Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson's disease

Tue, 28/11/2023 - 12:00
Nat Commun. 2023 Nov 28;14(1):7793. doi: 10.1038/s41467-023-43514-6.ABSTRACTNicotinamide adenine dinucleotide (NAD) replenishment therapy using nicotinamide riboside (NR) shows promise for Parkinson's disease (PD) and other neurodegenerative disorders. However, the optimal dose of NR remains unknown, and doses exceeding 2000 mg daily have not been tested in humans. To evaluate the safety of high-dose NR therapy, we conducted a single-center, randomized, placebo-controlled, double-blind, phase I trial on 20 individuals with PD, randomized 1:1 on NR 1500 mg twice daily (n = 10) or placebo (n = 10) for four weeks. The trial was conducted at the Department of Neurology, Haukeland University Hospital, Bergen, Norway. The primary outcome was safety, defined as the frequency of moderate and severe adverse events. Secondary outcomes were tolerability defined as frequency of mild adverse events, change in the whole blood and urine NAD metabolome, and change in the clinical severity of PD, measured by MDS-UPDRS. All 20 participants completed the trial. The trial met all prespecified outcomes. NR therapy was well tolerated with no moderate or severe adverse events, and no significant difference in mild adverse events. NR therapy was associated with clinical improvement of total MDS-UPDRS scores. However, this change was also associated with a shorter interval since the last levodopa dose. NR greatly augmented the blood NAD metabolome with up to 5-fold increase in blood NAD+ levels. While NR-recipients exhibited a slight initial rise in serum homocysteine levels, the integrity of the methyl donor pool remained intact. Our results support extending the dose range of NR in phase II clinical trials to 3000 mg per day, with appropriate safety monitoring. Clinicaltrials.gov identifier: NCT05344404.PMID:38016950 | DOI:10.1038/s41467-023-43514-6

Combining microbiome and pseudotargeted metabolomics revealed the alleviative mechanism of Cupriavidus sp. WS2 on the cadmium toxicity in Vicia unijuga A.Br

Tue, 28/11/2023 - 12:00
Environ Pollut. 2023 Nov 26:123040. doi: 10.1016/j.envpol.2023.123040. Online ahead of print.ABSTRACTCadmium (Cd) pollution is one of the most severe toxic metals pollution in grassland. Vicia unijuga (V. unijuga) A.Br. planted nearby the grassland farming are facing the risk of high Cd contamination. Here, we investigated the beneficial effects of a highly Cd tolerant rhizosphere bacterium, Cupriavidus sp. WS2, on Cd contaminated V. unijuga. Through plot experiments, we set up four groups of treatments: the control group (without WS2 or Cd), the Cd group (with only Cd addition), the WS2 group (with only WS2 addition), and the WS2/Cd group (with WS2 and Cd addition), and analyzed the changes in physiological indicators, rhizosphere microorganisms, and stem and leaf metabolites of V. unijuga. Results of physiological indicators indicated that Cupriavidus sp. WS2 had strong absorption and accumulation capacity of Cd, exogenous addition of strain WS2 remarkably decreased the Cd concentrations, and increased the plant heights, the biomass, the total protein concentrations, the chlorophyll contents and the photosynthetic rate in stems and leaves of V. unijuga under Cd stress. Cd treatment increased the abundance of Cd tolerant bacterial genera in rhizosphere microbiome, but these genera were down-regulated in the WS2/Cd group. Pseudotargeted metabolomic results showed that six common differential metabolites associated with antioxidant stress were increased after co-culture with WS2. In addition, WS2 activated the antioxidant system including glutathione (GSH) and catalase (CAT), reduced the contents of oxidative stress markers including malondialdehyde (MDA) and hydrogen peroxide (H2O2) in V. unijuga under Cd stress. Taken together, this study revealed that Cupriavidus sp.WS2 alleviated the toxicity of V. unijuga under Cd exposure by activating the antioxidant system, increasing the antioxidant metabolites, and reducing the oxidative stress markers.PMID:38016587 | DOI:10.1016/j.envpol.2023.123040

Metabolomics study reveals increased deoxycholic acid contributes to deoxynivalenol-mediated intestinal barrier injury

