MS, but concentrations determined by aniline derivatization were on average five times lower. For these reasons, derivatization with aniline is not recommended for the quantitative analysis of CAs in animal samples.PMID:38177453 | DOI:10.1007/s00216-023-05113-8

Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration

Thu, 04/01/2024 - 12:00
Nat Microbiol. 2024 Jan 4. doi: 10.1038/s41564-023-01560-2. Online ahead of print.ABSTRACTRespiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.PMID:38177297 | DOI:10.1038/s41564-023-01560-2

Muscle abnormalities worsen after post-exertional malaise in long COVID

Thu, 04/01/2024 - 12:00
Nat Commun. 2024 Jan 4;15(1):17. doi: 10.1038/s41467-023-44432-3.ABSTRACTA subgroup of patients infected with SARS-CoV-2 remain symptomatic over three months after infection. A distinctive symptom of patients with long COVID is post-exertional malaise, which is associated with a worsening of fatigue- and pain-related symptoms after acute mental or physical exercise, but its underlying pathophysiology is unclear. With this longitudinal case-control study (NCT05225688), we provide new insights into the pathophysiology of post-exertional malaise in patients with long COVID. We show that skeletal muscle structure is associated with a lower exercise capacity in patients, and local and systemic metabolic disturbances, severe exercise-induced myopathy and tissue infiltration of amyloid-containing deposits in skeletal muscles of patients with long COVID worsen after induction of post-exertional malaise. This study highlights novel pathways that help to understand the pathophysiology of post-exertional malaise in patients suffering from long COVID and other post-infectious diseases.PMID:38177128 | DOI:10.1038/s41467-023-44432-3

Impact of macrophage differentiation on hematopoietic function enhancement by Shenzhu ErKang Syrup

Thu, 04/01/2024 - 12:00
Aging (Albany NY). 2024 Jan 3;15. doi: 10.18632/aging.205358. Online ahead of print.ABSTRACTShenzhu Erkang Syrup (SZEK) is a traditional Chinese medicine that improves spleen and stomach function, tonifying the Qi and activating the blood; however, its therapeutic effects in hematopoietic dysfunction and their underlying mechanism remain unexplored. In this study, mice were given cyclophosphamide (100 mg/kg) by intraperitoneal injections for three days to produce hematopoietic dysfunction model. We investigated the hematopoietic effect and mechanism of SZEK in mice with hematopoietic dysfunction via histopathological examination, flow cytometry, enzyme-linked immunosorbent assay, and Western blotting combined with intestinal flora and serum metabolomics analysis. In mice with hematopoietic dysfunction, SZEK (gavage, 0.3 mL/25 g) alleviated pathological damage to the bone marrow and spleen; increased the number of naïve cells (Lin-), hematopoietic stem cells (Lin-Sca-1+c-Kit+), long-term self-renewing hematopoietic stem cells (Lin-Sca-1+c-Kit+CD48-CD150+), B lymphocytes (CD45+CD19+), and macrophages (CD11b+F4/80+) in the bone marrow; and reduced inflammation. Preliminary intestinal flora and serum metabolome analyses indicated that the pro-hematopoietic mechanism of SZEK was associated with macrophage differentiation. Further validation revealed that SZEK promoted hematopoiesis by decreasing the number of M2 macrophages and inhibiting the secretion of negative hematopoietic regulatory factors in mice with hematopoietic dysfunction.PMID:38175693 | DOI:10.18632/aging.205358

Contributions of the Microbiome-Derived Metabolome for Risk Assessment and Prognostication of Pancreatic Cancer

