PubMed
FOXO3a-regulated arginine metabolic plasticity adaptively promotes esophageal cancer proliferation and metastasis
Oncogene. 2023 Dec 4. doi: 10.1038/s41388-023-02906-0. Online ahead of print.ABSTRACTEsophageal squamous cell carcinoma (ESCC) is a common malignant tumor with a poor prognosis due to a lack of early detection. Indeed, the mechanisms underlying ESCC progression remain unclear. Here, we discovered that abnormal arginine metabolism contributes to ESCC progression. Based on transcriptomic and metabolomic analyses, we found that argininosuccinate synthetase 1 (ASS1) and argininosuccinate lyase (ASL) levels were increased in primary tumor tissues but decreased in lymph-metastatic tumor tissues. Intriguingly, FOXO3a was inversely correlated with ASS1 and ASL in primary and metastatic tumor tissues, suggesting that FOXO3a dissimilarly regulates ASS1 and ASL at different stages of ESCC. Silencing ASS1/ASL inhibited primary tumor growth and promoted metastasis. Conversely, overexpression of ASS1/ASL or increased arginine supply promoted tumor proliferation but suppressed metastasis. In addition, FOXO3a activation inhibited primary tumor growth by repressing ASS1 and ASL transcription, whereas inactivation of FOXO3a impeded metastasis by releasing ASS1 and ASL transcription. Together, the finding sheds light on metastatic reprogramming in ESCC.PMID:38049565 | DOI:10.1038/s41388-023-02906-0
Previous cardiovascular injury is a prerequisite for immune checkpoint inhibitor-associated lethal myocarditis in mice
ESC Heart Fail. 2023 Dec 4. doi: 10.1002/ehf2.14614. Online ahead of print.ABSTRACTAIMS: Immune checkpoint inhibitors (ICIs) are antineoplastic drugs designed to activate the immune system's response against cancer cells. Evidence suggests that they may lead to immune-related adverse events, particularly when combined (e.g., anti-CTLA-4 plus anti-PD-1), sometimes resulting in severe conditions such as myocarditis. We aimed to investigate whether a previously sustained cardiac injury, such as pathological remodelling due to hypertension, is a prerequisite for ICI therapy-induced myocarditis.METHODS: We evaluated the cardiotoxicity of ICIs in a hypertension (HTN) mouse model (C57BL/6). Weekly doses were administered up to day 21 after the first administration. Our analysis encompassed the following parameters: (i) survival and cardiac pathological remodelling, (ii) cardiac function assessed using pressure-volume (PV)-loops, with brain natriuretic peptide (BNP) serving as a marker of haemodynamic dysfunction and (iii) cardiac inflammation (cytokine levels, infiltration, and cardiac antigen autoantibodies).RESULTS: After the first administration of ICI combined therapy, the treated HTN group showed a 30% increased mortality (P = 0.0002) and earlier signs of hypertrophy and pathological remodelling compared with the untreated HTN group. BNP (P = 0.01) and TNF-α (<0.0001) increased 2.5- and 1.7-fold, respectively, in the treated group, while IL-6 (P = 0.8336) remained unchanged. Myocarditis only developed in the HTN group treated with ICIs on day 21 (score >3), characterised by T cell infiltration and increased cardiac antigen antibodies (86% showed a titre of 1:160). The control group treated with ICI was unaffected in any evaluated feature.CONCLUSIONS: Our findings indicate that pre-existing sustained cardiac damage is a necessary condition for ICI-induced myocarditis.PMID:38049390 | DOI:10.1002/ehf2.14614
Cluster-Partial Least Squares (c-PLS) regression analysis: Application to miRNA and metabolomic data
Anal Chim Acta. 2024 Jan 15;1286:342052. doi: 10.1016/j.aca.2023.342052. Epub 2023 Nov 20.ABSTRACTBACKGROUND: Biomedicine and biological research frequently involve analyzing large datasets generated by high-throughput technologies like genomics, transcriptomics, miRNomics, and metabolomics. Pathway analysis is a common computational approach used to understand the impact of experimental conditions, phenotypes, or interventions on biological pathways and networks. This involves statistical analysis of omic data to identify differentially expressed variables and mapping them onto predefined pathways. Analyzing such datasets often requires multivariate techniques to extract meaningful insights such as Partial Least Squares (PLS). Variable selection strategies like interval-PLS (iPLS) help improve understanding and predictive performance by identifying informative variables or intervals. However, iPLS is suboptimal to treat omic data such as metabolic or miRNA profiles, where features cannot be distributed along a continuous dimension describing their relationships as in e.g., vibrational or nuclear