Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Molecular mechanisms of hepatoprotective effect of tectorigenin against ANIT-induced cholestatic liver injury: Role of FXR and Nrf2 pathways

Thu, 22/06/2023 - 12:00
Food Chem Toxicol. 2023 Jun 20:113914. doi: 10.1016/j.fct.2023.113914. Online ahead of print.ABSTRACTCholestatic liver injury is caused by toxic action or allergic reaction, resulting in abnormality of bile formation and excretion. Few effective therapies have become available for the treatment of cholestasis. Herein, we found that tectorigenin (TG), a natural isoflavone, showed definite protective effects on alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury, significantly reversing the abnormality of plasma alanine/aspartate aminotransferase, total/direct bilirubin and alkaline phosphatase, as well as hepatic reactive oxygen species, catalase and superoxide dismutase. Importantly, the targeted metabolomic determination found that BA homeostasis could be well maintained in TG-treated cholestatic mice, especially the levels of glycocholic acid, tauromuricholic acid, taurocholic acid, taurolithocholic acid, tauroursodeoxycholic acid and taurodeoxycholic acid. Overall, primary/secondary and amidated/unamidated bile acid (BA) levels were significantly altered upon ANIT stimulation but could be restored by TG intervention to certain extents. In addition, TG boosted the expression of farnesoid x receptor (FXR), which in turn upregulated multidrug resistance protein 2 (MRP2) and bile salt export pump (BSEP) to accelerate the excretion of BA. Meanwhile, TG enhanced the expression of Nrf2 and its upstream genes PI3K/Akt and downstream target genes HO-1, NQO1, GCLC and GCLM to strengthen the antioxidant capacity. Taken together, TG plays a vital role in maintaining BA homeostasis and ameliorating cholestatic liver injury through regulating FXR-mediated BA efflux and Nrf2-mediated antioxidative pathways.PMID:37348807 | DOI:10.1016/j.fct.2023.113914

Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice

Thu, 22/06/2023 - 12:00
Food Chem Toxicol. 2023 Jun 20:113913. doi: 10.1016/j.fct.2023.113913. Online ahead of print.ABSTRACTEndemic arsenic (As) poisoning is a severe biogeochemical disease that endangers human health. Epidemiological investigations and animal experiments have confirmed the damaging effects of As on the liver, but there is an urgent need to investigate the underlying mechanisms. This study adopted a metabolomic approach using UHPLC-QE/MS to identify the different metabolites and metabolic mechanisms associated with As-induced hepatotoxicity in mice. A network pharmacology approach was applied to predict the potential target of As-induced hepatotoxicity. The predicted targets of differential metabolites were subjected to a deep matching for elucidating the integration mechanisms. The results demonstrate that the levels of ALT and AST in plasma significantly increased in mice after As exposure. In addition, the liver tissue showed disorganized liver lobules, lax cytoplasm and inflammatory cell infiltration. Metabolomic analysis revealed that As exposure caused disturbance to 40 and 75 potential differential metabolites in plasma and liver, respectively. Further investigation led to discovering five vital metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis and nicotinate and nicotinamide metabolism pathways. These pathways may responded to As-induced hepatotoxicity primarily through lipid metabolism, apoptosis, and deoxyribonucleic acid damage. The network pharmacology suggested that As could induce hepatotoxicity in mice by acting on targets including Hsp90aa1, Akt2, Egfr, and Tnf, which regulate PI3K Akt, HIF-1, MAPK, and TNF signaling pathways. Finally, the integrated metabolomics and network pharmacology revealed eight key targets associated with As-induced hepatoxicity, namely DNMT1, MAOB, PARP1, MAOA, EPHX2, ANPEP, XDH, and ADA. The results also suggest that nicotinic acid and nicotinamide metabolisms may be involved in As-induced hepatotoxicity. This research identified the metabolites, targets, and mechanisms of As-induced hepatotoxicity, offering meaningful insights and establishing the groundwork for developing antidotes for widespread As poisoning.PMID:37348806 | DOI:10.1016/j.fct.2023.113913

Osmotic stress-induced lignin synthesis is regulated at multiple levels in alfalfa (Medicago sativa L.)