Thu, 04/01/2024 - 12:00
Clin Chem. 2024 Jan 4;70(1):102-115. doi: 10.1093/clinchem/hvad186.ABSTRACTBACKGROUND: Increasing evidence implicates microbiome involvement in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Studies suggest that reflux of gut or oral microbiota can lead to colonization in the pancreas, resulting in dysbiosis that culminates in release of microbial toxins and metabolites that potentiate an inflammatory response and increase susceptibility to PDAC. Moreover, microbe-derived metabolites can exert direct effector functions on precursors and cancer cells, as well as other cell types, to either promote or attenuate tumor development and modulate treatment response.CONTENT: The occurrence of microbial metabolites in biofluids thereby enables risk assessment and prognostication of PDAC, as well as having potential for design of interception strategies. In this review, we first highlight the relevance of the microbiome for progression of precancerous lesions in the pancreas and, using liquid chromatography-mass spectrometry, provide supporting evidence that microbe-derived metabolites manifest in pancreatic cystic fluid and are associated with malignant progression of intraductal papillary mucinous neoplasm(s). We secondly summarize the biomarker potential of microbe-derived metabolite signatures for (a) identifying individuals at high risk of developing or harboring PDAC and (b) predicting response to treatment and disease outcomes.SUMMARY: The microbiome-derived metabolome holds considerable promise for risk assessment and prognostication of PDAC.PMID:38175578 | DOI:10.1093/clinchem/hvad186

Ionome mapping and amino acid metabolome profiling of Phaseolus vulgaris L. seeds imbibed with computationally informed phytoengineered copper sulphide nanoparticles

Thu, 04/01/2024 - 12:00
Discov Nano. 2024 Jan 4;19(1):8. doi: 10.1186/s11671-023-03953-y.ABSTRACTThis study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nanoparticles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phytocompounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic acid had a higher affinity for interacting with the nanoparticle's surface than other active compounds. Seeds treated with the digenite nanoparticles exhibited a unique ionome distribution pattern as determined with external beam proton-induced X-ray emission, with hotspots of Cu and S appearing in the hilum and micropyle area that indicated a possible uptake mechanism via the seed coat. The nano-digenite also triggered a plant stress response by slightly altering seed amino acid metabolism. Ultimately, the nano-digenite may have important implications as a seed protective or nutritive agent as advised by its unique distribution pattern and effect on amino acid metabolism.PMID:38175418 | DOI:10.1186/s11671-023-03953-y

Microbially catalyzed conjugation of GABA and tyramine to bile acids

Thu, 04/01/2024 - 12:00
J Bacteriol. 2024 Jan 4:e0042623. doi: 10.1128/jb.00426-23. Online ahead of print.ABSTRACTBAs are modified in multiple ways by host enzymes and the microbiota to produce a chemically diverse set of molecules that assist in the digestive process and impact many physiological functions. This study reports the discovery of bacterial species that conjugate the neuroactive amines, GABA and tyramine, to primary and secondary BAs. We further present evidence that BA-GABA and BA-tyramine conjugates are present in the human gut, and document a shifting BA-GABA profile in a human pouchitis patient before, during, and after inflammation and antibiotic treatment. GABA and tyramine are common metabolic products of the gut microbiota and potent neuroactive molecules. GABA- and tyramine-conjugated BAs may influence receptor-mediated regulatory mechanisms of humans and their gut microbes, and absorption of these molecules and their entry into enterohepatic circulation may impact host physiology at distal tissue sites. This study defines new conjugated bile acids in the human gut.PMID:38174933 | DOI:10.1128/jb.00426-23

Factors of faecal microbiota transplantation applied to cancer management

Thu, 04/01/2024 - 12:00
J Drug Target. 2024 Jan 4:1-14. doi: 10.1080/1061186X.2023.2299724. Online ahead of print.ABSTRACTThe homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.PMID:38174845 | DOI:10.1080/1061186X.2023.2299724

OMICs Signatures Linking Persistent Organic Pollutants to Cardiovascular Disease in the Swedish Mammography Cohort

Thu, 04/01/2024 - 12:00
Environ Sci Technol. 2024 Jan 4. doi: 10.1021/acs.est.3c06388. Online ahead of print.ABSTRACTCardiovascular disease (CVD) development may be linked to persistent organic pollutants (POPs), including organochlorine compounds (OCs) and perfluoroalkyl and polyfluoroalkyl substances (PFAS). To explore underlying mechanisms, we investigated metabolites, proteins, and genes linking POPs with CVD risk. We used data from a nested case-control study on myocardial infarction (MI) and stroke from the Swedish Mammography Cohort - Clinical (n = 657 subjects). OCs, PFAS, and multiomics (9511 liquid chromatography-mass spectrometry (LC-MS) metabolite features; 248 proteins; 8110 gene variants) were measured in baseline plasma. POP-related omics features were selected using random forest followed by Spearman correlation adjusted for confounders. From these, CVD-related omics features were selected using conditional logistic regression. Finally, 29 (for OCs) and 12 (for PFAS) unique features associated with POPs and CVD. One omics subpattern, driven by lipids and inflammatory proteins, associated with MI (OR = 2.03; 95% CI = 1.47; 2.79), OCs, age, and BMI, and correlated negatively with PFAS. Another subpattern, driven by carnitines, associated with stroke (OR = 1.55; 95% CI = 1.16; 2.09), OCs, and age, but not with PFAS. This may imply that OCs and PFAS associate with different omics patterns with opposite effects on CVD risk, but more research is needed to disentangle potential modifications by other factors.PMID:38174696 | DOI:10.1021/acs.est.3c06388