magnetic resonance spectroscopy.RESULTS: This study introduces a novel variable selection approach called cluster PLS (c-PLS) that aims to assess the joint impact of variable groups selected based on biological characteristics (such as miRNA-regulated metabolic pathway or lipid classes) on the predictive performance of a multivariate model. The usefulness of c-PLS is shown using miRNomic and metabolomic datasets obtained from the analysis of 24 liver tissue biopsies collected in the frame of a clinical study of steatosis.SIGNIFICANCE AND NOVELTY: Results obtained show that c-PLS enables analyzing the effect of biologically relevant variable clusters, facilitating the identification of biological processes associated with the independent variable, and the prioritization of the biological factors influencing model performance, thereby improving the understanding of the biological factors driving model predictions. While the strategy is tested for the evaluation of PLS models, it could be extended to other linear and non-linear multivariate models.PMID:38049234 | DOI:10.1016/j.aca.2023.342052
Three Decades of Advancements in Osteoarthritis Research: Insights from Transcriptomic, Proteomic, and Metabolomic Studies
Osteoarthritis Cartilage. 2023 Dec 2:S1063-4584(23)00996-2. doi: 10.1016/j.joca.2023.11.019. Online ahead of print.ABSTRACTOBJECTIVE: Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades.DESIGN: We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease.RESULTS: Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patters within OA-afflicted tissues.CONCLUSIONS: Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.PMID:38049029 | DOI:10.1016/j.joca.2023.11.019
Predicting pathways for old and new metabolites through clustering
J Theor Biol. 2023 Dec 2:111684. doi: 10.1016/j.jtbi.2023.111684. Online ahead of print.ABSTRACTThe diverse metabolic pathways are fundamental to all living organisms, as they harvest energy, synthesize biomass components, produce molecules to interact with the microenvironment, and neutralize toxins. While the discovery of new metabolites and pathways continues, the prediction of pathways for new metabolites can be challenging. It can take vast amounts of time to elucidate pathways for new metabolites; thus, according to HMDB (Human Metabolome Database), only 60% of metabolites get assigned to pathways. Here, we present an approach to identify pathways based on metabolite structure. We extracted 201 features from SMILES annotations and identified new metabolites from PubMed abstracts and HMDB. After applying clustering algorithms to both groups of features, we quantified correlations between metabolites, and found the clusters accurately linked 92% of known metabolites to their respective pathways. Thus, this approach could be valuable for predicting metabolic pathways for new metabolites.PMID:38048983 | DOI:10.1016/j.jtbi.2023.111684
Environmental chemicals change extracellular lipidome of mature human white adipocytes
Chemosphere. 2023 Dec 2:140852. doi: 10.1016/j.chemosphere.2023.140852. Online ahead of print.ABSTRACTCertain environmental chemicals affect the body's energy balance and are known as metabolism disrupting chemicals (MDCs). MDCs have been implicated in the development of metabolic diseases, such as obesity and type 2 diabetes. In contrast to their well-known impact on developing adipocytes, MDC effects leading to altered energy balance and development of insulin resistance in mature white adipocytes, constituents of adult adipose tissue, are largely unclear. Here, we investigated the effects of six well-established environmental MDCs (bisphenol A (BPA), perfluorooctanoic acid (PFOA), triclosan (TCS), p,p-dichlorodiphenyl-dichloroethylene (ppDDE), tributyltin chloride (TBT) and triphenyl phosphate (TPP)) on mature human white adipocytes derived from mesenchymal stem cells in vitro. We aimed to identify biomarkers and sensitive endpoints of their metabolism disrupting effects. While most of the tested exposures had no effect on adipocyte glucose consumption, lipid storage and assessed gene expression endpoints, the highest concentration of triclosan affected the total lipid storage and adipocyte size, as well as glucose consumption and mRNA expression of the glucose transporter GLUT1, leptin and adiponectin. Additionally, an increased expression of adiponectin was observed with TPP and the positive control PPARγ agonist rosiglitazone. In contrast, the lipidomic analysis of the cell culture medium after a 3-day exposure was extremely sensitive and revealed concentration-dependent changes in the extracellular lipidome of adipocytes exposed to nearly all studied chemicals. While some of the extracellular lipidome changes were specific for the MDC used, some effects were found common to several tested chemicals and included increases in lysophosphatidylcholines, glycerophospholipids and ceramides and a decrease in fatty acids, with possible implications in inflammation, lipid and glucose uptake. This study points to early signs of metabolic disruption and likely systemic effects of mature adipocyte exposure to environmental chemicals, as well as to the need to include lipidomic endpoints in the assessment of adverse effects of MDCs.PMID:38048832 | DOI:10.1016/j.chemosphere.2023.140852
