Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Omics Signatures of Tissue Injury and Hemorrhagic Shock in Swine

Mon, 19/06/2023 - 12:00
Ann Surg. 2023 Jun 19. doi: 10.1097/SLA.0000000000005944. Online ahead of print.ABSTRACTOBJECTIVE: Advanced mass spectrometry methods were leveraged to analyze both proteomics and metabolomics signatures in plasma upon controlled tissue injury and hemorrhagic shock - isolated or combined - in a swine model, followed by correlation to viscoelastic measurements of coagulopathy via thrombelastography.SUMMARY BACKGROUND DATA: TI and HS cause distinct molecular changes in plasma in both animal models and trauma patients. However, the contribution to coagulopathy of trauma, the leading cause of preventable mortality in this patient population remains unclear. The recent development of a swine model for isolated or combined TI + HS facilitated the current study.METHODS: Male swine (n=17) were randomized to either isolated or combined tissue injury and hemorrhagic shock. Coagulation status was analyzed by thrombelastography during the monitored time course. The plasma fractions of the blood draws (at baseline, end of shock and at 30 min, 1, 2 and 4h after shock) were analyzed by mass spectrometry-based proteomics and metabolomics workflows.RESULTS: HS- isolated or combined with TI - caused the most severe omic alterations during the monitored time course. While isolated TI delayed the activation of coagulation cascades. Correlation to TEG parameters of clot strength (MA) and breakdown (LY30) revealed signatures of coagulopathy which were supported by analysis of gene ontology enriched biological pathways.CONCLUSION: The current study provides a comprehensive characterization of proteomic and metabolomic alterations to combined or isolated TI and HS in a swine model, and identifies early and late omics correlates to viscoelastic measurements in this system.PMID:37334680 | DOI:10.1097/SLA.0000000000005944

SAPrIm, a semi-automated protocol for mid-throughput immunopeptidomics

Mon, 19/06/2023 - 12:00
Front Immunol. 2023 Jun 2;14:1107576. doi: 10.3389/fimmu.2023.1107576. eCollection 2023.ABSTRACTHuman leukocyte antigen (HLA) molecules play a crucial role in directing adaptive immune responses based on the nature of their peptide ligands, collectively coined the immunopeptidome. As such, the study of HLA molecules has been of major interest in the development of cancer immunotherapies such as vaccines and T-cell therapies. Hence, a comprehensive understanding and profiling of the immunopeptidome is required to foster the growth of these personalised solutions. We herein describe SAPrIm, an Immunopeptidomics tool for the Mid-Throughput era. This is a semi-automated workflow involving the KingFisher platform to isolate immunopeptidomes using anti-HLA antibodies coupled to a hyper-porous magnetic protein A microbead, a variable window data independent acquisition (DIA) method and the ability to run up to 12 samples in parallel. Using this workflow, we were able to concordantly identify and quantify ~400 - 13000 unique peptides from 5e5 - 5e7 cells, respectively. Overall, we propose that the application of this workflow will be crucial for the future of immunopeptidome profiling, especially for mid-size cohorts and comparative immunopeptidomics studies.PMID:37334365 | PMC:PMC10272402 | DOI:10.3389/fimmu.2023.1107576

The therapeutic role and potential mechanism of EGCG in obesity-related precocious puberty as determined by integrated metabolomics and network pharmacology

Mon, 19/06/2023 - 12:00
Front Endocrinol (Lausanne). 2023 Jun 2;14:1159657. doi: 10.3389/fendo.2023.1159657. eCollection 2023.ABSTRACTOBJECTIVE: (-)-Epigallocatechin-3-gallate (EGCG) has preventive effects on obesity-related precocious puberty, but its underlying mechanism remains unclear. The aim of this study was to integrate metabolomics and network pharmacology to reveal the mechanism of EGCG in the prevention of obesity-related precocious puberty.MATERIALS AND METHODS: A high-performance liquid chromatography-electrospray ionization ion-trap tandem mass spectrometry (LC-ESI-MS/MS) was used to analyze the impact of EGCG on serum metabolomics and associated metabolic pathways in a randomized controlled trial. Twelve weeks of EGCG capsules were given to obese girls in this trail. Additionally, the targets and pathways of EGCG in preventing obesity-related precocious puberty network pharmacology were predicted using network pharmacology. Finally, the mechanism of EGCG prevention of obesity-related precocious puberty was elucidated through integrated metabolomics and network pharmacology.RESULTS: Serum metabolomics screened 234 endogenous differential metabolites, and network pharmacology identified a total of 153 common targets. These metabolites and targets mainly enrichment pathways involving endocrine-related pathways (estrogen signaling pathway, insulin resistance, and insulin secretion), and signal transduction (PI3K-Akt, MAPK, and Jak-STAT signaling pathways). The integrated metabolomics and network pharmacology indicated that AKT1, EGFR, ESR1, STAT3, IGF1, and MAPK1 may be key targets for EGCG in preventing obesity-related precocious puberty.CONCLUSION: EGCG may contribute to preventing obesity-related precocious puberty through targets such as AKT1, EGFR, ESR1, STAT3, IGF1, and MAPK1 and multiple signaling pathways, including the estrogen, PI3K-Akt, MAPK, and Jak-STAT pathways. This study provided a theoretical foundation for future research.PMID:37334310 | PMC:PMC10272822 | DOI:10.3389/fendo.2023.1159657