Exploration of Metabolomic Markers Associated With Declining Kidney Function in People With Type 2 Diabetes Mellitus

Thu, 04/01/2024 - 12:00
J Endocr Soc. 2023 Dec 22;8(1):bvad166. doi: 10.1210/jendso/bvad166. eCollection 2023 Dec 1.ABSTRACTBACKGROUND: Metabolomics, the study of small molecules in biological systems, can provide valuable insights into kidney dysfunction in people with type 2 diabetes mellitus (T2DM), but prospective studies are scarce. We investigated the association between metabolites and kidney function decline in people with T2DM.METHODS: The Edinburgh Type 2 Diabetes Study, a population-based cohort of 1066 men and women aged 60 to 75 years with T2DM. We measured 149 serum metabolites at baseline and investigated individual associations with baseline estimated glomerular filtration rate (eGFR), incident chronic kidney disease [CKD; eGFR <60 mL/min/(1.73 m)2], and decliner status (5% eGFR decline per year).RESULTS: At baseline, mean eGFR was 77.5 mL/min/(1.73 m)2 (n = 1058), and 216 individuals had evidence of CKD. Of those without CKD, 155 developed CKD over a median 7-year follow-up. Eighty-eight metabolites were significantly associated with baseline eGFR (β range -4.08 to 3.92; PFDR < 0.001). Very low density lipoproteins, triglycerides, amino acids (AAs), glycoprotein acetyls, and fatty acids showed inverse associations, while cholesterol and phospholipids in high-density lipoproteins exhibited positive associations. AA isoleucine, apolipoprotein A1, and total cholines were not only associated with baseline kidney measures (PFDR < 0.05) but also showed stable, nominally significant association with incident CKD and decline.CONCLUSION: Our study revealed widespread changes within the metabolomic profile of CKD, particularly in lipoproteins and their lipid compounds. We identified a smaller number of individual metabolites that are specifically associated with kidney function decline. Replication studies are needed to confirm the longitudinal findings and explore if metabolic signals at baseline can predict kidney decline.PMID:38174155 | PMC:PMC10763986 | DOI:10.1210/jendso/bvad166

