Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Serum Metabolomic Signatures of Hirschsprung's Disease Based on GC-MS and LC-MS

Fri, 26/05/2023 - 12:00
J Proteome Res. 2023 May 26. doi: 10.1021/acs.jproteome.3c00008. Online ahead of print.ABSTRACTHirschsprung's disease (HSCR) is a congenital digestive tract malformation characterized by the absence of intramural ganglion cells in the myenteric and submucosal plexuses along variable lengths of the gastrointestinal tract. Although the improvement of surgical methods has allowed great progress in the treatment of HSCR, its incidence and postoperative prognosis are still not ideal. The pathogenesis of HSCR remains unclear to date. In this study, metabolomic profiling of HSCR serum samples was performed by an integrated analysis of gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS/MS) as well as multivariate statistical analyses. Based on the random forest algorithm and receiver operator characteristic analysis, 21 biomarkers related to HSCR were optimized. Several amino acid metabolism pathways were identified as important disordered pathways of HSCR, among which tryptophan metabolism was crucial. To our knowledge, this is the first serum metabolomics study focusing on HSCR, and it provides a new perspective for explaining the mechanism of HSCR.PMID:37235583 | DOI:10.1021/acs.jproteome.3c00008

Electroacupuncture treatment of primary dysmenorrhea: A randomized, participant-blinded, sham-controlled clinical trial protocol

Fri, 26/05/2023 - 12:00
PLoS One. 2023 May 26;18(5):e0282541. doi: 10.1371/journal.pone.0282541. eCollection 2023.ABSTRACTBACKGROUND: Primary dysmenorrhea in women is a common and serious public health problem with psychological and physical effects. Painkillers have adverse effects, such as tolerance, addiction, irritation of the digestive tract, and liver and kidney damage. Electroacupuncture has been used as alternative therapy, although with no (non-anecdotal) evidence of effectiveness.OBJECTIVE: This study aims to provide evidence for the feasibility and efficacy of electroacupuncture in the treatment of primary dysmenorrhea. Moreover, by observing changes in serum and urine metabolites, we will evaluate the putative mechanisms mediating electroacupuncture effects in primary dysmenorrhea.METHODS: This multicenter, randomized, participant-blinded, sham-controlled clinical trial including 336 women with primary dysmenorrhea is being conducted at three hospital centers in China and consists of a 12-week treatment and a 3-month follow-up. Women will undergo electroacupuncture (n = 168) or sham acupuncture (n = 168), beginning 7 days before their menstruation, once per day, until menstruation. Each menstrual cycle equals one course of treatment, and we will evaluate a total of three courses of treatment. The primary outcome of interest is the change in visual analogue scale scores before and after treatment. The secondary outcomes include changes in the numeric rating scale, Cox Menstrual Symptom Scale, traditional Chinese medicine symptoms, the Self-Rating Anxiety Scale, Self-Rating Depression Scale, and 36-Item Short Form questionnaire scores, and a safety evaluation. Moreover, we will preliminarily investigate the metabolomics mechanism as a potential mediator of the association between electroacupuncture and primary dysmenorrhea symptomology.DISCUSSION: We aim to find a suitable non-medicinal alternative for primary dysmenorrhea treatment to reduce reliance on non-steroidal anti-inflammatory drugs.TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2100054234; http://www.chictr.org.cn/.PMID:37235569 | DOI:10.1371/journal.pone.0282541

Transcriptomic and Metabolomic Changes Reveal the Immunomodulatory Function of Casein Phosphopeptide-Selenium Chelate in Beagle Dogs