Thu, 22/06/2023 - 12:00
Int J Biol Macromol. 2023 Jun 20:125501. doi: 10.1016/j.ijbiomac.2023.125501. Online ahead of print.ABSTRACTAlfalfa is an important forage crop. Yield and quality are frequently threatened by extreme environments such as drought and salt stress. As a component of the cell wall, lignin plays an important role in the abiotic stress response, the mechanisms of which have not been well clarified. In this study, we combined physiological, transcriptional, and metabolic analyses to reveal the changes in lignin content in alfalfa under mannitol-induced osmotic stress. Osmotic stress enhanced lignin accumulation by increasing G and S units, which was associated with increases in enzyme activities and decreases in 8 intermediate metabolites. Upon combined analysis of the transcriptome and metabolome, we identified five key structural genes and several coexpressed transcription factors, such as MYB and WRKY, which may play a core role in regulating lignin content and composition under osmotic stress. In addition, lignin synthesis was positively regulated by ABA but negatively regulated by ethylene under osmotic stress. These results provide new insight into the regulatory mechanism of lignin synthesis under abiotic stress.PMID:37348591 | DOI:10.1016/j.ijbiomac.2023.125501

Independent SARS-CoV-2 staff testing protected academic and health-care institutions in northwest London

Thu, 22/06/2023 - 12:00
Lancet. 2023 Jun 19:S0140-6736(23)00917-0. doi: 10.1016/S0140-6736(23)00917-0. Online ahead of print.NO ABSTRACTPMID:37348521 | DOI:10.1016/S0140-6736(23)00917-0

Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration

Thu, 22/06/2023 - 12:00
Cell Rep Med. 2023 Jun 13:101085. doi: 10.1016/j.xcrm.2023.101085. Online ahead of print.ABSTRACTAge-related macular degeneration (AMD) is a leading cause of blindness in older adults. Investigating shared genetic components between metabolites and AMD can enhance our understanding of its pathogenesis. We conduct metabolite genome-wide association studies (mGWASs) using multi-ethnic genetic and metabolomic data from up to 28,000 participants. With bidirectional Mendelian randomization analysis involving 16,144 advanced AMD cases and 17,832 controls, we identify 108 putatively causal relationships between plasma metabolites and advanced AMD. These metabolites are enriched in glycerophospholipid metabolism, lysophospholipid, triradylcglycerol, and long chain polyunsaturated fatty acid pathways. Bayesian genetic colocalization analysis and a customized metabolome-wide association approach prioritize putative causal AMD-associated metabolites. We find limited evidence linking urine metabolites to AMD risk. Our study emphasizes the contribution of plasma metabolites, particularly lipid-related pathways and genes, to AMD risk and uncovers numerous putative causal associations between metabolites and AMD risk.PMID:37348500 | DOI:10.1016/j.xcrm.2023.101085

Multi-omics analyses reveal relationships among polyphenol-rich oolong tea consumption, gut microbiota, and metabolic profile: A pilot study

Thu, 22/06/2023 - 12:00
Food Chem. 2023 Jun 16;426:136653. doi: 10.1016/j.foodchem.2023.136653. Online ahead of print.ABSTRACTConvincing evidence has suggested the health potentials of oolong tea (OT) on gut microbiota homeostasis; however, limited population-based studies exist regarding the effect of OT consumption on human gut microbial and metabolic profile. This pilot study explored gut microbial and metabolic changes in healthy adults with a 3-week oolong tea intake. Our findings showed that OT treatment significantly altered gut microbial diversity (Shannon index, 5.4±0.1 vs. 5.7±0.1 pre- and post-OT treatment), reorganized gut microbiota composition, enriched Bacteroides and Prevotella, decreased Megamonas, and improved gastrointestinal function. Also, gut microbes from overweight subjects with BMI >23.9 exhibited greater responses to OT treatment compared with normal-weight counterparts. Metabolomic analysis identified OT intake-induced 23 differential metabolites and 10 enriched metabolic pathways. This study may provide new insights into the association among OT intervention, host gut microbiome and metabolic profile, and improve the knowledge of clinical strategies and personalized nutrition.PMID:37348398 | DOI:10.1016/j.foodchem.2023.136653

Thiol functionalised gold nanoparticles loaded with methotrexate for cancer treatment: From synthesis to in vitro studies on neuroblastoma cell lines