Identifying subgroups of childhood obesity by using multiplatform metabotyping

Thu, 04/01/2024 - 12:00
Front Mol Biosci. 2023 Dec 20;10:1301996. doi: 10.3389/fmolb.2023.1301996. eCollection 2023.ABSTRACTIntroduction: Obesity results from an interplay between genetic predisposition and environmental factors such as diet, physical activity, culture, and socioeconomic status. Personalized treatments for obesity would be optimal, thus necessitating the identification of individual characteristics to improve the effectiveness of therapies. For example, genetic impairment of the leptin-melanocortin pathway can result in rare cases of severe early-onset obesity. Metabolomics has the potential to distinguish between a healthy and obese status; however, differentiating subsets of individuals within the obesity spectrum remains challenging. Factor analysis can integrate patient features from diverse sources, allowing an accurate subclassification of individuals. Methods: This study presents a workflow to identify metabotypes, particularly when routine clinical studies fail in patient categorization. 110 children with obesity (BMI > +2 SDS) genotyped for nine genes involved in the leptin-melanocortin pathway (CPE, MC3R, MC4R, MRAP2, NCOA1, PCSK1, POMC, SH2B1, and SIM1) and two glutamate receptor genes (GRM7 and GRIK1) were studied; 55 harboring heterozygous rare sequence variants and 55 with no variants. Anthropometric and routine clinical laboratory data were collected, and serum samples processed for untargeted metabolomic analysis using GC-q-MS and CE-TOF-MS and reversed-phase U(H)PLC-QTOF-MS/MS in positive and negative ionization modes. Following signal processing and multialignment, multivariate and univariate statistical analyses were applied to evaluate the genetic trait association with metabolomics data and clinical and routine laboratory features. Results and Discussion: Neither the presence of a heterozygous rare sequence variant nor clinical/routine laboratory features determined subgroups in the metabolomics data. To identify metabolomic subtypes, we applied Factor Analysis, by constructing a composite matrix from the five analytical platforms. Six factors were discovered and three different metabotypes. Subtle but neat differences in the circulating lipids, as well as in insulin sensitivity could be established, which opens the possibility to personalize the treatment according to the patients categorization into such obesity subtypes. Metabotyping in clinical contexts poses challenges due to the influence of various uncontrolled variables on metabolic phenotypes. However, this strategy reveals the potential to identify subsets of patients with similar clinical diagnoses but different metabolic conditions. This approach underscores the broader applicability of Factor Analysis in metabotyping across diverse clinical scenarios.PMID:38174068 | PMC:PMC10761426 | DOI:10.3389/fmolb.2023.1301996

Organic acid and sugar components accumulation and flavor associated metabolites dynamic changes in yellow- and white-fleshed seedless loquats (<em>Eriobotrya japonica</em>)

Thu, 04/01/2024 - 12:00
Food Chem X. 2023 Dec 6;21:101046. doi: 10.1016/j.fochx.2023.101046. eCollection 2024 Mar 30.ABSTRACTTriploid loquats are divided into yellow- and white-fleshed cultivars. To better understand taste variations in triploid loquat fruits, we used a UPLC-ESI-QTRAP-MS/MS-based widely targeted metabolomic analysis to examine the metabolic composition of two different color fleshed triploid loquats with a sample size of 54 and external validation method within a confidence level of P<0.05. We identified key flavor-related differentially accumulated metabolites using the variable importance in projection (VIP) value (VIP ≥ 1.0) and fold change ≥ 2 or ≤ 0.5. Furthermore, the results of the HPLC analysis showed that white-fleshed loquats had a low malic acid content. We also performed the UPLC-MS/MS system to investigate the carotenoids contents and lipidome in four triploid cultivars. In the fruits of white-fleshed varieties, the carotenoids contents were significantly downregulated, but the contents of most glycerolphospholipids were increased. Our results reveal the metabolomic changes between the yellow- and white-fleshed cultivars.PMID:38173902 | PMC:PMC10762357 | DOI:10.1016/j.fochx.2023.101046

Evaluating the causal relationship between human blood metabolites and gastroesophageal reflux disease

Thu, 04/01/2024 - 12:00
World J Gastrointest Oncol. 2023 Dec 15;15(12):2169-2184. doi: 10.4251/wjgo.v15.i12.2169.ABSTRACTBACKGROUND: Gastroesophageal reflux disease (GERD) affects approximately 13% of the global population. However, the pathogenesis of GERD has not been fully elucidated. The development of metabolomics as a branch of systems biology in recent years has opened up new avenues for the investigation of disease processes. As a powerful statistical tool, Mendelian randomization (MR) is widely used to explore the causal relationship between exposure and outcome.AIM: To analyze of the relationship between 486 blood metabolites and GERD.METHODS: Two-sample MR analysis was used to assess the causal relationship between blood metabolites and GERD. A genome-wide association study (GWAS) of 486 metabolites was the exposure, and two different GWAS datasets of GERD were used as endpoints for the base analysis and replication and meta-analysis. Bonferroni correction is used to determine causal correlation features (P < 1.03 × 10-4). The results were subjected to sensitivity analysis to assess heterogeneity and pleiotropy. Using the MR Steiger filtration method to detect whether there is a reverse causal relationship between metabolites and GERD. In addition, metabolic pathway analysis was conducted using the online database based MetaboAnalyst 5.0 software.RESULTS: In MR analysis, four blood metabolites are negatively correlated with GERD: Levulinate (4-oxovalerate), stearate (18:0), adrenate (22:4n6) and p-acetamidophenylglucuronide. However, we also found a positive correlation between four blood metabolites and GERD: Kynurenine, 1-linoleoylglycerophosphoethanolamine, butyrylcarnitine and guanosine. And bonferroni correction showed that butyrylcarnitine (odd ratio 1.10, 95% confidence interval: 1.05-1.16, P = 7.71 × 10-5) was the most reliable causal metabolite. In addition, one significant pathways, the "glycerophospholipid metabolism" pathway, can be involved in the pathogenesis of GERD.CONCLUSION: Our study found through the integration of genomics and metabolomics that butyrylcarnitine may be a potential biomarker for GERD, which will help further elucidate the pathogenesis of GERD and better guide its treatment. At the same time, this also contributes to early screening and prevention of GERD. However, the results of this study require further confirmation from both basic and clinical real-world studies.PMID:38173433 | PMC:PMC10758654 | DOI:10.4251/wjgo.v15.i12.2169