Fri, 26/05/2023 - 12:00
Vet Sci. 2023 May 12;10(5):345. doi: 10.3390/vetsci10050345.ABSTRACTCasein phosphopeptide-selenium chelate (CPP-Se) is an organic compound produced by the chelation of casein phosphopeptide with selenium. This compound showed the ability to modulate canine immune response in our previous study; but its effect on the peripheral blood transcriptome and serum metabolome was unknown. This study aims to reveal the potential mechanism behind the immunomodulatory function of CPP-Se. We have identified 341 differentially expressed genes (DEGs) in CPP-Se groups as compared to the control group which comprised 110 up-regulated and 231 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis found that DEGs were mainly involved in immune-related signaling pathways. Moreover, the immune-related DEGs and hub genes were identified. Similarly, metabolomics identified 53 differentially expressed metabolites (DEMs) in the CPP-Se group, of which 17 were up-regulated and 36 were down-regulated. The pathways mainly enriched by DEMs were primary bile acid biosynthesis, tryptophan metabolism, and other amino acids metabolic pathways. Combined analysis of transcriptomic and metabolomic data showed that the DEGs and DEMs were commonly enriched in fatty acid biosynthesis, pyrimidine metabolism, glutathione metabolism, and glycerolipid metabolic pathways. Taken together, our findings provided a theoretical basis for further understanding of the immunomodulatory function of CPP-Se as well as a scientific reference for the future use of CPP-Se in pet foods as a dietary supplement to modulate the immunity.PMID:37235428 | DOI:10.3390/vetsci10050345

Lipid remodeling of contrasting maize (<em>Zea mays</em> L.) hybrids under repeated drought

Fri, 26/05/2023 - 12:00
Front Plant Sci. 2023 May 10;14:1050079. doi: 10.3389/fpls.2023.1050079. eCollection 2023.ABSTRACTThe role of recovery after drought has been proposed to play a more prominent role during the whole drought-adaption process than previously thought. Two maize hybrids with comparable growth but contrasting physiological responses were investigated using physiological, metabolic, and lipidomic tools to understand the plants' strategies of lipid remodeling in response to repeated drought stimuli. Profound differences in adaptation between hybrids were discovered during the recovery phase, which likely gave rise to different degrees of lipid adaptability to the subsequent drought event. These differences in adaptability are visible in galactolipid metabolism and fatty acid saturation patterns during recovery and may lead to a membrane dysregulation in the sensitive maize hybrid. Moreover, the more drought-tolerant hybrid displays more changes of metabolite and lipid abundance with a higher number of differences within individual lipids, despite a lower physiological response, while the responses in the sensitive hybrid are higher in magnitude but lower in significance on the level of individual lipids and metabolites. This study suggests that lipid remodeling during recovery plays a key role in the drought response of plants.PMID:37235021 | PMC:PMC10206266 | DOI:10.3389/fpls.2023.1050079

Current advances in the molecular regulation of abiotic stress tolerance in sorghum <em>via</em> transcriptomic, proteomic, and metabolomic approaches

Fri, 26/05/2023 - 12:00
Front Plant Sci. 2023 May 10;14:1147328. doi: 10.3389/fpls.2023.1147328. eCollection 2023.ABSTRACTSorghum (Sorghum bicolor L. Moench), a monocot C4 crop, is an important staple crop for many countries in arid and semi-arid regions worldwide. Because sorghum has outstanding tolerance and adaptability to a variety of abiotic stresses, including drought, salt, and alkaline, and heavy metal stressors, it is valuable research material for better understanding the molecular mechanisms of stress tolerance in crops and for mining new genes for their genetic improvement of abiotic stress tolerance. Here, we compile recent progress achieved using physiological, transcriptome, proteome, and metabolome approaches; discuss the similarities and differences in how sorghum responds to differing stresses; and summarize the candidate genes involved in the process of responding to and regulating abiotic stresses. More importantly, we exemplify the differences between combined stresses and a single stress, emphasizing the necessity to strengthen future studies regarding the molecular responses and mechanisms of combined abiotic stresses, which has greater practical significance for food security. Our review lays a foundation for future functional studies of stress-tolerance-related genes and provides new insights into the molecular breeding of stress-tolerant sorghum genotypes, as well as listing a catalog of candidate genes for improving the stress tolerance for other key monocot crops, such as maize, rice, and sugarcane.PMID:37235010 | PMC:PMC10206308 | DOI:10.3389/fpls.2023.1147328

Nanosecond pulse effectively ablated hepatocellular carcinoma with alterations in the gut microbiome and serum metabolites