Thu, 22/06/2023 - 12:00
J Colloid Interface Sci. 2023 Jun 16;649:264-278. doi: 10.1016/j.jcis.2023.06.078. Online ahead of print.ABSTRACTHYPOTHESIS: Colloidal gold nanoparticles (AuNPs) functionalised with hydrophilic thiols can be used as drug delivery probes, thanks to their small size and hydrophilic character. AuNPs possess unique properties for their use in nanomedicine, especially in cancer treatment, as diagnostics and therapeutic tools.EXPERIMENTS: Thiol functionalised AuNPs were synthesised and loaded with methotrexate (MTX). Spectroscopic and morphostructural characterisations evidenced the stability of the colloids upon interaction with MTX. Solid state (GISAXS, GIWAXS, FESEM, TEM, FTIR-ATR, XPS) and dispersed phase (UV-Vis, DLS, ζ-potential, NMR, SAXS) experiments allowed to understand structure-properties correlations. The nanoconjugate was tested in vitro (MTT assays) against two neuroblastoma cell lines: SNJKP and IMR5 with overexpressed n-Myc.FINDINGS: Molar drug encapsulation efficiency was optimised to be >70%. A non-covalent interaction between the π system and the carboxylate moiety belonging to MTX and the charged aminic group of one of the thiols was found. The MTX loading slightly decreased the structural order of the system and increased the distance between the AuNPs. Free AuNPs showed no cytotoxicity whereas the AuNPs-MTX nanoconjugate had a more potent effect when compared to free MTX. The active role of AuNPs was evidenced by permeation studies: an improvement on penetration of the drug inside cells was evidenced.PMID:37348346 | DOI:10.1016/j.jcis.2023.06.078

Machine learning liquid chromatography retention time prediction model augments the dansylation strategy for metabolite analysis of urine samples

Thu, 22/06/2023 - 12:00
J Chromatogr A. 2023 Jun 17;1705:464167. doi: 10.1016/j.chroma.2023.464167. Online ahead of print.ABSTRACTHerein, a standalone software equipped with a graphic user interface (GUI) is developed to predict liquid chromatography mass spectrometry (LC-MS) retention times (RTs) of dansylated metabolites. Dansylation metabolomics strategy developed by Li et al. narrows down a vast chemical space of metabolites into the metabolites containing amines and phenolic hydroxyls. Combined with differential isotope labeling, e.g., 12C-reagent labeled individual samples spiked with a 13C-reagent labeled reference or pooled sample, LC-MS analysis of the dansylated samples enables accurate relative quantification of all labeled metabolites. Herein, the LC-RTs for dansylated metabolites are predicted using an artificial neural network (ANN) machine-learning model. For the ANN modeling, 315 dansylated urine metabolites obtained from the DnsID database are used. The ANN LC-RT prediction model was reliable, with a mean absolute deviation of 0.74 min for the 30 min LC run. In the RT model, a deviation of more than 2 min was observed in only 3.2% of the total 315 metabolites, while a deviation of 1.5 min or more was observed in 11% of the metabolites. Furthermore, it was found that the LC-RT prediction was also reliable even for metabolites containing both amine and phenolic functional groups that can undergo dansylation on either one of the two functional groups, resulting in the generation of two isomeric forms. This RT-prediction model is embedded into a user-friendly GUI and can be used for identifying nontargeted dansylated metabolites with unknown RTs, along with accurate mass measurements. Furthermore, it is demonstrated that the developed software can help identify metabolites from a urine sample of an anonymous healthy pregnant woman.PMID:37348224 | DOI:10.1016/j.chroma.2023.464167

UPLC-QTOF-MS/MS assisted UPLC-TQ-MS/MS strategy to comparatively investigate the rat pharmacokinetics of N-acetyldopamine oligomers derived from Cicadae Periostracum