Tue, 28/11/2023 - 12:00
Life Sci. 2023 Nov 26:122302. doi: 10.1016/j.lfs.2023.122302. Online ahead of print.ABSTRACTAIMS: Deoxynivalenol (DON), namely vomitoxin, is one of the most prevalent fungal toxins in cereal crops worldwide. However, the underlying toxic mechanisms of DON remain largely unknown.MAIN METHODS: DON exposure-caused changes in the murine metabolome and gut microbiome were investigated by an LC-MS/MS-based nontargeted metabolomics approach and sequencing of 16S rRNA in fecal samples, respectively. Cellular models were then used to validate the findings from the metabolomics study.KEY FINDINGS: DON exposure increased intestinal barrier permeability evidenced by its-mediated decrease in colonic Claudin 5 and E-cadherin, as well as increases in colonic Ifn-γ, Cxcl9, Cxcl10, and Cxcr3. Furthermore, DON exposure resulted in a significant increase in murine plasma levels of deoxycholic acid (DCA). Also, DON exposure led to gut microbiota dysbiosis, which was associated with DON exposure-caused increase in plasma DCA. In addition, we found not only DON but also DCA dose-dependently caused a significant increase in the levels of IFN-γ, CXCL9, CXCL10, and/or CXCR3, as well as a significant decrease in the expression levels of Claudin 5 and/or E-cadherin in the human colonic epithelial cells (NCM460).SIGNIFICANCE: DON-mediated increase in DCA contributes to DON-caused intestinal injury. DCA may be a potential therapeutic target for DON enterotoxicity.PMID:38016577 | DOI:10.1016/j.lfs.2023.122302

Fatty acids and inflammatory stimuli induce expression of long-chain acyl-CoA synthetase 1 to promote lipid remodeling in diabetic kidney disease

Tue, 28/11/2023 - 12:00
J Biol Chem. 2023 Nov 26:105502. doi: 10.1016/j.jbc.2023.105502. Online ahead of print.ABSTRACTFatty acid handling and complex lipid synthesis are altered in the kidney cortex of diabetic patients. We recently showed that inhibition of the renin-angiotensin system without changes in glycemia can reverse diabetic kidney disease (DKD) and restore the lipid metabolic network in the kidney cortex of diabetic (db/db) mice, raising the possibility that lipid remodeling may play a central role in DKD. However, the roles of specific enzymes involved in lipid remodeling in DKD have not been elucidated. In the present study, we used this diabetic mouse model and a proximal tubule epithelial cell line (HK2) to investigate the potential relationship between long-chain acyl-CoA synthetase 1 (ACSL1) and lipid metabolism in response to fatty acid exposure and inflammatory signals. We found ACSL1 expression was significantly increased in the kidney cortex of db/db mice, and exposure to palmitate (PA) or tumor necrosis factor (TNF-α) significantly increased Acsl1 mRNA expression in HK-2 cells. In addition, PA treatment significantly increased the levels of long-chain acylcarnitines and fatty acyl CoAs in HK2 cells, and these increases were abolished in HK2 cell lines with specific deletion of Acsl1(Acsl1KO cells), suggesting a key role for ACSL1 in fatty acid β-oxidation. In contrast, TNF-α treatment significantly increased the levels short-chain acylcarnitines and long-chain fatty acyl CoAs in HK2 cells but not in Acsl1KO cells, consistent with fatty acid channeling to complex lipids. Taken together, our data demonstrate a key role for ACSL1 in regulating lipid metabolism, fatty acid partitioning, and inflammation.PMID:38016515 | DOI:10.1016/j.jbc.2023.105502

Palmitic acid and trans-4-hydroxy-3-methoxycinnamate, the active ingredients of Yaobishu formula, reduce inflammation and pain by regulating gut microbiota and metabolic changes after lumbar disc herniation to activate autophagy and the Wnt/β-catenin...