Plasma metabolomics in male primary and functional hypogonadism

Mon, 19/06/2023 - 12:00
Front Endocrinol (Lausanne). 2023 May 26;14:1165741. doi: 10.3389/fendo.2023.1165741. eCollection 2023.ABSTRACTMetabolomics proposes to unveil the molecular machinery involved in each specific disease by the comprehensive analysis of low-molecular-weight metabolites in a biological sample. This narrative mini-review analyzes previous studies applying ultra-high-performance liquid chromatography-high-resolution mass spectrometry (HRMS)-based metabolomics to highlight different metabolic pathways involved in male hypogonadism and testosterone replacement therapy, both in the case of insulin-sensitive patients with primary hypogonadism and in the case of insulin-resistant patients with functional hypogonadism. In functional hypogonadism, metabolomics revealed that different biochemical pathways are affected. In detail, glycolysis is the most important biochemical process involved in these patients. Glucose metabolism is fueled by amino acid degradation, and gluconeogenesis is widely stimulated. Some important pathways, including glycerol, are compromised. Furthermore, mitochondrial electron transport is influenced, namely, by a decrease in ATP production. On the contrary, beta-oxidation of short- and medium-chain fatty acids does not represent an energy source in hypogonadal patients. Both lactate and acetyl-CoA are converted into ketone bodies, which increased immensely. However, carnosine and β-alanine are greatly reduced. These metabolic changes are associated with increased fatigue and mental confusion. After testosterone replacement therapy, a complete restoration is achieved for only a part of the metabolites. It is of note that only in patients with functional hypogonadism treated with testosterone are ketone bodies produced at high levels, so the symptoms sometimes reported by these patients after the beginning of the therapy (difficulty in concentrating, depressed mood, brain fog, and memory impairment) might represent a specific "keto flu-like" syndrome, related to the metabolic ketonic state.PMID:37334300 | PMC:PMC10273261 | DOI:10.3389/fendo.2023.1165741

Bovine neonatal microbiome origins: a review of proposed microbial community presence from conception to colostrum

Mon, 19/06/2023 - 12:00
Transl Anim Sci. 2023 May 27;7(1):txad057. doi: 10.1093/tas/txad057. eCollection 2023 Jan.ABSTRACTIn recent years, there has been an influx of research evaluating the roles of the reproductive tract microbiota in modulating reproductive performance. These efforts have resulted in a breadth of research exploring the bovine reproductive tract microbiota. The female reproductive tract microbiota has been characterized during the estrus cycle, at timed artificial insemination, during gestation, and postpartum. Additionally, there are recently published studies investigating in-utero inoculation of the bovine fetus. However, critical review of the literature to understand how the microbial shifts during a dam's lifecycle could impact neonatal outcomes is limited. This review demonstrates a consistency at the phyla level throughout both the maternal, paternal, and neonatal microbiomes. Moreover, this review challenges the current gestational inoculation hypothesis and suggests instead a maturation of the resident uterine microbiota throughout gestation to parturition. Recent literature is indicative of microbial composition influencing metabolomic parameters that have developmental programming effects in feed utilization and metabolic performance later in life. Thus, this review enumerates the potential origins of neonatal microbial inoculation from conception, through gestation, parturition, and colostrum consumption while introducing clear paucities where future research is needed to better understand the ramifications of the reproductive microbiome on neonates.PMID:37334245 | PMC:PMC10276551 | DOI:10.1093/tas/txad057

Integrated Metabolomics and Network Pharmacology to Reveal the Mechanisms of Gandouling Tablets Against Copper-Overload-Induced Neuronal Injury in Rats with Wilson's Disease