Fri, 26/05/2023 - 12:00
Front Pharmacol. 2023 May 10;14:1163628. doi: 10.3389/fphar.2023.1163628. eCollection 2023.ABSTRACTBackground: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. Nanosecond pulsed electric fields (nsPEFs) have emerged as a new treatment for cancer. This study aims to identify the effectiveness of nsPEFs in the treatment of HCC and analyze the alterations in the gut microbiome and serum metabonomics after ablation. Methods: C57BL/6 mice were randomly divided into three groups: healthy control mice (n = 10), HCC mice (n = 10), and nsPEF-treated HCC mice (n = 23). Hep1-6 cell lines were used to establish the HCC model in situ. Histopathological staining was performed on tumor tissues. The gut microbiome was analyzed by 16S rRNA sequencing. Serum metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Spearman's correlation analysis was carried out to analyze the correlation between the gut microbiome and serum metabonomics. Results: The fluorescence image showed that nsPEFs were significantly effective. Histopathological staining identified nuclear pyknosis and cell necrosis in the nsPEF group. The expression of CD34, PCNA, and VEGF decreased significantly in the nsPEF group. Compared with normal mice, the gut microbiome diversity of HCC mice was increased. Eight genera including Alistipes and Muribaculaceae were enriched in the HCC group. Inversely, these genera decreased in the nsPEF group. LC-MS analysis confirmed that there were significant differences in serum metabolism among the three groups. Correlation analysis showed crucial relationships between the gut microbiome and serum metabolites that are involved in nsPEF ablation of HCC. Conclusion: As a new minimally invasive treatment for tumor ablation, nsPEFs have an excellent ablation effect. The alterations in the gut microbiome and serum metabolites may participate in the prognosis of HCC ablation.PMID:37234705 | PMC:PMC10205996 | DOI:10.3389/fphar.2023.1163628

MetaMOPE: a web service for mobile phase determination and fast chromatography peaks evaluation for metabolomics

Fri, 26/05/2023 - 12:00
Bioinform Adv. 2023 May 18;3(1):vbad061. doi: 10.1093/bioadv/vbad061. eCollection 2023.ABSTRACTMOTIVATION: Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used in metabolomics studies, while HILIC LC-MS is particularly suited for polar metabolites. Determining an optimized mobile phase and developing a proper liquid chromatography method tend to be laborious, time-consuming and empirical.RESULTS: We developed a containerized web tool providing a workflow to quickly determine the optimized mobile phase by batch-evaluating chromatography peaks for metabolomics LC-MS studies. A mass chromatographic quality value, an asymmetric factor, and the local maximum intensity of the extracted ion chromatogram were calculated to determine the number of peaks and peak retention time. The optimal mobile phase can be quickly determined by selecting the mobile phase that produces the largest number of resolved peaks. Moreover, the workflow enables one to automatically process the repeats by evaluating chromatography peaks and determining the retention time of large standards. This workflow was validated with 20 chemical standards and successfully constructed a reference library of 571 metabolites for the HILIC LC-MS platform.AVAILABILITY AND IMPLEMENTATION: MetaMOPE is freely available at https://metamope.cmdm.tw. Source code and installation instructions are available on GitHub: https://github.com/CMDM-Lab/MetaMOPE.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.PMID:37234699 | PMC:PMC10206287 | DOI:10.1093/bioadv/vbad061

Identification of potential Indonesian marine invertebrate bioactive compounds as TMPRSS2 and SARS-CoV-2 Omicron spike protein inhibitors through computational screening