A single atom cobalt anchored MXene bifunctional platform for rapid, label-free and high-throughput biomarker analysis and tissue imaging
Biosens Bioelectron. 2023 Dec 2;246:115903. doi: 10.1016/j.bios.2023.115903. Online ahead of print.ABSTRACTFew of single-atom materials have been served as platform to analyze small molecules for surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). Herein, a novel single Co atom-anchored MXene (Co-N-Ti3C2) is prepared to achieve enhanced SALDI-MS and mass spectrometry imaging (MSI) performance for the first time. The Co-N-Ti3C2 films were prepared by a simple in situ self-assembly strategy to generate an efficient SALDI-MS platform. Compared to typical inorganic/organic matrices, Co-N-Ti3C2 films exhibit superior performance in small molecules detection with ultra-high sensitivity (LOD at amol level), excellent repeatability (CV <4%), clean background and wide analyte coverage, enabling accurate quantitative analysis of various low-concentration metabolites from 1 μL biofluid in seconds. Its usage efficiently enhanced SALDI-MS detection of various small-molecule biomarkers such as amino acids, succinic acid, itaconic acid, arachidonic acid, citrulline, prostaglandin E2, creatinine, uric acid, glutamine, D-mannose, cholesterol and inositol in positive ion mode. The blood glucose level in humans was successfully determined from a linearity concentration range (0.25-10 mM). Notably, the Co-N-Ti3C2 assisted SALDI-MSI enables study the spatial distribution of small molecules covering the range central to metabolomics at a high resolution on a tissue section. Furthermore, Co-N-Ti3C2 platform revealed a specific peak profile that distinguishes osteoarthritis (OA) from rheumatoid arthritis (RA) tissue. Density functional theory theoretical investigation revealed that single Co atoms anchored on Ti3C2 could highly enhanced the ionization ability of metabolites, resulting in high-sensitivity and heterogeneous metabolome coverage.PMID:38048718 | DOI:10.1016/j.bios.2023.115903
On-tissue chemical derivatization-enhanced spatially resolved lipidomics reveals abnormal metabolism in type 2 diabetic rat brain
Talanta. 2023 Nov 30;269:125491. doi: 10.1016/j.talanta.2023.125491. Online ahead of print.ABSTRACTNeurologic disorders are often accompanied by alterations in lipids and oxylipins in the brain. However, the complexity of the lipidome in the brain and its changes during brain damage caused by diabetes remain poorly understood. Herein, we developed an enhanced spatially resolved lipidomics approach with the assistance of on-tissue chemical derivatization to study lipid metabolism in the rat brain. This method enabled the spatially resolved analysis of 560 lipids and oxylipins in 19 brain microregions in coronal and sagittal sections and remarkably improved the coverage of lipidome detection. We applied this method to lipidomic studies of the diabetic rat brain and found that lipid dysregulation followed a microregion-specific pattern. Carnitines and glycerolipids were mainly elevated in the corpus callosum (midbrain) and pineal gland regions, respectively. In addition, most oxylipins, including fatty aldehydes and oxo fatty acids, were significantly upregulated in nine brain microregions. We produced a spatially resolved analysis of lipids and oxylipins, providing a novel analytical tool for brain metabolism research.PMID:38048679 | DOI:10.1016/j.talanta.2023.125491
Proteomic Evolution from Acute to Post-COVID-19 Conditions