Thu, 22/06/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Jun 17;1226:123806. doi: 10.1016/j.jchromb.2023.123806. Online ahead of print.ABSTRACTCicadae Periostracum (CP), the slough molted from the nymph of Cryptotympana pustulata, is a widely used medicinal material in traditional Chinese medicine (TCM). N-acetyldopamine oligomers (NAOs), the homologues of acetyldopamine, including N-acetyldopamine dimers/trimers/tetramers/pentamers (NADs/NATrs/NATes/NAPs), side-chain isomer of dimers/trimers (SCIDs/SCITrs), are major bioactive ingredients of CP. However, owing to commercially unavailable reference substances of all NAOs, simultaneous quantification of these NAOs in biological samples is difficult, and thus their pharmacokinetics are still unknown. In this study, a comprehensive strategy for simultaneous quantification/semi-quantification of NAOs in plasma with single N-acetyldopamine dimer A (NAD-A) as reference substance was established and comparatively investigated their pharmacokinetics after oral administration of pure NAD-A and two types of CP extracts, i.e., post-molting-washed slough (CP-WAT) and pre-molting-washed slough (CP-WBT). A UPLC-QTOF-MS/MS assisted UPLC-TQ-MS/MS strategy was developed to quantify NAOs in rat plasma. NAOs in CP extract were qualitatively characterized by UPLC-QTOF-MS/MS, then the quasi-molecular ions and characteristic fragment ions of the identified NAOs by UPLC-QTOF-MS/MS were transferred to UPLC-TQ-MS/MS as parent-daughter ion pairs for MRM mode quantification of the NAOs, and the method was validated with single NAD-A for quantifying NAD-A and semi-quantifying other NAOs in plasma. The established method was applied to compare the pharmacokinetics of NAOs after oral administration of NAD-A and the extracts of CP-WBT/CP-WAT respectively. Six quasi-molecular ions and characteristic fragment ion m/z 192.1 were characterized by UPLC-QTOF-MS/MS and transferred to be the parent-daughter ion pairs for UPLC-TQ-MS/MS analysis of six kinds of NAOs. For the pharmacokinetics, NAD-A showed double peaks absorption character when administered with single compound, but with higher relative bioavailability when administered with CP extracts with the similar dosage. Compared with CP-WAT, NAOs in CP-WBT reached the maximum plasma concentration in much shorter time.PMID:37348161 | DOI:10.1016/j.jchromb.2023.123806

Effects on Diabetic Mice of Consuming Lipid Extracted from Foxtail Millet (<em>Setaria italica</em>): Gut Microbiota Analysis and Serum Metabolomics

Thu, 22/06/2023 - 12:00
J Agric Food Chem. 2023 Jun 22. doi: 10.1021/acs.jafc.3c02179. Online ahead of print.ABSTRACTMillet and its components have received much extensive attention for their health benefits in mitigating metabolic diseases. Foxtail millet is rich in phytochemicals, including oil. However, the hypoglycemic capacity of foxtail millet oil has yet to be fully investigated. The present study explored the effects of consuming this oil as the lipid extract of foxtail millet (LEFM) on intestinal microbiota composition and metabolic function in diabetic mice. After eight weeks of LEFM supplementation, the blood glucose, insulin resistance index, and lipid accumulation of diabetic mice were significantly decreased. In addition, LEFM feeding modulated gut microbiota composition, reduced the abundance of harmful bacteria (Escherichia-Shigella, Peptococcus, and norank_f_Oscillospiraceae), induced a bloom of probiotics, especially short-chain fatty acid (SCFA)-producing bacteria (Adlercreutzia, Faecalibaculum, and Bifidobacterium), and increased SCFAs concentration. LEFM treatment altered serum metabolite levels, for instance, greatly increasing the levels of l-carnitine and l-glutamine and reducing S-acetyldihydrolipoamide-E and sphingosine. Overall, improvements in gut microbiota and metabolic function were associated with the hypoglycemic potential of LEFM.PMID:37347971 | DOI:10.1021/acs.jafc.3c02179

Hepatoprotective effect of Artemisia Argyi essential oil on bisphenol A-induced hepatotoxicity via inhibition of ferroptosis in mice

Thu, 22/06/2023 - 12:00
Environ Toxicol. 2023 Jun 22. doi: 10.1002/tox.23877. Online ahead of print.ABSTRACTThe environmental pollutant bisphenol A (BPA), used in the manufacture of plastic packaging materials for various diets, is widely distributed in the environment and causes severe hepatotoxicity by inducing oxidative stress. Artemisia argyi essential oil (AAEO), a volatile oil component isolated from Artemisia argyi H.Lév. & Vaniot, has pharmacological effects, especially for hepatoprotective actions. However, the potential effect of AAEO in BPA induced hepatotoxicity has not been characterized. First, we analyzed the chemical composition in AAEO by gas chromatography-mass spectrometry. Herein, we investigated the effect of AAEO on hepatic metabolic changes in mice exposed to BPA. Results showed that compared with the BPA group, AAEO could reduce the level of liver function enzymes in BPA mice serum, and ameliorate hepatic lesions and fibrosis. Additionally, 20 differential metabolites screened by metabolomics were mainly involved in the reprogramming of glutathione metabolism, purine metabolism, and polyunsaturated fatty acid synthesis. Moreover, AAEO could reduce hepatic ferroptosis induced by BPA, as demonstrated by reducing xanthine oxidase activity, up-regulating the activities of glutathione peroxidase 4 (GPX4), superoxide dismutase, and catalase and the expression of SLC7A11 to promote the glutathione synthetic, while inhibiting transferrin receptor 1 (TFR1) expression to reduce the accumulation of Fe2+ in cells. Therefore, our study identified AAEO as a hepatic protectant against BPA-induced hepatotoxicity by reversing the occurrence of ferroptosis.PMID:37347548 | DOI:10.1002/tox.23877

Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy

Thu, 22/06/2023 - 12:00
JCI Insight. 2023 Jun 22:e164646. doi: 10.1172/jci.insight.164646. Online ahead of print.ABSTRACTVincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN, including mechanical-induced allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology, without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, which could serve as a future companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.PMID:37347545 | DOI:10.1172/jci.insight.164646

Ultra-high performance liquid chromatography coupled to tandem mass spectrometry-based metabolomics study of diabetic distal symmetric polyneuropathy

Thu, 22/06/2023 - 12:00
J Diabetes Investig. 2023 Jun 22. doi: 10.1111/jdi.14041. Online ahead of print.ABSTRACTAIMS/INTRODUCTION: Distal symmetric polyneuropathy (DSPN) is a common complication of type 2 diabetes mellitus, but the underlining mechanisms have not yet been elucidated. The current study was designed to screen the feature metabolites classified as potential biomarkers, and to provide deeper insights into the underlying distinctive metabolic changes during disease progression.MATERIALS AND METHODS: Plasma metabolite profiles were obtained by the ultra-high liquid chromatography coupled to tandem mass spectrometry method from healthy control participants, patients with type 2 diabetes mellitus and patients with DSPN. Potential biomarkers were selected through comprehensive analysis of statistically significant differences between groups.RESULTS: Overall, 938 metabolites were identified. Among them, 12 metabolites (dimethylarginine, N6-acetyllysine, N-acetylhistidine, N,N,N-trimethyl-alanylproline betaine, cysteine, 7-methylguanine, N6-carbamoylthreonyladenosine, pseudouridine, 5-methylthioadenosine, N2,N2-dimethylguanosine, aconitate and C-glycosyl tryptophan) were identified as the specific biomarkers. The content of 12 metabolites were significantly higher in the DSPN group compared with the other two groups. Additionally, they showed good performance to discriminate the DSPN state. Correlation analyses showed that the levels of 12 metabolites might be more closely related to the glucose metabolic changes, followed by the levels of lipid metabolism.CONCLUSIONS: The finding of the 12 signature metabolites might provide a novel perspective for the pathogenesis of DSPN. Future studies are required to test this observation further.PMID:37347226 | DOI:10.1111/jdi.14041

Orally Administered Bifidobacterium adolescentis Diminishes Serum Glutamate Concentration in Mice

Thu, 22/06/2023 - 12:00
Microbiol Spectr. 2023 Jun 22:e0506322. doi: 10.1128/spectrum.05063-22. Online ahead of print.ABSTRACTSeveral studies have described the contribution of glutamate-transforming microbiota to the development of chronic ailments. For instance, the blood concentration of glutamate is higher in some patients with fibromyalgia, chronic fatigue, and pain. Taking advantage of a naturally occurring strain of Bifidobacterium that is able to transform glutamate in γ-aminobutyric caid (GABA), B. adolescentis IPLA60004, we designed a placebo-controlled intervention to test if the presence of this GABA-producing bifidobacteria in mice was able to impact the concentration of glutamate in the blood in comparison with the administration of other strain of the same species lacking the genes of the glutamate decarboxylase (gad) cluster. Animals were fed every day with 8 log CFU of bacteria in a sterilized milk vehicle for 14 days. Samples from feces and blood were collected during this period, and afterwards animals were sacrificed, tissues were taken from different organs, and the levels of different metabolites were analyzed by ultrahigh-performance liquid chromatography coupled to mass spectrometry. The results showed that both bacterial strains orally administered survived in the fecal content, and animals fed B. adolescentis IPLA60004 showed a significant reduction of their glutamate serum concentration, while a nonsignificant decrease was observed for animals fed a reference strain, B. adolescentis LGM10502. The variations observed in GABA were influenced by the gender of the animals, and no significant changes were observed in different tissues of the brain. These results suggest that orally administered GABA-producing probiotics could reduce the glutamate concentration in blood, opening a case for a clinical trial study in chronic disease patients. IMPORTANCE This work presents the results of a trial using mice as a model that were fed with a bacterial strain of the species B. adolescentis, which possesses different active genes capable of degrading glutamate and converting it into GABA. Indeed, the bacterium is able to survive the passage through the gastric tract and, more importantly, the animals reduce over time the concentration of glutamate in their blood. The importance of this result lies in the fact that several chronic ailments, such as fibromyalgia, are characterized by an increase in glutamate. Our results indicate that an oral diet with this probiotic-type bacteria could reduce the concentration of glutamate and, therefore, reduce the symptoms associated with the excess of this neurotransmitter.PMID:37347184 | DOI:10.1128/spectrum.05063-22