Dynamic metabolic-QTL analyses provide novel biochemical insights into the kernel development and nutritional quality improvement in common wheat

Thu, 04/01/2024 - 12:00
Plant Commun. 2024 Jan 3:100792. doi: 10.1016/j.xplc.2024.100792. Online ahead of print.ABSTRACTDespite recent advances in crop metabolomics, the genetic control and molecular basis of wheat kernel metabolomes at different developmental stages remain largely unknown. Here, we performed a widely-targeted metabolic profiling in kernels at three developmental stages, namely grain filling kernels (FK), mature kernels (MK) and germinating kernels (GK), using a population of 159 recombinant inbred lines (RILs). A total of 625 annotated metabolites were detected, and 3173, 3143 and 2644 metabolite quantitative trait loci (mQTL) were mapped in FK, MK and GK, respectively. Only 52 mQTL were simultaneously mapped in all three stages, indicating a high stage-specificity of the wheat kernel metabolome. Subsequently, four candidate genes were functionally validated by in vitro enzymatic reactions and/ or transgenic approaches in wheat, with three of these mediating the tricin metabolic pathway. Meanwhile, both metabolite flux efficiencies within the tricin pathway and the superior candidate haplotypes were evaluated. Thus, the current work represents a comprehensive delineation of the pathway of tricin metabolism in wheat. Finally, further wheat metabolic pathways were re-constructed by updating them to incorporate the 177 candidates identified in the current study. To this end, our work not only provides new knowledge on wheat kernel metabolome variations, but also identifies important molecular resources for wheat nutritional quality improvement.PMID:38173227 | DOI:10.1016/j.xplc.2024.100792

Dysregulation of extracellular vesicle protein cargo in female myalgic encephalomyelitis/chronic fatigue syndrome cases and sedentary controls in response to maximal exercise

Thu, 04/01/2024 - 12:00
J Extracell Vesicles. 2024 Jan;13(1):e12403. doi: 10.1002/jev2.12403.ABSTRACTIn healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.PMID:38173127 | DOI:10.1002/jev2.12403

Haplotype-resolved genome assembly of Phanera championii reveals molecular mechanisms of flavonoid synthesis and adaptive evolution

Thu, 04/01/2024 - 12:00
Plant J. 2024 Jan 3. doi: 10.1111/tpj.16620. Online ahead of print.ABSTRACTPhanera championii is a medicinal liana plant that has successfully adapted to hostile karst habitats. Despite extensive research on its medicinal components and pharmacological effects, the molecular mechanisms underlying the biosynthesis of critical flavonoids and its adaptation to karst habitats remain elusive. In this study, we performed high-coverage PacBio and Hi-C sequencing of P. championii, which revealed its high heterozygosity and phased the genome into two haplotypes: Hap1 (384.60 Mb) and Hap2 (383.70 Mb), encompassing a total of 58 612 annotated genes. Comparative genomes analysis revealed that P. championii experienced two whole-genome duplications (WGDs), with approximately 59.59% of genes originating from WGD events, thereby providing a valuable genetic resource for P. championii. Moreover, we identified a total of 112 genes that were strongly positively selected. Additionally, about 81.60 Mb of structural variations between the two haplotypes. The allele-specific expression patterns suggested that the dominant effect of P. championii was the elimination of deleterious mutations and the promotion of beneficial mutations to enhance fitness. Moreover, our transcriptome and metabolome analysis revealed alleles in different tissues or different haplotypes collectively regulate the synthesis of flavonoid metabolites. In summary, our comprehensive study highlights the significance of genomic and morphological adaptation in the successful adaptation of P. championii to karst habitats. The high-quality phased genomes obtained in this study serve as invaluable genomic resources for various applications, including germplasm conservation, breeding, evolutionary studies, and elucidation of pathways governing key biological traits of P. championii.PMID:38173092 | DOI:10.1111/tpj.16620