J Proteome Res. 2023 Dec 4. doi: 10.1021/acs.jproteome.3c00324. Online ahead of print.ABSTRACTMany COVID-19 survivors have post-COVID-19 conditions, and females are at a higher risk. We sought to determine (1) how protein levels change from acute to post-COVID-19 conditions, (2) whether females have a plasma protein signature different from that of males, and (3) which biological pathways are associated with COVID-19 when compared to restrictive lung disease. We measured protein levels in 74 patients on the day of admission and at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were measured by routine pulmonary function testing. Proteins associated with six key lipid-related pathways increased from admission to 3 and 6 months; conversely, proteins related to innate immune responses and vasoconstriction-related proteins decreased. Multiple biological functions were regulated differentially between females and males. Concentrations of eight proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732-0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676-0.737) for DLCO, %. Lipid biology may drive evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased over that period. (ProteomeXchange identifiers: PXD041762, PXD029437).PMID:38048423 | DOI:10.1021/acs.jproteome.3c00324
Dalbergia odorifera undergoes massive molecular shifts in response to waterlogging combined with salinity
Plant Physiol. 2023 Dec 4:kiad639. doi: 10.1093/plphys/kiad639. Online ahead of print.ABSTRACTField and greenhouse studies attempting to describe the molecular responses of plant species under waterlogging (WL) combined with salinity (ST) are almost nonexistent. We integrated transcriptional, metabolic, and physiological responses involving several crucial transcripts and common differentially expressed genes and metabolites in fragrant rosewood (Dalbergia odorifera) leaflets to dissect plant-specific molecular responses and patterns under WL combined with ST (SWL). We discovered that the synergistic pattern ofthe transcriptional response of fragrant rosewood under SWL was exclusively characterized by the number of regulated transcripts. The response patterns under SWL based on transcriptome and metabolome regulation statuses revealed different patterns (additive, dominant, neutral, minor, unilateral, and antagonistic) of transcripts or metabolites that were commonly regulated or expressed uniquely under SWL. Under SWL, the synergistic transcriptional response of several functional gene subsets was positively associated with several metabolomic and physiological responses related to the shut-down of the photosynthetic apparatus and the extensivedegradation of starch into saccharides through α-amylase, β-amylase, and α-glucosidase or plastoglobuli accumulation. The dissimilarity between the regulation status and number of transcripts in plants under combined stressesled to nonsynergistic responses in several physiological and phytohormonal traits. As inferred from the impressive synergistic transcriptional response to morpho-physiological changes, combined stresses exhibited a gradually decreasing effect on the changes observed at the molecular level compared to those in the morphological one. Here, by characterizing the molecular responses and patterns of plant species under SWL, our study considerably improves our understanding of the molecular mechanisms underlying combined stress.PMID:38048404 | DOI:10.1093/plphys/kiad639
Systemic lupus erythematosus patients have unique changes in serum metabolic profiles across age associated with cardiometabolic risk
Rheumatology (Oxford). 2023 Dec 4:kead646. doi: 10.1093/rheumatology/kead646. Online ahead of print.ABSTRACTOBJECTIVES: Cardiovascular disease through accelerated atherosclerosis is a leading cause of mortality for patients with systemic lupus erythematosus (SLE), likely due to increased chronic inflammation and cardiometabolic defects over age. We investigated age-associated changes in metabolomic profiles of SLE patients and healthy controls (HCs).METHODS: Serum NMR metabolomic profiles from female SLE patients (n = 164, age = 14-76) and HCs (n = 123, age = 13-72) were assessed across age by linear regression and by age group between patients/HCs (Group-1, age ≤ 25, n = 62/46; Group-2, age = 26-49, n = 50/46; Group-3, age ≥ 50, n = 52/31) using multiple t-tests. The impact of inflammation, disease activity and treatments were assessed, and UK Biobank disease-wide association analysis of metabolites was performed.RESULTS: Age-specific metabolomic profiles were identified in SLE patients vs HCs, including reduced amino acids (Group-1), increased very-low-density lipoproteins (Group-2), and increased low-density lipoproteins (Group-3). Twenty-five metabolites were significantly altered in all SLE age groups, dominated by decreased atheroprotective high-density lipoprotein (HDL) subsets, HDL-bound apolipoprotein(Apo)A1 and increased glycoprotein acetyls (GlycA). Furthermore, ApoA1 and GlycA were differentially associated with disease activity and serological measures, as well as atherosclerosis incidence and myocardial infarction mortality risk through disease-wide association. Separately, glycolysis pathway metabolites (acetone/citrate/creatinine/glycerol/lactate/pyruvate) uniquely increased with age in SLE, significantly influenced by prednisolone (increased pyruvate/lactate) and hydroxychloroquine (decreased citrate/creatinine) treatment and associated with type-1 and type-2 diabetes by disease-wide association.CONCLUSIONS: Increasing HDL (ApoA1) levels through therapeutic/nutritional intervention, whilst maintaining low disease activity, in SLE patients from a young age could improve cardiometabolic disease outcomes. Biomarkers from the glycolytic pathway could indicate adverse metabolic effects of current therapies.PMID:38048621 | DOI:10.1093/rheumatology/kead646