Mon, 19/06/2023 - 12:00
Drug Des Devel Ther. 2023 Jun 13;17:1763-1782. doi: 10.2147/DDDT.S409691. eCollection 2023.ABSTRACTPURPOSE: Gandouling Tablets (GDL), a proprietary Chinese medicine, have shown a preventive effect against Wilson's disease (WD)-induced neuronal damage in previous studies. However, the potential mechanisms need additional investigation. Combining metabonomics and network pharmacology revealed the GDL pathway against WD-induced neuronal damage.METHODS: The WD rat model with a high copper load was developed, and nerve damage was assessed. Total metabonomics was used to identify distinct hippocampus metabolites and enriched metabolic pathways in MetaboAnalyst. The GDL's possible targets against WD neuron damage were then determined by network pharmacology. Cytoscape constructed compound metabonomics and pharmacology networks. Moreover, molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) validated key targets.RESULTS: GDL reduced WD-induced neuronal injury. Twenty-nine GDL-induced metabolites may protect against WD neuron injury. According to network pharmacology, we identified three essential gene clusters, of which genes in cluster 2 had the most significant impact on the metabolic pathway. A comprehensive investigation identified six crucial targets, including UGT1A1, CYP3A4, CYP2E1, CYP1A2, PIK3CB, and LPL, and their associated core metabolites and processes. Four targets reacted strongly with GDL active components. GDL therapy improved five targets' expression.CONCLUSION: This collaborative effort revealed the mechanisms of GDL against WD neuron damage and a way to investigate the potential pharmacological mechanisms of other Traditional Chinese Medicine (TCM).PMID:37333964 | PMC:PMC10276572 | DOI:10.2147/DDDT.S409691

Administration of <em>Bifidobacterium animalis</em> subsp. <em>lactis</em> strain BB-12<sup>®</sup> in healthy children: characterization, functional composition, and metabolism of the gut microbiome

Mon, 19/06/2023 - 12:00
Front Microbiol. 2023 May 12;14:1165771. doi: 10.3389/fmicb.2023.1165771. eCollection 2023.ABSTRACTINTRODUCTION: The consumption of probiotics may influence children's gut microbiome and metabolome, which may reflect shifts in gut microbial diversity composition and metabolism. These potential changes might have a beneficial impact on health. However, there is a lack of evidence investigating the effect of probiotics on the gut microbiome and metabolome of children. We aimed to examine the potential impact of a two (Streptococcus thermophilus and Lactobacillus delbrueckii; S2) vs. three (S2 + Bifidobacterium animalis subsp. lactis strain BB-12) strain-supplemented yogurt.METHODS: Included in this study were 59 participants, aged one to five years old, recruited to phase I of a double-blinded, randomized controlled trial. Fecal samples were collected at baseline, after the intervention, and at twenty days post-intervention discontinuation, and untargeted metabolomics and shotgun metagenomics were performed.RESULTS: Shotgun metagenomics and metabolomic analyses showed no global changes in either intervention group's gut microbiome alpha or beta diversity indices, except for a lower microbial diversity in the S2 + BB12 group at Day 30. The relative abundance of the two and three intervention bacteria increased in the S2 and S2 + BB12 groups, respectively, from Day 0 to Day 10. In the S2 + BB12 group, the abundance of several fecal metabolites increased at Day 10, including alanine, glycine, lysine, phenylalanine, serine, and valine. These fecal metabolite changes did not occur in the S2 group.DISCUSSION: In conclusion, there were were no significant differences in the global metagenomic or metabolomic profiles between healthy children receiving two (S2) vs. three (S2 + BB12) probiotic strains for 10 days. Nevertheless, we observed a significant increase (Day 0 to Day 10) in the relative abundance of the two and three probiotics administered in the S2 and S2 + BB12 groups, respectively, indicating the intervention had a measurable impact on the bacteria of interest in the gut microbiome. Future research using longer probiotic intervention durations and in children at risk for gastrointestinal disorders may elucidate if functional metabolite changes confer a protective gastrointestinal effect.PMID:37333640 | PMC:PMC10275293 | DOI:10.3389/fmicb.2023.1165771

Improvement effect of biochar on soil microbial community structure and metabolites of decline disease bayberry