Fri, 26/05/2023 - 12:00
Arab J Chem. 2023 Sep;16(9):104984. doi: 10.1016/j.arabjc.2023.104984. Epub 2023 May 16.ABSTRACTThe coronavirus pandemic led to the announcement of a worldwide health emergency. The SARS-CoV-2 Omicron variant, which swiftly spread worldwide, has fueled existing challenges. Appropriate medication is necessary to avoid severe SARS-CoV-2 disease. The human TMPRSS2 and SARS-CoV-2 Omicron spike protein, which are required for viral entry into the host phase, were identified as the target proteins through computational screening. Structure-based virtual screening; molecular docking; absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis; and molecular dynamics simulation were the methods applied for TMPRSS2 and spike protein inhibitors. Bioactive marine invertebrates from Indonesia were employed as test ligands. Camostat and nafamostat (co-crystal) were utilized as reference ligands against TMPRSS2, whereas mefloquine was used as a reference ligand against spike protein. Following a molecular docking and dynamics simulation, we found that acanthomanzamine C has remarkable effectiveness against TMPRSS2 and spike protein. Compared to camostat (-8.25 kcal/mol), nafamostat (-6.52 kcal/mol), and mefloquine (-6.34 kcal/mol), acanthomanzamine C binds to TMPRSS2 and spike protein with binding energies of -9.75 kcal/mol and -9.19 kcal/mol, respectively. Furthermore, slight variances in the MD simulation demonstrated consistent binding to TMPRSS2 and spike protein after the initial 50 ns. These results are highly valuable in the search for a treatment for SARS-CoV-2 infection.PMID:37234226 | PMC:PMC10186851 | DOI:10.1016/j.arabjc.2023.104984

Mapping metabolite change in the mouse brain after esketamine injection by ambient mass spectrometry imaging and metabolomics

Fri, 26/05/2023 - 12:00
Front Psychiatry. 2023 May 10;14:1109344. doi: 10.3389/fpsyt.2023.1109344. eCollection 2023.ABSTRACTKetamine is a new, fast, and effective antidepression treatment method; however, the possible dissociation effects, sensory changes, abuse risk, and the inability to accurately identify whether patients have a significant response to ketamine limit its clinical use. Further exploration of the antidepressant mechanisms of ketamine will contribute to its safe and practical application. Metabolites, the products of upstream gene expression and protein regulatory networks, play an essential role in various physiological and pathophysiological processes. In traditional metabonomics it is difficult to achieve the spatial localization of metabolites, which limits the further analysis of brain metabonomics by researchers. Here, we used a metabolic network mapping method called ambient air flow-assisted desorption electrospray ionization (AFADESI)-mass spectrometry imaging (MSI). We found the main changes in glycerophospholipid metabolism around the brain and sphingolipid metabolism changed mainly in the globus pallidus, which showed the most significant metabolite change after esketamine injection. The spatial distribution of metabolic changes was evaluated in the whole brain, and the potential mechanism of esketamine's antidepressant effect was explored in this research.PMID:37234214 | PMC:PMC10206402 | DOI:10.3389/fpsyt.2023.1109344

The resilient cotton plant: uncovering the effects of stresses on secondary metabolomics and its underlying molecular mechanisms

Fri, 26/05/2023 - 12:00
Funct Integr Genomics. 2023 May 26;23(2):183. doi: 10.1007/s10142-023-01118-9.ABSTRACTCotton is an important fiber crop cultivated around the world under diverse climate conditions and generates billions of dollars in annual revenue globally. Biotic and abiotic stresses have caused reduction in yield and productivity of cotton crops. In this review, we comprehensively analyzed and summarized the effect of biotic and abiotic stress on secondary metabolite production in cotton. The development of cotton varieties with improved tolerance against abiotic and biotic stress can play an important role in sustainable cotton production. Under stress conditions, plants develop a variety of defense mechanisms such as initiating signaling functions to upregulate defense responsive genes and accumulation of secondary metabolites. Understanding the impact of stress on secondary metabolite production in cotton is crucial for developing strategies to alleviate the negative effects of stress on crop yield and quality. Further, the potential industrial applications of these secondary metabolites in cotton, such as gossypol, could provide new opportunities for sustainable cotton production and the development of value-added products. Additionally, transgenic and genome-edited cotton cultivars can be developed to provide tolerance to both abiotic and biotic stress in cotton production.PMID:37233833 | DOI:10.1007/s10142-023-01118-9

Application of untargeted volatile profiling in inflammatory bowel disease research