Depicting the genetic and metabolic panorama of chemical diversity in the tea plant
Plant Biotechnol J. 2023 Dec 4. doi: 10.1111/pbi.14241. Online ahead of print.ABSTRACTAs a frequently consumed beverage worldwide, tea is rich in naturally important bioactive metabolites. Combining genetic, metabolomic and biochemical methodologies, here, we present a comprehensive study to dissect the chemical diversity in tea plant. A total of 2837 metabolites were identified at high-resolution with 1098 of them being structurally annotated and 63 of them were structurally identified. Metabolite-based genome-wide association mapping identified 6199 and 7823 metabolic quantitative trait loci (mQTL) for 971 and 1254 compounds in young leaves (YL) and the third leaves (TL), respectively. The major mQTL (i.e., P < 1.05 × 10-5 , and phenotypic variation explained (PVE) > 25%) were further interrogated. Through extensive annotation of the tea metabolome as well as network-based analysis, this study broadens the understanding of tea metabolism and lays a solid foundation for revealing the natural variations in the chemical composition of the tea plant. Interestingly, we found that galloylations, rather than hydroxylations or glycosylations, were the largest class of conversions within the tea metabolome. The prevalence of galloylations in tea is unusual, as hydroxylations and glycosylations are typically the most prominent conversions of plant specialized metabolism. The biosynthetic pathway of flavonoids, which are one of the most featured metabolites in tea plant, was further refined with the identified metabolites. And we demonstrated the further mining and interpretation of our GWAS results by verifying two identified mQTL (including functional candidate genes CsUGTa, CsUGTb, and CsCCoAOMT) and completing the flavonoid biosynthetic pathway of the tea plant.PMID:38048231 | DOI:10.1111/pbi.14241
Magnetic Yeast Glucan Particles for Antibody-Free Separation of Viable Macrophages from <em>Drosophila melanogaster</em>
ACS Biomater Sci Eng. 2023 Dec 4. doi: 10.1021/acsbiomaterials.3c01199. Online ahead of print.ABSTRACTCurrently available methods for cell separation are generally based on fluorescent labeling using either endogenously expressed fluorescent markers or the binding of antibodies or antibody mimetics to surface antigenic epitopes. However, such modification of the target cells represents potential contamination by non-native proteins, which may affect further cell response and be outright undesirable in applications, such as cell expansion for diagnostic or therapeutic applications, including immunotherapy. We present a label- and antibody-free method for separating macrophages from living Drosophila based on their ability to preferentially phagocytose whole yeast glucan particles (GPs). Using a novel deswelling entrapment approach based on spray drying, we have successfully fabricated yeast glucan particles with the previously unachievable content of magnetic iron oxide nanoparticles while retaining their surface features responsible for phagocytosis. We demonstrate that magnetic yeast glucan particles enable macrophage separation at comparable yields to fluorescence-activated cell sorting without compromising their viability or affecting their normal function and gene expression. The use of magnetic yeast glucan particles is broadly applicable to situations where viable macrophages separated from living organisms are subsequently used for analyses, such as gene expression, metabolomics, proteomics, single-cell transcriptomics, or enzymatic activity analysis.PMID:38048070 | DOI:10.1021/acsbiomaterials.3c01199
Toxicometabolomics as a tool for next generation environmental risk assessment