Comparative flavonoid profile of orange (<em>Citrus sinensis</em>) flavedo and albedo extracted by conventional and emerging techniques using UPLC-IMS-MS, chemometrics and antioxidant effects

Thu, 22/06/2023 - 12:00
Front Nutr. 2023 Jun 6;10:1158473. doi: 10.3389/fnut.2023.1158473. eCollection 2023.ABSTRACTINTRODUCTION: Citrus fruits are one of the most frequently counterfeited processed products in the world. In the juice production alone, the peels, divided into flavedo and albedo, are the main waste product. The extracts of this by-product are enriched with many bioactive substances. Newer extraction techniques generally have milder extraction conditions with simultaneous improvement of the extraction process.METHODS: This study presents a combinatorial approach utilizing data-independent acquisition-based ion mobility spectrometry coupled to tandem mass spectrometry. Integrating orthogonal collision cross section (CCS) data matching simultaneously improves the confidence in metabolite identification in flavedo and albedo tissues from Citrus sinensis. Furthermore, four different extraction approaches [conventional, ultrasonic, High Hydrostatic Pressure (HHP) and Pulsed Electric Field (PEF)] with various optimized processing conditions were compared in terms of antioxidant effects and flavonoid profile particularly polymethoxy flavones (PMFs).RESULTS: A total number of 57 metabolites were identified, 15 of which were present in both flavedo and albedo, forming a good qualitative overlapping of distributed flavonoids. For flavedo samples, the antioxidant activity was higher for PEF and HHP treated samples compared to other extraction methods. However, ethyl acetate extract exhibited the highest antioxidant effects in albedo samples attributed to different qualitative composition content rather than various quantities of same metabolites. The optimum processing conditions for albedo extraction using HHP and PEF were 200 MPa and 15 kJ/kg at 10 kV, respectively. While, HHP at medium pressure (400 MPa) and PEF at 15 kJ/kg/3 kV were the optimum conditions for flavedo extraction.CONCLUSION: Chemometric analysis of the dataset indicated that orange flavedo can be a valid source of soluble phenolic compounds especially PMFs. In order to achieve cross-application of production, future study should concentrate on how citrus PMFs correlate with biological engineering techniques such as breeding, genetic engineering, and fermentation engineering.PMID:37346911 | PMC:PMC10279959 | DOI:10.3389/fnut.2023.1158473

Pretreatment with <em>Bifidobacterium longum</em> BAA2573 ameliorates dextran sulfate sodium (DSS)-induced colitis by modulating gut microbiota

Thu, 22/06/2023 - 12:00
Front Microbiol. 2023 Jun 6;14:1211259. doi: 10.3389/fmicb.2023.1211259. eCollection 2023.ABSTRACTOBJECTIVES: Inflammatory bowel disease (IBD) is a chronic lifelong inflammatory disease. Probiotics such as Bifidobacterium longum are considered to be beneficial to the recovery of intestinal inflammation by interaction with gut microbiota. Our goals were to define the effect of the exclusive use of BAA2573 on dextran sulfate sodium (DSS)-induced colitis, including improvement of symptoms, alleviation of histopathological damage, and modulation of gut microbiota.METHODS: In the present study, we pretreated C57BL/6J mice with Bifidobacterium longum BAA2573, one of the main components in an over-the-counter (OTC) probiotic mixture BIFOTO capsule, before modeling with DSS. 16S rDNA sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based non-targeted metabolomic profiling were performed with the collected feces.RESULTS: We found that pretreatment of Bifidobacterium longum BAA2573 given by gavage significantly improved symptoms and histopathological damage in DSS-induced colitis mice. After the BAA2573 intervention, 57 genera and 39 metabolites were significantly altered. Pathway enrichment analysis demonstrated that starch and sucrose metabolism, vitamin B6 metabolism, and sphingolipid metabolism may contribute to ameliorating colitis. Moreover, we revealed that the gut microbiome and metabolites were interrelated in the BAA2573 intervention group, while Alistipes was the core genus.CONCLUSION: Our study demonstrates the impact of BAA2573 on the gut microbiota and reveals a possible novel adjuvant therapy for IBD patients.PMID:37346749 | PMC:PMC10280014 | DOI:10.3389/fmicb.2023.1211259