Mon, 19/06/2023 - 12:00
Front Microbiol. 2023 May 12;14:1154886. doi: 10.3389/fmicb.2023.1154886. eCollection 2023.ABSTRACTDecline disease is a new disease that has recently caused severe damage in bayberry industry. The effect of biochar on decline disease was determined by investigating the changes in the vegetative growth and fruit quality of bayberry trees as well as soil physical and chemical properties, microbial community structure, and metabolites. Results indicated that the application of biochar could improve the vigor and fruit quality of diseased trees, and rhizosphere soil microbial diversity at the levels of phyla, orders, and genera. The relative abundance of Mycobacterium, Crossiella, Geminibasidium, and Fusarium were significantly increased, while Acidothermus, Bryobacter, Acidibacter, Cladophialophora, Mycena, and Rickenella were significantly decreased by biochar in rhizosphere soil of decline diseased bayberry. Analysis of redundancies (RDA) of microbial communities and soil characteristics revealed that the composition of bacterial and fungal communities was significantly affected by the pH, organic matter, alkali hydrolyzable nitrogen, available phosphorus, available potassium, exchangeable calcium and exchangeable magnesium in bayberry rhizosphere soil, and the contribution rates to fungi were larger than those to bacteria at the genus level. Biochar greatly influenced the metabolomics distribution of rhizosphere soils of decline disease bayberry. One hundred and nine different metabolites from both the presence and absence of biochar, mainly include acid, alcohol, ester, amine, amino acid, sterol, sugar, and other secondary metabolites, of which the contents of 52 metabolites were increased significantly such as aconitic acid, threonic acid, pimelic acid, epicatechin, and lyxose. The contents of 57 metabolites decreased significantly, such as conduritol β-expoxide, zymosterol, palatinitol, quinic acid, and isohexoic acid. There was a great difference between the absence and presence of biochar in 10 metabolic pathways, including thiamine metabolism, arginine and proline metabolism, glutathione metabolism, ATP-binding cassette (ABC) transporters, butanoate metabolism, cyanoamino acid metabolism, tyrosine metabolism, phenylalanine metabolism, phosphotransferase system (pts), and lysine degradation. There was a significant correlation between the relative content of microbial species and the content of secondary metabolites in rhizosphere soil at the levels of bacterial and fungal phyla, order, and genus. Overall, this study highlighted the significant influence of biochar in decline disease by regulating soil microbial community, physical and chemical properties, and secondary metabolites in rhizosphere soil, which provided a novel strategy for managing bayberry decline disease.PMID:37333636 | PMC:PMC10275294 | DOI:10.3389/fmicb.2023.1154886

Cardiometabolic disease risk markers are increased following burn injury in children

Mon, 19/06/2023 - 12:00
Front Public Health. 2023 Jun 2;11:1105163. doi: 10.3389/fpubh.2023.1105163. eCollection 2023.ABSTRACTINTRODUCTION: Burn injury in children causes prolonged systemic effects on physiology and metabolism leading to increased morbidity and mortality, yet much remains undefined regarding the metabolic trajectory towards specific health outcomes.METHODS: A multi-platform strategy was implemented to evaluate the long-term immuno-metabolic consequences of burn injury combining metabolite, lipoprotein, and cytokine panels. Plasma samples from 36 children aged 4-8 years were collected 3 years after a burn injury together with 21 samples from non-injured age and sex matched controls. Three different 1H Nuclear Magnetic Resonance spectroscopic experiments were applied to capture information on plasma low molecular weight metabolites, lipoproteins, and α-1-acid glycoprotein.RESULTS: Burn injury was characterized by underlying signatures of hyperglycaemia, hypermetabolism and inflammation, suggesting disruption of multiple pathways relating to glycolysis, tricarboxylic acid cycle, amino acid metabolism and the urea cycle. In addition, very low-density lipoprotein sub-components were significantly reduced in participants with burn injury whereas small-dense low density lipoprotein particles were significantly elevated in the burn injured patient plasma compared to uninjured controls, potentially indicative of modified cardiometabolic risk after a burn. Weighted-node Metabolite Correlation Network Analysis was restricted to the significantly differential features (q <0.05) between the children with and without burn injury and demonstrated a striking disparity in the number of statistical correlations between cytokines, lipoproteins, and small molecular metabolites in the injured groups, with increased correlations between these groups.DISCUSSION: These findings suggest a 'metabolic memory' of burn defined by a signature of interlinked and perturbed immune and metabolic function. Burn injury is associated with a series of adverse metabolic changes that persist chronically and are independent of burn severity and this study demonstrates increased risk of cardiovascular disease in the long-term. These findings highlight a crucial need for improved longer term monitoring of cardiometabolic health in a vulnerable population of children that have undergone burn injury.PMID:37333522 | PMC:PMC10275366 | DOI:10.3389/fpubh.2023.1105163