Metabolomic profiling of exosomes reveals age-related changes in ovarian follicular fluid

Thu, 04/01/2024 - 12:00
Eur J Med Res. 2024 Jan 3;29(1):4. doi: 10.1186/s40001-023-01586-6.ABSTRACTBACKGROUND: Female fertility declines with increased maternal age, and this decline is even more rapid after the age of 35 years. Follicular fluid (FF) is a crucial microenvironment that plays a significant role in the development of oocytes, permits intercellular communication, and provides the oocytes with nutrition. Exosomes have emerged as being important cell communication mediators that are linked to age-related physiological and pathological conditions. However, the metabolomic profiling of FF derived exosomes from advanced age females are still lacking.METHODS: The individuals who were involved in this study were separated into two different groups: young age with a normal ovarian reserve and advanced age. The samples were analysed by using gas chromatography-time of flight mass spectrometry (GC-TOFMS) analysis. The altered metabolites were analysed by using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to identify the functions and pathways that were involved.RESULTS: Our data showed that metabolites in exosomes from FF were different between women of young age and women of advanced age. The set of 17 FF exosomal metabolites (P ≤ 0.05) may be biomarkers to differentiate between the two groups. Most of these differentially expressed metabolites in FF were closely involved in the regulation of oocyte number and hormone levels.CONCLUSIONS: In this study, we identified differences in the metabolites of exosomes from FF between women of young age and women of advanced age. These different metabolites were tightly related to oocyte count and hormone levels. Importantly, these findings elucidate the metabolites of the FF exosomes and provide a better understanding of the nutritional profiles of the follicles with age.PMID:38173013 | DOI:10.1186/s40001-023-01586-6

Genome sequencing and molecular networking analysis of the wild fungus Anthostomella pinea reveal its ability to produce a diverse range of secondary metabolites

Wed, 03/01/2024 - 12:00
Fungal Biol Biotechnol. 2024 Jan 3;11(1):1. doi: 10.1186/s40694-023-00170-1.ABSTRACTBACKGROUND: Filamentous fungi are prolific producers of bioactive molecules and enzymes with important applications in industry. Yet, the vast majority of fungal species remain undiscovered or uncharacterized. Here we focus our attention to a wild fungal isolate that we identified as Anthostomella pinea. The fungus belongs to a complex polyphyletic genus in the family of Xylariaceae, which is known to comprise endophytic and pathogenic fungi that produce a plethora of interesting secondary metabolites. Despite that, Anthostomella is largely understudied and only two species have been fully sequenced and characterized at a genomic level.RESULTS: In this work, we used long-read sequencing to obtain the complete 53.7 Mb genome sequence including the full mitochondrial DNA. We performed extensive structural and functional annotation of coding sequences, including genes encoding enzymes with potential applications in biotechnology. Among others, we found that the genome of A. pinea encodes 91 biosynthetic gene clusters, more than 600 CAZymes, and 164 P450s. Furthermore, untargeted metabolomics and molecular networking analysis of the cultivation extracts revealed a rich secondary metabolism, and in particular an abundance of sesquiterpenoids and sesquiterpene lactones. We also identified the polyketide antibiotic xanthoepocin, to which we attribute the anti-Gram-positive effect of the extracts that we observed in antibacterial plate assays.CONCLUSIONS: Taken together, our results provide a first glimpse into the potential of Anthstomella pinea to provide new bioactive molecules and biocatalysts and will facilitate future research into these valuable metabolites.PMID:38172933 | DOI:10.1186/s40694-023-00170-1

Pages