Novel predator-induced phenotypic plasticity by hemoglobin and physiological changes in the brain of <em>Xenopus tropicalis</em>

Thu, 22/06/2023 - 12:00
Front Physiol. 2023 Jun 6;14:1178869. doi: 10.3389/fphys.2023.1178869. eCollection 2023.ABSTRACTOrganisms adapt to changes in their environment to survive. The emergence of predators is an example of environmental change, and organisms try to change their external phenotypic systems and physiological mechanisms to adapt to such changes. In general, prey exhibit different phenotypes to predators owing to historically long-term prey-predator interactions. However, when presented with a novel predator, the extent and rate of phenotypic plasticity in prey are largely unknown. Therefore, exploring the physiological adaptive response of organisms to novel predators is a crucial topic in physiology and evolutionary biology. Counterintuitively, Xenopus tropicalis tadpoles do not exhibit distinct external phenotypes when exposed to new predation threats. Accordingly, we examined the brains of X. tropicalis tadpoles to understand their response to novel predation pressure in the absence of apparent external morphological adaptations. Principal component analysis of fifteen external morphological parameters showed that each external morphological site varied nonlinearly with predator exposure time. However, the overall percentage change in principal components during the predation threat (24 h) was shown to significantly (p < 0.05) alter tadpole morphology compared with that during control or 5-day out treatment (5 days of exposure to predation followed by 5 days of no exposure). However, the adaptive strategy of the altered sites was unknown because the changes were not specific to a particular site but were rather nonlinear in various sites. Therefore, RNA-seq, metabolomic, Ingenuity Pathway Analysis, and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the entire brain to investigate physiological changes in the brain, finding that glycolysis-driven ATP production was enhanced and ß-oxidation and the tricarboxylic acid cycle were downregulated in response to predation stress. Superoxide dismutase was upregulated after 6 h of exposure to new predation pressure, and radical production was reduced. Hemoglobin was also increased in the brain, forming oxyhemoglobin, which is known to scavenge hydroxyl radicals in the midbrain and hindbrain. These suggest that X. tropicalis tadpoles do not develop external morphological adaptations that are positively correlated with predation pressure, such as tail elongation, in response to novel predators; however, they improve their brain functionality when exposed to a novel predator.PMID:37346489 | PMC:PMC10279953 | DOI:10.3389/fphys.2023.1178869

Association between Changes in Plasma Metabolism and Clinical Outcomes of Sepsis

Thu, 22/06/2023 - 12:00
Emerg Med Int. 2023 Jun 13;2023:2590115. doi: 10.1155/2023/2590115. eCollection 2023.ABSTRACTCurrent prognostic biomarkers for sepsis have limited sensitivity and specificity. This study aimed to investigate dynamic lipid metabolomics and their association with septic immune response and clinical outcomes of sepsis. This prospective cohort study included patients with sepsis who met the Sepsis 3.0 criteria. On hospitalization days 1 (D1) and 7 (D7), plasma samples were collected, and patients underwent liquid chromatography with tandem mass spectrometry. A total of 40 patients were enrolled in the study, 24 (60%) of whom were men. The median age of the enrolled patients was 81 (68-84) years. Thirty-one (77.5%) patients had a primary infection site of the lung. Participants were allocated to the survivor (25 cases) and nonsurvivor (15 cases) groups based on their 28-day survival status. Ultimately, a total of 113 lipids were detected in plasma samples on D 1 and D 7, of which 42 lipids were most abundant in plasma samples. The nonsurvival group had significantly lower lipid expression levels in lysophosphatidylcholine (LysoPC) (16 : 0, 17 : 0,18 : 0) and 18 : 1 SM than those in the survival group (p < 0.05) on D7-D1. The correlation analysis showed that D7-D1 16 : 0 LysoPC (r = 0.367, p = 0.036),17 : 0 LysoPC (r = 0.389, p = 0.025) and 18 : 0 LysoPC(r = 0.472, p = 0.006) levels were positively correlated with the percentage of CD3+ T cell in the D7-D1. Plasma LysoPC and SM changes may serve as prognostic biomarkers for sepsis, and lipid metabolism may play a role in septic immune disturbances.PMID:37346225 | PMC:PMC10281824 | DOI:10.1155/2023/2590115