Neuroinflammatory and Metabolomic Temporal Dynamics Following Wood Smoke Inhalation

Mon, 19/06/2023 - 12:00
Res Sq. 2023 Jun 5:rs.3.rs-3002040. doi: 10.21203/rs.3.rs-3002040/v1. Preprint.ABSTRACTSmoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the neuroinflammatory and metabolomic temporal dynamics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6J mice were exposed to wood smoke every other day for two weeks at an average exposure concentration of 0.5mg/m 3 . Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-days post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of PECAM (CD31), high and medium expressors, with wood smoke inhalation causing an increased proportion of PECAM Hi . These populations of PECAM Hi and PECAM Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b + /CD45 low ) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules like glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD + metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD + abundance at day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated wtith wildfire smoke exposure.PMID:37333410 | PMC:PMC10275049 | DOI:10.21203/rs.3.rs-3002040/v1

Interleukin-21 Drives a Hypermetabolic State and CD4 <sup>+</sup> T Cell-associated Pathogenicity in Chronic Intestinal Inflammation

Mon, 19/06/2023 - 12:00
bioRxiv. 2023 Jun 6:2023.06.02.543518. doi: 10.1101/2023.06.02.543518. Preprint.ABSTRACTBACKGROUND & AIMS: Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease (IBD); however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis.METHODS: Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing Seahorse XF analyzer. We utilized Crohn's disease single-cell RNA sequencing dataset to infer therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically-modified Tregs in CD4 + T cell-induced murine colitis models.RESULTS: Mitochondria-endoplasmic reticulum (ER) appositions, known to mediate pyruvate entry into mitochondria via VDAC1, are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate (MePyr) supplementation. Notably, IL-21 diminished mitochondria-ER appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 β (GSK3β), a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. MePyr and GSK3β pharmacologic inhibitor (LY2090314) reversed IL-21-induced metabolic rewiring and inflammatory state. Moreover, IL-21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r -/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs.CONCLUSIONS: IL-21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL-21-induced metabolism in Tregs may mitigate CD4 + T cell-driven chronic intestinal inflammation.PMID:37333332 | PMC:PMC10274654 | DOI:10.1101/2023.06.02.543518

Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation

Mon, 19/06/2023 - 12:00
bioRxiv. 2023 Jun 7:2023.06.05.543751. doi: 10.1101/2023.06.05.543751. Preprint.ABSTRACTParasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura , displayed microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes previously shown to have immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. Here, we further characterized the functional properties of these bacteria. Enzymatic and metabolomic profiling revealed a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. These results provide functional insights into the microbiotas of an understudied population.PMID:37333296 | PMC:PMC10274677 | DOI:10.1101/2023.06.05.543751

Utilizing Aggregated Molecular Phenotype (AMP) Scores to Visualize Simultaneous Molecular Changes in Mass Spectrometry Imaging Data

Mon, 19/06/2023 - 12:00
bioRxiv. 2023 Jun 5:2023.06.01.543306. doi: 10.1101/2023.06.01.543306. Preprint.ABSTRACTMass spectrometry imaging (MSI) has gained increasing popularity for tissue-based diagnostics due to its ability to identify and visualize molecular characteristics unique to different phenotypes within heterogeneous samples. Data from MSI experiments are often visualized using single ion images and further analyzed using machine learning and multivariate statistics to identify m/ z features of interest and create predictive models for phenotypic classification. However, often only a single molecule or m/z feature is visualized per ion image, and mainly categorical classifications are provided from the predictive models. As an alternative approach, we developed an aggregated molecular phenotype (AMP) scoring system. AMP scores are generated using an ensemble machine learning approach to first select features differentiating phenotypes, weight the features using logistic regression, and combine the weights and feature abundances. AMP scores are then scaled between 0 and 1, with lower values generally corresponding to class 1 phenotypes (typically control) and higher scores relating to class 2 phenotypes. AMP scores therefore allow the evaluation of multiple features simultaneously and showcase the degree to which these features correlate with various phenotypes, leading to high diagnostic accuracy and interpretability of predictive models. Here, AMP score performance was evaluated using metabolomic data collected from desorption electrospray ionization (DESI) MSI. Initial comparisons of cancerous human tissues to normal or benign counterparts illustrated that AMP scores distinguished phenotypes with high accuracy, sensitivity, and specificity. Furthermore, when combined with spatial coordinates, AMP scores allow visualization of tissue sections in one map with distinguished phenotypic borders, highlighting their diagnostic utility.PMID:37333214 | PMC:PMC10274704 | DOI:10.1101/2023.06.01.543306