Fri, 26/05/2023 - 12:00
Anal Bioanal Chem. 2023 May 26. doi: 10.1007/s00216-023-04748-x. Online ahead of print.ABSTRACTInflammatory bowel disease (IBD) diagnosis depends on criteria based on histological, endoscopic, radiological, and clinical results. These studies show drawbacks as being expensive, invasive, and time-consuming. In this work, an untargeted metabolomic strategy based on the monitoring of volatile compounds in serum by headspace gas chromatography-mass spectrometry is proposed as a complementary, fast, and efficient test for IBD patient diagnosis. To develop the method and build a chemometric model that allows the IBD diagnosis, serum samples including IBD patients and healthy volunteers were collected. Analyses were performed by incubating 400 µL of serum for 10 min at 90 °C. For data processing, an untargeted metabolomic strategy was used. A total of 96 features were detected, of which a total of 10 volatile compounds could be identified and confirmed by means of the analysis of real standards. The chemometric treatment consisted of a discriminant analysis of orthogonal partial least squares (OPLS-DA) obtaining a 100% of classification rate, since all the analyzed samples were correctly classified.PMID:37233766 | DOI:10.1007/s00216-023-04748-x

Lethal and Sub-lethal Implications of Sodium Chloride Exposure for Adult Unionid Mussel Species: Eurynia dilatata and Lasmigona costata

Fri, 26/05/2023 - 12:00
Arch Environ Contam Toxicol. 2023 May 26. doi: 10.1007/s00244-023-01006-0. Online ahead of print.ABSTRACTThe elevated use of salt as a de-icing agent on roads in Canada is causing an increase in the chloride concentration of freshwater ecosystems. Freshwater Unionid mussels are a group of organisms that are sensitive to increases in chloride levels. Unionids have greater diversity in North America than anywhere else on Earth, but they are also one of the most imperiled groups of organisms. This underscores the importance of understanding the effect that increasing salt exposure has on these threatened species. There are more data on the acute toxicity of chloride to Unionids than on chronic toxicity. This study investigated the effect of chronic sodium chloride exposure on the survival and filtering activity of two Unionid species (Eurynia dilatata, and Lasmigona costata) and assessed the effect on the metabolome in L. costata hemolymph. The concentration causing mortality after 28 days of exposure was similar for E. dilatata (1893 mg Cl-/L) and L. costata (1903 mg Cl-/L). Significant changes in the metabolome of the L. costata hemolymph were observed for mussels exposed to non-lethal concentrations. For example, several phosphatidylethanolamines, several hydroxyeicosatetraenoic acids, pyropheophorbide-a, and alpha-linolenic acid were significantly upregulated in the hemolymph of mussels exposed to 1000 mg Cl-/L for 28 days. While no mortality occurred in the treatment, elevated metabolites in the hemolymph are an indicator of stress.PMID:37233741 | DOI:10.1007/s00244-023-01006-0

Food Fingerprinting: LC-ESI-IM-QTOF-Based Identification of Blumeatin as a New Marker Metabolite for the Detection of <em>Origanum majorana</em> Admixtures to <em>O. onites</em>/<em>vulgare</em>

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 20;13(5):673. doi: 10.3390/metabo13050673.ABSTRACTOregano (Origanum vulgare and O. onites) is one of the most frequently counterfeited herbs in the world and is diluted with the leaves of a wide variety of plants. In addition to olive leaves, marjoram (O. majorana) is often used for this purpose in order to achieve a higher profit. However, apart from arbutin, no marker metabolites are known to reliably detect marjoram admixtures in oregano batches at low concentrations. In addition, arbutin is relatively widespread in the plant kingdom, which is why it is of great relevance to look for further marker metabolites in order to secure the analysis accordingly. Therefore, the aim of the present study was to use a metabolomics-based approach to identify additional marker metabolites with the aid of an ion mobility mass spectrometry instrument. The focus of the analysis was on the detection of non-polar metabolites, as this study was preceded by nuclear magnetic resonance spectroscopic investigations of the same samples based mainly on the detection of polar analytes. Using the MS-based approach, numerous marjoram specific features could be detected in admixtures of marjoram >10% in oregano. However, only one feature was detectable in admixtures of >5% marjoram. This feature was identified as blumeatin, which belongs to the class of flavonoid compounds. Initially, blumeatin was identified based on MS/MS spectra and collision cross section values using a database search. In addition, the identification of blumeatin was confirmed by a reference standard. Moreover, dried leaves of olive, myrtle, thyme, sage and peppermint, which are also known to be used to adulterate oregano, were measured. Blumeatin could not be detected in these plants, so this substance can be considered as an excellent marker compound for the detection of marjoram admixtures.PMID:37233714 | DOI:10.3390/metabo13050673