EFSA J. 2023 Nov 30;21(Suppl 1):e211005. doi: 10.2903/j.efsa.2023.e211005. eCollection 2023 Nov.ABSTRACTTraditionally applied methodology in environmental risk assessment (ERA) has fallen out of step with technological advancements and regulatory requirements, challenging effectiveness and accuracy of the assessments. Extensive efforts have been focused towards a transition to a more data-driven and mechanistically-based next generation risk assessment. Metabolomics can produce detailed and comprehensive molecular insight into affected biochemical processes. Combining metabolomics with environmental toxicology can help to understand the mechanisms and/or modes of action underlying toxicity of environmental pollutants and inform adverse outcome pathways, as well as facilitate identification of biomarkers to quantify effects and/or exposure. This Technical Report describes the activities and work performed within the frame of the European Food Risk Assessment Fellowship Programme (EU-FORA), implemented at the section 'Environmental Chemistry and Toxicology' at the Department of Environmental Science at Aarhus University in Denmark with synergies to an ongoing H2020 RIA project 'EndocRine Guideline Optimisation' (ERGO). In accordance with the 'training by doing' principles of the EU-FORA, the fellowship project combined the exploration of the status of scientific discussion on methodology in ERA through literature study with hands-on training, using the metabolomics analysis pipeline established at Aarhus University. For the hands-on training, an amphibian metamorphosis assay (OECD test no.231) was used as a proof-of-concept toxicometabolomics study case. Both a targeted biomarker - and an untargeted metabolomics approach was applied.PMID:38047121 | PMC:PMC10687767 | DOI:10.2903/j.efsa.2023.e211005
Early cellular and molecular signatures correlate with severity of West Nile virus infection
iScience. 2023 Nov 2;26(12):108387. doi: 10.1016/j.isci.2023.108387. eCollection 2023 Dec 15.ABSTRACTInfection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.PMID:38047068 | PMC:PMC10692672 | DOI:10.1016/j.isci.2023.108387
Lysinoalanine cross-linking is a conserved post-translational modification in the spirochete flagellar hook
PNAS Nexus. 2023 Oct 26;2(12):pgad349. doi: 10.1093/pnasnexus/pgad349. eCollection 2023 Dec.ABSTRACTSpirochetes cause Lyme disease, leptospirosis, syphilis, and several other human illnesses. Unlike other bacteria, spirochete flagella are enclosed within the periplasmic space where the filaments distort and push the cell body by the action of the flagellar motors. We previously demonstrated that the oral pathogen Treponema denticola (Td) and Lyme disease pathogen Borreliella burgdorferi (Bb) form covalent lysinoalanine (Lal) cross-links between conserved cysteine and lysine residues of the FlgE protein that composes the flagellar hook. In Td, Lal is unnecessary for hook assembly but is required for motility, presumably due to the stabilizing effect of the cross-link. Herein, we extend these findings to other, representative spirochete species across the phylum. We confirm the presence of Lal cross-linked peptides in recombinant and in vivo-derived samples from Treponema spp., Borreliella spp., Brachyspira spp., and Leptospira spp. As was observed with Td, a mutant strain of Bb unable to form the cross-link has greatly impaired motility. FlgE from Leptospira spp. does not conserve the Lal-forming cysteine residue which is instead substituted by serine. Nevertheless, Leptospira interrogans FlgE also forms Lal, with several different Lal isoforms being detected between Ser-179 and Lys-145, Lys-148, and Lys-166, thereby highlighting species or order-specific differences within the phylum. Our data reveal that the Lal cross-link is a conserved and necessary posttranslational modification across the spirochete phylum and may thus represent an effective target for the development of spirochete-specific antimicrobials.PMID:38047041 | PMC:PMC10691653 | DOI:10.1093/pnasnexus/pgad349
Dietary supplementation with pyrroloquinoline quinone promotes growth, relieves weaning stress, and regulates metabolism of piglets compared with adding zinc oxide
Anim Nutr. 2023 Oct 4;15:409-419. doi: 10.1016/j.aninu.2023.06.015. eCollection 2023 Dec.ABSTRACTHindered growth often occurs because of psychological and environmental stress during the weaning period of piglets. This study aimed to compare the effects of growth performance, diarrhea indices, digestibility of nutrients, antioxidant capacity, neurotransmitters levels and metabolism of weaned pigs fed diets supplemented with pyrroloquinoline quinone (PQQ) and zinc oxide (ZnO). Pigs weaned at d 28 (n = 108) were fed with three different diets including: the basal diet (CTRL group), the basal diet supplemented with 3.0 mg/kg PQQ (PQQ group) and the basal diet containing 1,600 mg/kg ZnO (ZNO group). During the first 14 d, weaned pigs fed the diet