Metabolomic analysis of <em>Drosophila melanogaster</em> larvae lacking Pyruvate kinase

Mon, 19/06/2023 - 12:00
bioRxiv. 2023 Jun 7:2023.06.05.543743. doi: 10.1101/2023.06.05.543743. Preprint.ABSTRACTPyruvate kinase (Pyk) is a rate-limiting enzyme that catalyzes the final metabolic reaction in glycolysis. The importance of this enzyme, however, extends far beyond ATP production, as Pyk is also known to regulate tissue growth, cell proliferation, and development. Studies of this enzyme in Drosophila melanogaster , however, are complicated by the fact that the fly genome encodes six Pyk paralogs whose functions remain poorly defined. To address this issue, we used sequence distance and phylogenetic approaches to demonstrate that the gene Pyk encodes the enzyme most similar to the mammalian Pyk orthologs, while the other five Drosophila Pyk paralogs have significantly diverged from the canonical enzyme. Consistent with this observation, metabolomic studies of two different Pyk mutant backgrounds revealed that larvae lacking Pyk exhibit a severe block in glycolysis, with a buildup of glycolytic intermediates upstream of pyruvate. However, our analysis also unexpectedly reveals that steady state pyruvate levels are unchanged in Pyk mutants, indicating that larval metabolism maintains pyruvate pool size despite severe metabolic limitations. Consistent with our metabolomic findings, a complementary RNA-seq analysis revealed that genes involved in lipid metabolism and peptidase activity are elevated in Pyk mutants, again indicating that loss of this glycolytic enzyme induces compensatory changes in other aspects of metabolism. Overall, our study provides both insight into how Drosophila larval metabolism adapts to disruption of glycolytic metabolism as well as immediate clinical relevance, considering that Pyk deficiency is the most common congenital enzymatic defect in humans.PMID:37333180 | PMC:PMC10274742 | DOI:10.1101/2023.06.05.543743

Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome

Mon, 19/06/2023 - 12:00
bioRxiv. 2023 Jun 5:2023.05.31.543178. doi: 10.1101/2023.05.31.543178. Preprint.ABSTRACTCompound identification is an essential task in the workflow of untargeted metabolomics since the interpretation of the data in a biological context depends on the correct assignment of chemical identities to the features it contains. Current techniques fall short of identifying all or even most observable features in untargeted metabolomics data, even after rigorous data cleaning approaches to remove degenerate features are applied. Hence, new strategies are required to annotate the metabolome more deeply and accurately. The human fecal metabolome, which is the focus of substantial biomedical interest, is a more complex, more variable, yet lesser-investigated sample matrix compared to widely studied sample types like human plasma. This manuscript describes a novel experimental strategy using multidimensional chromatography to facilitate compound identification in untargeted metabolomics. Pooled fecal metabolite extract samples were fractionated using offline semi-preparative liquid chromatography. The resulting fractions were analyzed by an orthogonal LC-MS/MS method, and the data were searched against commercial, public, and local spectral libraries. Multidimensional chromatography yielded more than a 3-fold improvement in identified compounds compared to the typical single-dimensional LC-MS/MS approach and successfully identified several rare and novel compounds, including atypical conjugated bile acid species. Most features identified by the new approach could be matched to features that were detectable but not identifiable in the original single-dimension LC-MS data. Overall, our approach represents a powerful strategy for deeper annotation of the metabolome that can be implemented with commercially-available instrumentation, and should apply to any dataset requiring deeper annotation of the metabolome.PMID:37333153 | PMC:PMC10274728 | DOI:10.1101/2023.05.31.543178