Non-Targeted Metabolic Profiling of Cerebellum in Spina Bifida Fetal Rats

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 19;13(5):670. doi: 10.3390/metabo13050670.ABSTRACTSpina bifida, known more commonly as myelomeningocele, is a neural tube defect that results in herniation of the cerebellum through the foramen magnum into the central canal as part of the Chiari II malformation. Effects stemming from the herniated cerebellum and its metabolic profile have not been extensively studied. The objective of this study is to examine the metabolic effects of this disease on the cerebellum in utero through the utilization of a retinoid acid-induced Spina bifida rat model. Analysis of this model at mid-late (day 15) and term (day 20) of gestation in comparison to both non-exposed and retinoic acid-exposed non-myelomeningocele controls, the observed metabolic changes suggest that mechanisms of oxidative stress and energy depletion are at play in this neuro tissue. These notable mechanisms are likely to result in further damage to neural tissue as the fetus grows and the compressed cerebellum develops and herniates more due to myelomeningocele.PMID:37233711 | DOI:10.3390/metabo13050670

Shades of Fine Dark Chocolate Colors: Polyphenol Metabolomics and Molecular Networking to Enlighten the Brown from the Black

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 17;13(5):667. doi: 10.3390/metabo13050667.ABSTRACTHigh-quality dark chocolates (70% cocoa content) can have shades from light to dark brown color. This work aimed at revealing compounds that discriminate black and brown chocolates. From 37 fine chocolate samples from years 2019 and 2020 provided by Valrhona,8 dark black samples and 8 light brown samples were selected. A non-targeted metabolomics study was performed based on ultra-high performance liquid chromatography-high resolution mass spectrometry/mass spectrometry experiments, univariate, multivariate, and feature-based molecular networking analyses. Twenty-seven overaccumulated discriminating compounds were found for black chocolates. Among them, glycosylated flavanols including monomers and glycosylated A-type procyanidin dimers and trimers were highly representative. Fifty overaccumulated discriminating compounds were found for brown chocolates. Most of them were B-type procyanidins (from trimers to nonamers). These phenolic compounds may be partially related to the chocolate colors as precursors of colored compounds. This study increases the knowledge on the chemical diversity of dark chocolates by providing new information about the phenolic profiles of black and brown chocolates.PMID:37233708 | DOI:10.3390/metabo13050667

Metabolic Reprogramming of Barley in Response to Foliar Application of Dichlorinated Functional Analogues of Salicylic Acid as Priming Agents and Inducers of Plant Defence

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 17;13(5):666. doi: 10.3390/metabo13050666.ABSTRACTDesigning innovative biological crop protection strategies to stimulate natural plant immunity is motivated by the growing need for eco-friendly alternatives to conventional biocidal agrochemicals. Salicylic acid (SA) and analogues are known chemical inducers of priming plant immunity against environmental stresses. The aim of the study was to study the metabolic reprogramming in barley plants following an application of three proposed dichlorinated inducers of acquired resistance. 3,5-Dichloroanthranilic acid, 2,6-dichloropyridine-4-carboxylic acid, and 3,5-dichlorosalicylic acid were applied to barley at the third leaf stage of development and harvested at 12, 24, and 36 h post-treatment. Metabolites were extracted using methanol for untargeted metabolomics analyses. Samples were analysed by ultra-high performance liquid chromatography coupled to high-definition mass spectrometry (UHPLC-HDMS). Chemometric methods and bioinformatics tools were used to mine and interpret the generated data. Alterations in the levels of both primary and secondary metabolites were observed. The accumulation of barley-specific metabolites, hordatines, and precursors was observed from 24 h post-treatment. The phenylpropanoid pathway, a marker of induced resistance, was identified among the key mechanisms activated by the treatment with the three inducers. No salicylic acid or SA derivatives were annotated as signatory biomarkers; instead, jasmonic acid precursors and derivatives were found as discriminatory metabolites across treatments. The study highlights differences and similarities in the metabolomes of barley after treatment with the three inducers and points to the triggering chemical changes associated with defence and resistance. This report is the first of its kind, and the knowledge acquired provides deeper insight into the role of dichlorinated small molecules as inducers of plant immunity and can be used in metabolomics-guided plant improvement programmes.PMID:37233707 | DOI:10.3390/metabo13050666