supplemented with PQQ and ZnO decreased feed to gain ratio and diarrhea rate (P < 0.01). Compared with the CTRL group, average daily gain was increased in weaned pigs in the PQQ group from d 15 to 28 (P = 0.03). Compared with the CTRL group, pigs fed PQQ and ZnO supplemented diets showed improved apparent total tract digestibility (ATTD) of nutrients (P ≤ 0.05). During the overall experimental period, the concentration of malondialdehyde was decreased in plasma of pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). At d 28, the concentration of vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) was lower in plasma of weaned pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). There was no difference between the PQQ and ZNO group in growth performance, ATTD of nutrition, antioxidant capacity and neurotransmitters levels. PQQ increased 3-methoxy-4-hydroxymandelate (P < 0.05) compared with the CTRL group. According to metabolomic analysis, erucamide, formononetin and 3-methyl-L-histidine were up-regulated in the PQQ group (P < 0.05). Compared with the CTRL group, aloesin and dibutyl adipate were down-regulated in the PQQ group (P < 0.05). In conclusion, similar to ZnO, PQQ improves growth performance, digestibility of nutrients, antioxidant capacity, neuromodulation and metabolism of weaned pigs. Thus, like ZnO, PQQ can be effectively applied in weaned pigs.PMID:38046955 | PMC:PMC10689886 | DOI:10.1016/j.aninu.2023.06.015
Mitochondrial dynamics and metabolism across skin cells: implications for skin homeostasis and aging
Front Physiol. 2023 Nov 15;14:1284410. doi: 10.3389/fphys.2023.1284410. eCollection 2023.ABSTRACTAging of human skin is a complex process leading to a decline in homeostasis and regenerative potential of this tissue. Mitochondria are important cell organelles that have a crucial role in several cellular mechanisms such as energy production and free radical maintenance. However, mitochondrial metabolism as well as processes of mitochondrial dynamics, biogenesis, and degradation varies considerably among the different types of cells that populate the skin. Disturbed mitochondrial function is known to promote aging and inflammation of the skin, leading to impairment of physiological skin function and the onset of skin pathologies. In this review, we discuss the essential role of mitochondria in different skin cell types and how impairment of mitochondrial morphology, physiology, and metabolism in each of these cellular compartments of the skin contributes to the process of skin aging.PMID:38046945 | PMC:PMC10693346 | DOI:10.3389/fphys.2023.1284410
Free lipoproteins from <em>Bifidobacterium longum</em> alleviate osteoarthritis through modulation of the gut microbiome
Microbiome Res Rep. 2023 May 11;2(3):18. doi: 10.20517/mrr.2023.12. eCollection 2023.ABSTRACTAim: The "gut-joint" axis is suspected to be involved in the pathophysiology of osteoarthritis (OA). The present study aims at investigating the potential of lipoproteins (Lpps) secreted by Bifidobacterium longum to alleviate OA progression in the rat. Methods: Experimental OA was induced in rats harbouring Schaedler Flora maintained in SPF conditions. Two weeks post-injection, 20 rats were randomized to water (n = 10) or 0.3 mg/L Lpps solution (n = 10). Weight and food intake were monitored for 6 weeks. At sacrifice, joints were scored using macroscopic and histological criteria. Serum LPS, Schaedler flora as well as selected intestinal bacteria were analyzed. Results: Lpps intake prevents OA progression. The protected rats showed a significant increase in lactobacilli along the intestine as well as in Mucispirillum schaedleri in the colon and a significant decrease in Parabacteroides goldsteini and Akkermansia in caecum and colon, respectively. There was no significant difference in serum lipopolysaccharide or bacteria translocating in Peyer's patches. Labelled Lpps were not detected in bone marrow of the OA joint. The principal component analysis points out that OA prevention is primarily associated with bacteria involved in the tryptophane degradation pathway and SCFA formation. Conclusion: In rats deprived of bifidobacteria, intake of B.longum Lpps prevented OA development and modulated the intestinal microbiome with a possible impact on the bacterial end-products. The link between Lpps and the gut microbial metabolome warrants further investigation.PMID:38046818 | PMC:PMC10688786 | DOI:10.20517/mrr.2023.12
Editorial: The interaction of biotic and abiotic stresses
Front Plant Sci. 2023 Nov 13;14:1332375. doi: 10.3389/fpls.2023.1332375. eCollection 2023.NO ABSTRACTPMID:38046613 | PMC:PMC10690585 | DOI:10.3389/fpls.2023.1332375