Tue, 28/11/2023 - 12:00
Biochim Biophys Acta Mol Basis Dis. 2023 Nov 26:166972. doi: 10.1016/j.bbadis.2023.166972. Online ahead of print.ABSTRACTThe imbalance in gut microbiota triggers an inflammatory response that spreads from the gut to the discs and is associated with lumbar disc herniation (LDH). In this study, we investigated the mechanism of palmitic acid (PA) and trans-4-hydroxy-3-methoxycinnamic acid (THMC) on microbiota, metabolic homeostasis, and autophagy after LDH. The LDH rat model was established by puncturing the exposed intervertebral disc. 16S rDNA was used to assess the gut microbiome composition. The microbial metabolites were analyzed by UPLC-MS. The mechanism of PA and THMC in LDH was explored by fecal microbiota transplantation (FMT). We found that Yaobishu, PA, THMC, and the positive control drug Celebrex attenuated intervertebral disc damage in LDH rats and downregulated TRPV1, IL-1β, and IL-18 expression. In addition, Yaobishu reduced Oscillospirales and Ruminococcaceae abundances after LDH. PA increased Bacilli's abundance while decreasing Negativicutes and Ruminococcaceae abundances. Metabolomics showed that Yaobishu increased 2-hexanone, methyl isobutyl ketone, 2-methylpentan-3-one, and nonadecanoic acid levels but decreased pantetheine and urocanate levels. PA and THMC reduced uridine and urocanate levels. Yaobishu, PA, and THMC activated autophagy and the Wnt/β-catenin pathway in LDH rats. Moreover, antibiotics abrogated these effects. FMT-PA and FMT-THMC activated autophagy and decreased IL-1β, IL-18, Wnt1, β-catenin, and TRPV1 expression. FMT-PA and FMT-THMC partially reversed the effects of 3-MA. Taken together, our data suggest that Yaobishu, PA, and THMC relieve inflammation and pain by remodeling the gut microbiota and restoring metabolic homeostasis after LDH to activate autophagy and the Wnt/β-catenin pathway, which provide a new therapeutic target for LDH in the clinic.PMID:38016505 | DOI:10.1016/j.bbadis.2023.166972

Phase I clinical trial of intracerebroventricular transplantation of allogeneic neural stem cells in people with progressive multiple sclerosis

Tue, 28/11/2023 - 12:00
Cell Stem Cell. 2023 Nov 21:S1934-5909(23)00393-4. doi: 10.1016/j.stem.2023.11.001. Online ahead of print.ABSTRACTWe report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen. No treatment-related deaths nor serious adverse events (AEs) were observed. All participants displayed stability of clinical and laboratory outcomes, as well as lesion load and brain activity (MRI), compared with the study entry. Longitudinal metabolomics and lipidomics of biological fluids identified time- and dose-dependent responses with increased levels of acyl-carnitines and fatty acids in the cerebrospinal fluid (CSF). The absence of AEs and the stability of functional and structural outcomes are reassuring and represent a milestone for the safe translation of stem cells into regenerative medicines.PMID:38016468 | DOI:10.1016/j.stem.2023.11.001

Nuclear localization of STING1 competes with canonical signaling to activate AHR for commensal and intestinal homeostasis

Tue, 28/11/2023 - 12:00
Immunity. 2023 Nov 15:S1074-7613(23)00458-2. doi: 10.1016/j.immuni.2023.11.001. Online ahead of print.ABSTRACTExtensive studies demonstrate the importance of the STING1 (also known as STING) protein as a signaling hub that coordinates immune and autophagic responses to ectopic DNA in the cytoplasm. Here, we report a nuclear function of STING1 in driving the activation of the transcription factor aryl hydrocarbon receptor (AHR) to control gut microbiota composition and homeostasis. This function was independent of DNA sensing and autophagy and showed competitive inhibition with cytoplasmic cyclic guanosine monophosphate (GMP)-AMP synthase (CGAS)-STING1 signaling. Structurally, the cyclic dinucleotide binding domain of STING1 interacted with the AHR N-terminal domain. Proteomic analyses revealed that STING1-mediated transcriptional activation of AHR required additional nuclear partners, including positive and negative regulatory proteins. Although AHR ligands could rescue colitis pathology and dysbiosis in wild-type mice, this protection was abrogated by mutational inactivation of STING1. These findings establish a key framework for understanding the nuclear molecular crosstalk between the microbiota and the immune system.PMID:38016467 | DOI:10.1016/j.immuni.2023.11.001

Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.)