Instrumental Drift in Untargeted Metabolomics: Optimizing Data Quality with Intrastudy QC Samples

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 16;13(5):665. doi: 10.3390/metabo13050665.ABSTRACTUntargeted metabolomics is an important tool in studying health and disease and is employed in fields such as biomarker discovery and drug development, as well as precision medicine. Although significant technical advances were made in the field of mass-spectrometry driven metabolomics, instrumental drifts, such as fluctuations in retention time and signal intensity, remain a challenge, particularly in large untargeted metabolomics studies. Therefore, it is crucial to consider these variations during data processing to ensure high-quality data. Here, we will provide recommendations for an optimal data processing workflow using intrastudy quality control (QC) samples that identifies errors resulting from instrumental drifts, such as shifts in retention time and metabolite intensities. Furthermore, we provide an in-depth comparison of the performance of three popular batch-effect correction methods of different complexity. By using different evaluation metrics based on QC samples and a machine learning approach based on biological samples, the performance of the batch-effect correction methods were evaluated. Here, the method TIGER demonstrated the overall best performance by reducing the relative standard deviation of the QCs and dispersion-ratio the most, as well as demonstrating the highest area under the receiver operating characteristic with three different probabilistic classifiers (Logistic regression, Random Forest, and Support Vector Machine). In summary, our recommendations will help to generate high-quality data that are suitable for further downstream processing, leading to more accurate and meaningful insights into the underlying biological processes.PMID:37233706 | DOI:10.3390/metabo13050665

Bone Metabolite Profile Differs between Normal and Femur Head Necrosis (FHN/BCO)-Affected Broilers: Implications for Dysregulated Metabolic Cascades in FHN Pathophysiology

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 16;13(5):662. doi: 10.3390/metabo13050662.ABSTRACTFemur head necrosis (FHN), also known as bacterial chondronecrosis with osteomyelitis (BCO), has remained an animal welfare and production concern for modern broilers regardless of efforts to select against it in primary breeder flocks. Characterized by the bacterial infection of weak bone, FHN has been found in birds without clinical lameness and remains only detectable via necropsy. This presents an opportunity to utilize untargeted metabolomics to elucidate potential non-invasive biomarkers and key causative pathways involved in FHN pathology. The current study used ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS) and identified a total of 152 metabolites. Mean intensity differences at p < 0.05 were found in 44 metabolites, with 3 significantly down-regulated and 41 up-regulated in FHN-affected bone. Multivariate analysis and a partial least squares discriminant analysis (PLS-DA) scores plot showed the distinct clustering of metabolite profiles from FHN-affected vs. normal bone. Biologically related molecular networks were predicted using an ingenuity pathway analysis (IPA) knowledge base. Using a fold-change cut off of -1.5 and 1.5, top canonical pathways, networks, diseases, molecular functions, and upstream regulators were generated using the 44 differentially abundant metabolites. The results showed the metabolites NAD+, NADP+, and NADH to be downregulated, while 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) and histamine were significantly increased in FHN. Ascorbate recycling and purine nucleotides degradation were the top canonical pathways, indicating the potential dysregulation of redox homeostasis and osteogenesis. Lipid metabolism and cellular growth and proliferation were some of the top molecular functions predicted based on the metabolite profile in FHN-affected bone. Network analysis showed significant overlap across metabolites and predicted upstream and downstream complexes, including AMP-activated protein kinase (AMPK), insulin, collagen type IV, mitochondrial complex, c-Jun N-terminal kinase (Jnk), extracellular signal-regulated kinase (ERK), and 3β-hydroxysteroid dehydrogenase (3β HSD). The qPCR analysis of relevant factors showed a significant decrease in AMPKα2 mRNA expression in FHN-affected bone, supporting the predicted downregulation found in the IPA network analysis. Taken as a whole, these results demonstrate a shift in energy production, bone homeostasis, and bone cell differentiation that is distinct in FHN-affected bone, with implications for how metabolites drive the pathology of FHN.PMID:37233703 | DOI:10.3390/metabo13050662