Information-theoretic analysis of a model of CAR-4-1BB-mediated NFκB activation

Mon, 19/06/2023 - 12:00
bioRxiv. 2023 Jun 10:2023.06.09.544433. doi: 10.1101/2023.06.09.544433. Preprint.ABSTRACTSystems biology utilizes computational approaches to examine an array of biological processes, such as cell signaling, metabolomics and pharmacology. This includes mathematical modeling of CAR T cells, a modality of cancer therapy by which genetically engineered immune cells recognize and combat a cancerous target. While successful against hematologic malignancies, CAR T cells have shown limited success against other cancer types. Thus, more research is needed to understand their mechanisms of action and leverage their full potential. In our work, we set out to apply information theory on a mathematical model of cell signaling of CAR-mediated activation following antigen encounter. First, we estimated channel capacity for CAR-4-1BB-mediated NFκB signal transduction. Next, we evaluated the pathway's ability to distinguish contrasting "low" and "high" antigen concentration levels, depending on the amount of intrinsic noise. Finally, we assessed the fidelity by which NFκB activation reflects the encountered antigen concentration, depending on the prevalence of antigen-positive targets in tumor population. We found that in most scenarios, fold change in the nuclear concentration of NFκB carries a higher channel capacity for the pathway than NFκB's absolute response. Additionally, we found that most errors in transducing the antigen signal through the pathway skew towards underestimating the concentration of encountered antigen. Finally, we found that disabling IKKβ deactivation could increase signaling fidelity against targets with antigen-negative cells. Our information-theoretic analysis of signal transduction can provide novel perspectives on biological signaling, as well as enable a more informed path to cell engineering.PMID:37333129 | PMC:PMC10274880 | DOI:10.1101/2023.06.09.544433

Quantitative plasma profiling by <sup>1</sup>H NMR-based metabolomics: impact of sample treatment

Mon, 19/06/2023 - 12:00
Front Mol Biosci. 2023 Jun 2;10:1125582. doi: 10.3389/fmolb.2023.1125582. eCollection 2023.ABSTRACTIntroduction: There is evidence that sample treatment of blood-based biosamples may affect integral signals in nuclear magnetic resonance-based metabolomics. The presence of macromolecules in plasma/serum samples makes investigating low-molecular-weight metabolites challenging. It is particularly relevant in the targeted approach, in which absolute concentrations of selected metabolites are often quantified based on the area of integral signals. Since there are a few treatments of plasma/serum samples for quantitative analysis without a universally accepted method, this topic remains of interest for future research. Methods: In this work, targeted metabolomic profiling of 43 metabolites was performed on pooled plasma to compare four methodologies consisting of Carr-Purcell-Meiboom-Gill (CPMG) editing, ultrafiltration, protein precipitation with methanol, and glycerophospholipid solid-phase extraction (g-SPE) for phospholipid removal; prior to NMR metabolomics analysis. The effect of the sample treatments on the metabolite concentrations was evaluated using a permutation test of multiclass and pairwise Fisher scores. Results: Results showed that methanol precipitation and ultrafiltration had a higher number of metabolites with coefficient of variation (CV) values above 20%. G-SPE and CPMG editing demonstrated better precision for most of the metabolites analyzed. However, differential quantification performance between procedures were metabolite-dependent. For example, pairwise comparisons showed that methanol precipitation and CPMG editing were suitable for quantifying citrate, while g-SPE showed better results for 2-hydroxybutyrate and tryptophan. Discussion: There are alterations in the absolute concentration of various metabolites that are dependent on the procedure. Considering these alterations is essential before proceeding with the quantification of treatment-sensitive metabolites in biological samples for improving biomarker discovery and biological interpretations. The study demonstrated that g-SPE and CPMG editing are effective methods for removing proteins and phospholipids from plasma samples for quantitative NMR analysis of metabolites. However, careful consideration should be given to the specific metabolites of interest and their susceptibility to the sample treatment procedures. These findings contribute to the development of optimized sample preparation protocols for metabolomics studies using NMR spectroscopy.PMID:37333016 | PMC:PMC10273206 | DOI:10.3389/fmolb.2023.1125582

Integrative multiomics analysis of infant gut microbiome and serum metabolome reveals key molecular biomarkers of early onset childhood obesity