Tue, 28/11/2023 - 12:00
Plant Physiol Biochem. 2023 Nov 24;206:108222. doi: 10.1016/j.plaphy.2023.108222. Online ahead of print.ABSTRACTHydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.PMID:38016371 | DOI:10.1016/j.plaphy.2023.108222

Metabolomics analysis of the nutraceutical diversity and physiological quality of Torreya yunnanensis seeds during cold storage

Tue, 28/11/2023 - 12:00
Plant Physiol Biochem. 2023 Nov 19;206:108183. doi: 10.1016/j.plaphy.2023.108183. Online ahead of print.ABSTRACTThis study investigated how cold storage affects the nutraceutical diversity and physiological quality of Torreya yunnanensis seeds, using a widely targeted UPLC-MS/MS-based metabolomics analysis. The 373 identified metabolites were divided into nine categories: lipids, phenolic acids, amino acids and derivatives, organic acids, nucleotides, saccharides, vitamins and alcohols. Among them, 49 metabolites showed significant changes after 3 months of cold storage, affecting 28 metabolic pathways. The content of amino acid-related metabolites significantly increased, while the content of sugar-related metabolites decreased during storage. Notably, the content of proline acid, shikimic acid, α-linolenic acid and branched-chain amino acids showed significant changes, indicating their potential role in seed storage. This study deepens our understanding of the nutraceutical diversity and physiological quality of T. yunnanensis seeds during storage, providing insight for conservation efforts and habitat restoration.PMID:38016368 | DOI:10.1016/j.plaphy.2023.108183

Co-exposure to polystyrene microplastics and cypermethrin enhanced the effects on hepatic phospholipid metabolism and gut microbes in adult zebrafish

Tue, 28/11/2023 - 12:00
J Hazard Mater. 2023 Nov 23;465:133051. doi: 10.1016/j.jhazmat.2023.133051. Online ahead of print.ABSTRACTMicroplastics (MPs) can absorb environmental pollutants from the aquatic environment to cause mixed toxicity, which has received widespread attention. However, studies on the joint effects of MPs and insecticides are limited. As one of the most widely used pyrethroids, there was a large amount of residual cypermethrin (CYP) in water due to insufficient decomposition. Here, adult female zebrafish were exposed to MPs, CYP, and their mixtures for 21 days, respectively. After exposures, the MPs and CYP caused tissue damage to the liver. Hepatic triglyceride (TG) level increased significantly after MPs + CYP exposure, and the expression of genes about glycolipids metabolism was significantly altered. Furthermore, metabolome results suggested that MPs + CYP exposure resulted in increased content of some glycerophospholipid, affecting phospholipid metabolism-related pathways. In addition, through 16 s rDNA sequencing, it was found that MPs + CYP led to significant changes in the proportion of dominant phyla. Interestingly, Cetobacterium which increased in CYP and the co-exposure group was positively correlated with most lipid metabolites. Our results suggested that co-exposure to MPs and CYP enhanced the disturbances in hepatic phospholipid metabolism by affecting the gut microbial composition, while these changes were not observed in separate treatment groups. These results emphasized the importance of studying the joint toxicity of MPs and insecticides.PMID:38016319 | DOI:10.1016/j.jhazmat.2023.133051

Multicenter Collaborative Study to Optimize Mass Spectrometry Workflows of Clinical Specimens

Tue, 28/11/2023 - 12:00
J Proteome Res. 2023 Nov 28. doi: 10.1021/acs.jproteome.3c00473. Online ahead of print.ABSTRACTThe foundation for integrating mass spectrometry (MS)-based proteomics into systems medicine is the development of standardized start-to-finish and fit-for-purpose workflows for clinical specimens. An essential step in this pursuit is to highlight the common ground in a diverse landscape of different sample preparation techniques and liquid chromatography-mass spectrometry (LC-MS) setups. With the aim to benchmark and improve the current best practices among the proteomics MS laboratories of the CLINSPECT-M consortium, we performed two consecutive round-robin studies with full freedom to operate in terms of sample preparation and MS measurements. The six study partners were provided with two clinically relevant sample matrices: plasma and cerebrospinal fluid (CSF). In the first round, each laboratory applied their current best practice protocol for the respective matrix. Based on the achieved results and following a transparent exchange of all lab-specific protocols within the consortium, each laboratory could advance their methods before measuring the same samples in the second acquisition round. Both time points are compared with respect to identifications (IDs), data completeness, and precision, as well as reproducibility. As a result, the individual performances of participating study centers were improved in the second measurement, emphasizing the effect and importance of the expert-driven exchange of best practices for direct practical improvements.PMID:38015820 | DOI:10.1021/acs.jproteome.3c00473