Dynamic Changes in Plant Secondary Metabolites Induced by <em>Botrytis cinerea</em> Infection

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 13;13(5):654. doi: 10.3390/metabo13050654.ABSTRACTIn response to pathogen infection, some plants increase production of secondary metabolites, which not only enhance plant defense but also induce fungicide resistance, especially multidrug resistance (MDR) in the pathogen through preadaptation. To investigate the cause of MDR in Botrytis cinerea, grapes 'Victoria' (susceptible to B. cinerea) and 'Shine Muscat' (resistant to B. cinerea) were inoculated into seedling leaves with B. cinerea, followed by extraction of metabolites from the leaves on days 3, 6, and 9 after inoculation. The extract was analyzed using gas chromatography/quadrupole time-of-flight mass (GC/QTOF) combined with solid-phase microextraction (SPME) for volatile and nonvolatile metabolomic components. Nonvolatile metabolites γ-aminobutyric acid (GABA), resveratrol, piceid, and some carbohydrates or amino acids, coupled with volatile metabolites β-ocimene, α-farnesene, caryophyllene, germacrene D, β-copaene, and alkanes, accumulated at a higher level in grape leaves infected with B. cinerea compared to in noninoculated leaves. Among the established metabolic pathways, seven had greater impacts, including aminoacyl-tRNA biosynthesis, galactose metabolism, valine, leucine, and isoleucine biosynthesis. Furthermore, isoquinoline alkaloid biosynthesis; phenylpropanoid biosynthesis; monobactam biosynthesis; tropane, piperidine, and pyridine alkaloid biosynthesis; phenylalanine metabolism; and glucosinolate biosynthesis were related to antifungal activities. Based on liquid chromatography/quadrupole time-of-flight mass (LC/QTOF) detection and bioassay, B. cinerea infection induced production of plant secondary metabolites (PSMs) including eugenol, flavanone, reserpine, resveratrol, and salicylic acid, which all have inhibitory activity against B. cinerea. These compounds also promoted overexpression of ATP-binding cassette (ABC) transporter genes, which are involved in induction of MDR in B. cinerea.PMID:37233695 | DOI:10.3390/metabo13050654

Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics

Fri, 26/05/2023 - 12:00
Metabolites. 2023 May 10;13(5):648. doi: 10.3390/metabo13050648.ABSTRACTUntargeted and targeted approaches are the traditional metabolomics workflows acquired for a wider understanding of the metabolome under focus. Both approaches have their strengths and weaknesses. The untargeted, for example, is maximizing the detection and accurate identification of thousands of metabolites, while the targeted is maximizing the linear dynamic range and quantification sensitivity. These workflows, however, are acquired separately, so researchers compromise either a low-accuracy overview of total molecular changes (i.e., untargeted analysis) or a detailed yet blinkered snapshot of a selected group of metabolites (i.e., targeted analysis) by selecting one of the workflows over the other. In this review, we present a novel single injection simultaneous quantitation and discovery (SQUAD) metabolomics that combines targeted and untargeted workflows. It is used to identify and accurately quantify a targeted set of metabolites. It also allows data retro-mining to look for global metabolic changes that were not part of the original focus. This offers a way to strike the balance between targeted and untargeted approaches in one single experiment and address the two approaches' limitations. This simultaneous acquisition of hypothesis-led and discovery-led datasets allows scientists to gain more knowledge about biological systems in a single experiment.PMID:37233689 | DOI:10.3390/metabo13050648

Pages