Possibility to apply strontium aluminate to produce light-emitting plants: efficiency and safety

Thu, 22/06/2023 - 12:00
Chem Biodivers. 2023 Jun 22:e202300552. doi: 10.1002/cbdv.202300552. Online ahead of print.ABSTRACTLight-emitting plants (LEPs) provides light in areas without electricity. The phosphorescent compound was used as a lighting material for LEP development. However, using the phosphorescent compound for LEPs development required optimization and phytotoxicity evaluation. Strontium aluminate (SrAl2O4) is a phosphorescent compound that can glow for a long time and is easily recharged by visible light. In this study, using SrAl2O4 to develop LEPs was evaluated. Additionally, plant stress under SrAl2O4 was investigated. Metabolomic analysis can explain the possible mechanism of plants' stress under SrAl2O4. After, injecting 3 mL of 5% (w/v) SrAl2O4 products 1, 2, and 3 into the stem of Ipomoea aquatica, the result showed that SrAl2O4 products 2 and 3 caused oxidative stress. The metabolomic analysis also indicated that I. aquatica responded to SrAl2O4 product 1 by increasing pipecolic acid and salicylic acid, while I. aquatica injected with SrAl2O4 products 2 and 3 showed a decrease in salicylic acid around 0.005 and 0.061-fold, respectively, compared to control plants. and an excess accumulation of MDA around 10.00-12.00 µmol g-1 FW. A 15% concentration of SrAl2O4 can be used for LEPs development, enabling photoemission 18-fold for 50 minutes. SrAl2O4 product 1 has the potential to be a material for LEPs.PMID:37345919 | DOI:10.1002/cbdv.202300552

Metabolic Signatures of Cardiac Dysfunction, Multimorbidity, and Post-Transcatheter Aortic Valve Implantation Death

Thu, 22/06/2023 - 12:00
J Am Heart Assoc. 2023 Jun 22:e029542. doi: 10.1161/JAHA.123.029542. Online ahead of print.ABSTRACTBackground Studies in mice and small patient subsets implicate metabolic dysfunction in cardiac remodeling in aortic stenosis, but no large comprehensive studies of human metabolism in aortic stenosis with long-term follow-up and characterization currently exist. Methods and Results Within a multicenter prospective cohort study, we used principal components analysis to summarize 12 echocardiographic measures of left ventricular structure and function pre-transcatheter aortic valve implantation in 519 subjects (derivation). We used least absolute shrinkage and selection operator regression across 221 metabolites to define metabolic signatures for each structural pattern and measured their relation to death and multimorbidity in the original cohort and up to 2 validation cohorts (N=543 for overall validation). In the derivation cohort (519 individuals; median age, 84 years, 45% women, 95% White individuals), we identified 3 axes of left ventricular remodeling, broadly specifying systolic function, diastolic function, and chamber volumes. Metabolite signatures of each axis specified both known and novel pathways in hypertrophy and cardiac dysfunction. Over a median of 3.1 years (205 deaths), a metabolite score for diastolic function was independently associated with post-transcatheter aortic valve implantation death (adjusted hazard ratio per 1 SD increase in score, 1.54 [95% CI, 1.25-1.90]; P<0.001), with similar effects in each validation cohort. This metabolite score of diastolic function was simultaneously associated with measures of multimorbidity, suggesting a metabolic link between cardiac and noncardiac state in aortic stenosis. Conclusions Metabolite profiles of cardiac structure identify individuals at high risk for death following transcatheter aortic valve implantation and concurrent multimorbidity. These results call for efforts to address potentially reversible metabolic biology associated with risk to optimize post-transcatheter aortic valve implantation recovery, rehabilitation, and survival.PMID:37345820 | DOI:10.1161/JAHA.123.029542

Pages