Interactive effects of Empagliflozin and Hyperglycemia on Urinary Amino Acids in Individuals with Type 1 Diabetes

Tue, 28/11/2023 - 12:00
Diabetes. 2023 Nov 28:db230694. doi: 10.2337/db23-0694. Online ahead of print.ABSTRACTOptimizing energy utilization in the kidney is critical for normal kidney function. Here, we investigate the effect of hyperglycemia and sodium-glucose cotransporter-2 (SGLT2) inhibition on urinary amino acid excretion in individuals with type 1 diabetes (T1D). The open-label ATIRMA trial assessed the impact of 8 weeks of oral empagliflozin 25 mg/day in 40 normotensive, normoalbuminuric young adults with T1D. A consecutive two-day assessment of clamped euglycemia and hyperglycemia was evaluated at baseline and post-treatment visit. Principal component analysis was performed on urinary amino acids grouped into representative metabolic pathways using MetaboAnalyst. At baseline, acute hyperglycemia was associated with changes in 25 of the 33 urinary amino acids or their metabolites. The most significant amino acid metabolites affected by acute hyperglycemia were 3-hydroxykynurenine, serotonin, glycyl-histidine, and nicotinic acid. The changes in amino acid metabolites were reflected by the induction of four biosynthetic pathways - aminoacyl-tRNA, valine, leucine and isoleucine, arginine, as well as phenylalanine, tyrosine, and tryptophan. Under acute hyperglycemia, empagliflozin significantly attenuated the increases to aminoacyl-tRNA biosynthesis and valine, leucine and isoleucine biosynthesis. Our findings using amino acid metabolomics indicate that hyperglycemia stimulates biosynthetic pathways in T1D. SGLT2 inhibition may attenuate the increase in biosynthetic pathways to optimize kidney energy metabolism.PMID:38015810 | DOI:10.2337/db23-0694

Genetics, Nutrition, and Health: A New Frontier in Disease Prevention

Tue, 28/11/2023 - 12:00
J Am Nutr Assoc. 2023 Nov 28:1-13. doi: 10.1080/27697061.2023.2284997. Online ahead of print.ABSTRACTThe field of nutrition research has traditionally focused on the effects of macronutrients and micronutrients on the body. However, it has become evident that individuals have unique genetic makeups that influence their response to food. Nutritional genomics, which includes nutrigenetics and nutrigenomics, explores the interaction between an individual's genetic makeup, diet, and health outcomes. Nutrigenetics studies the impact of genetic variation on an individual's response to dietary nutrients, while nutrigenomics investigates how dietary components affect gene regulation and expression. These disciplines seek to understand the impact of diet on the genome, transcriptome, proteome, and metabolome. It provides insights into the mechanisms underlying the effect of diet on gene expression. Nutrients can cause the modification of genetic expression through epigenetic changes, such as DNA methylation and histone modifications. The aim of nutrigenomics is to create personalized diets based on the unique metabolic profile of an individual, gut microbiome, and genetic makeup to prevent diseases and promote health. Nutrigenomics has the potential to revolutionize the field of nutrition by combining the practicality of personalized nutrition with knowledge of genetic factors underlying health and disease. Thus, nutrigenomics offers a promising approach to improving health outcomes (in terms of disease prevention) through personalized nutrition strategies based on an individual's genetic and metabolic characteristics.PMID:38015713 | DOI:10.1080/27697061.2023.2284997

Use of remote sensing to assess vegetative stress as a proxy for soil contamination