Mon, 19/06/2023 - 12:00
Heliyon. 2023 May 30;9(6):e16651. doi: 10.1016/j.heliyon.2023.e16651. eCollection 2023 Jun.ABSTRACTEvidence supports a complex interplay of gut microbiome and host metabolism as regulators of obesity. The metabolic phenotype and microbial metabolism of host diet may also contribute to greater obesity risk in children early in life. This study aimed to identify features that discriminated overweight/obese from normal weight infants by integrating gut microbiome and serum metabolome profiles. This prospective analysis included 50 South Asian children living in Canada, selected from the SouTh Asian biRth cohorT (START). Serum metabolites were measured by multisegment injection-capillary electrophoresis-mass spectrometry and the relative abundance of bacterial 16S rRNA gene amplicon sequence variant was evaluated at 1 year. Cumulative body mass index (BMIAUC) and skinfold thickness (SSFAUC) scores were calculated from birth to 3 years as the total area under the growth curve (AUC). BMIAUC and/or SSFAUC >85th percentile was used to define overweight/obesity. Data Integration Analysis for Biomarker discovery using Latent cOmponent (DIABLO) was used to identify discriminant features associated with childhood overweight/obesity. The associations between identified features and anthropometric measures were examined using logistic regression. Circulating metabolites including glutamic acid, acetylcarnitine, carnitine, and threonine were positively, whereas γ-aminobutyric acid (GABA), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were negatively associated with childhood overweight/obesity. The abundance of the Pseudobutyrivibrio and Lactobacillus genera were positively, and Clostridium sensu stricto 1 and Akkermansia were negatively associated with childhood overweight/obesity. Integrative analysis revealed that Akkermansia was positively whereas Lactobacillus was inversely correlated with GABA and SDMA, and Pseudobutyrivibrio was inversely correlated with GABA. This study provides insights into metabolic and microbial signatures which may regulate satiety, energy metabolism, inflammatory processes, and/or gut barrier function, and therefore, obesity trajectories in childhood. Understanding the functional capacity of these molecular features and potentially modifiable risk factors such as dietary exposures early in life may offer a novel approach for preventing childhood obesity.PMID:37332914 | PMC:PMC10272340 | DOI:10.1016/j.heliyon.2023.e16651

Untargeted metabolomics analysis in drug-naïve patients with severe obsessive-compulsive disorder

Mon, 19/06/2023 - 12:00
Front Neurosci. 2023 Jun 2;17:1148971. doi: 10.3389/fnins.2023.1148971. eCollection 2023.ABSTRACTINTRODUCTION: Obsessive-compulsive disorder (OCD), characterized by the presence of obsessions and/or compulsions, is often difficult to diagnose and treat in routine clinical practice. The candidate circulating biomarkers and primary metabolic pathway alteration of plasma in OCD remain poorly understood.METHODS: We recruited 32 drug-naïve patients with severe OCD and 32 compared healthy controls and applied the untargeted metabolomics approach by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) to assess their circulating metabolic profiles. Both univariate and multivariate analyses were then utilized to filtrate differential metabolites between patients and healthy controls, and weighted Correlation Network Analysis (WGCNA) was utilized to screen out hub metabolites.RESULTS: A total of 929 metabolites were identified, including 34 differential metabolites and 51 hub metabolites, with an overlap of 13 metabolites. Notably, the following enrichment analyses underlined the importance of unsaturated fatty acids and tryptophan metabolism alterations in OCD. Metabolites of these pathways in plasma appeared to be promising biomarkers, such as Docosapentaenoic acid and 5-Hydroxytryptophan, which may be biomarkers for OCD identification and prediction of sertraline treatment outcome, respectively.CONCLUSION: Our findings revealed alterations in the circulating metabolome and the potential utility of plasma metabolites as promising biomarkers in OCD.PMID:37332872 | PMC:PMC10272357 | DOI:10.3389/fnins.2023.1148971

Impact of Sulfur Fumigation on the Chemistry of Dioscoreae Rhizoma (Chinese Yam)

Mon, 19/06/2023 - 12:00
ACS Omega. 2023 May 30;8(23):21293-21304. doi: 10.1021/acsomega.3c02729. eCollection 2023 Jun 13.ABSTRACTDioscoreae Rhizoma (Chinese yam; derived from the rhizome of Dioscorea opposita Thunb.) (DR), commonly consumed as a food or supplement, is often sulfur-fumigated during post-harvest handling, but it remains largely unknown if and how sulfur fumigation impacts the chemistry of DR. In this study, we report the impact of sulfur fumigation on the chemical profile of DR and then the molecular and cellular mechanisms potentially involved in the chemical variations induced by sulfur fumigation. The results show that sulfur fumigation significantly and specifically changed the small metabolites (molecular weight lower than 1000 Da) and polysaccharides of DR at both qualitative and quantitative levels. Multifaceted molecular and cellular mechanisms involving chemical transformations (e.g., acidic hydrolysis, sulfonation, and esterification) and histological damage were found to be responsible for the chemical variations in sulfur-fumigated DR (S-DR). The research outcomes provide a chemical basis for further comprehensive and in-depth safety and functional evaluations of sulfur-fumigated DR.PMID:37332814 | PMC:PMC10269262 | DOI:10.1021/acsomega.3c02729

Pages