Tue, 28/11/2023 - 12:00
Environ Sci Process Impacts. 2023 Nov 28. doi: 10.1039/d3em00480e. Online ahead of print.ABSTRACTWe report, for the first time, a multimodal investigation of current crude oil reprocessing and storage sites to assess their impact on the environment after 50 years of continuous operation. We have adopted a dual approach to investigate potential soil contamination. The first approach uses conventional analytical techniques i.e. energy dispersive X-ray fluorescence (ED-XRF) for metal analysis, and a complementary metabolomic investigation using hydrophilic liquid interaction chromatography hi-resolution mass spectrometry (HILIC-MS) for organic contaminants. Secondly, the deployment of an unmanned aerial vehicle (UAV) with a multispectral image (MSI) camera, for the remote sensing of vegetation stress, as a proxy for sub-surface soil contamination. The results identified high concentrations of barium (mean 21 017 ± 5950 μg g-1, n = 36) as well as metabolites derived from crude oil (polycyclic aromatic hydrocarbons), cleaning processes (surfactants) and other organic pollutants (e.g. pesticides, plasticizers and pharmaceuticals) in the reprocessing site. This data has then been correlated, with post-flight data analysis derived vegetation indices (NDVI, GNDVI, SAVI and Cl green VI), to assess the potential to identify soil contamination because of vegetation stress. It was found that strong correlations exist (an average R2 of >0.68) between the level of soil contamination and the ground cover vegetation. The potential to deploy aerial remote sensing techniques to provide an initial survey, to inform decision-making, on suspected contaminated land sites can have global implications.PMID:38015510 | DOI:10.1039/d3em00480e

Understanding anthelmintic resistance in livestock using "omics" approaches

Tue, 28/11/2023 - 12:00
Environ Sci Pollut Res Int. 2023 Nov 28. doi: 10.1007/s11356-023-31045-y. Online ahead of print.ABSTRACTWidespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.PMID:38015400 | DOI:10.1007/s11356-023-31045-y

Age-dependent changes in the gut microbiota and serum metabolome correlate with renal function and human aging

Tue, 28/11/2023 - 12:00
Aging Cell. 2023 Nov 27:e14028. doi: 10.1111/acel.14028. Online ahead of print.ABSTRACTHuman aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging.PMID:38015106 | DOI:10.1111/acel.14028

The changes of gut microbiota and metabolites in different drug-induced liver injuries

Tue, 28/11/2023 - 12:00
J Med Microbiol. 2023 Nov;72(11). doi: 10.1099/jmm.0.001778.ABSTRACTThe increasing incidence of drug-induced liver injury (DILI) has become a major concern. Gut microbiota, as another organ of the human body, has been studied in various tumors, cardiovascular metabolic diseases, inflammatory bowel disease and human immunity. The studies mentioned above have confirmed its important impact on the occurrence and development of DILI. The gut-liver axis explains the close relationship between the gut and the liver, and it may be a pathway by which gut microbes contribute to DILI. In addition, the interaction between drugs and gut microbes affects both separately, which in turn may have positive or negative effects on the body, including DILI. There are both common and specific changes in liver injury caused by different drugs. The alteration of metabolites in DILI is also a new direction of therapeutic exploration. The application of microbiomics, metabolomics and other multi-omics to DILI has also explored new ideas for DILI. In this review, we conclude the alterations of gut microbes and metabolites under different DILI, and the significance of applying gut microbiome-metabolomics to DILI, so as to explore the metabolic characteristics of DILI and possible novel metabolic biomarkers.PMID:38015063 | DOI:10.1099/jmm.0.001778

Dietary Nucleotides Promote Neonatal Rat Microbiota-Gut-Brain Axis Development by Affecting Gut Microbiota Composition and Metabolic Function

Tue, 28/11/2023 - 12:00
J Agric Food Chem. 2023 Nov 28. doi: 10.1021/acs.jafc.3c07349. Online ahead of print.ABSTRACTA variety of active factors in milk and foods have been proven to serve as microbial nutrients that regulate the formation of early gut microbiota (GM), thereby ensuring the healthy development of infants. This study demonstrated that dietary nucleotides (NTs), one of the main nitrogen-containing substances in human milk, promoted the neurodevelopment of neonatal rats and the expression of Sox2, Dcx, Tuj1, and NeuN in the prefrontal cortex and hippocampus, but had no significant regulatory effects in the striatum. 16s rRNA sequencing and metabolomics of the colon contents of neonatal rats at different developmental stages showed that the early intake of NTs promoted an increase in the abundance of beneficial microorganisms related to neurodevelopment, digestion, and gut absorption, such as g_Romboutsia and g_Akkermansia. Changes in the ability of the GM to regulate folate synthesis, riboflavin metabolism, and other processes were also observed. Further analysis revealed significant correlations between the level of characteristic metabolites, namely, trans-3-indoleacrylic acid, urocanic acid, inosine, and adenosine, in the gut with neurodevelopment and characteristic GM components. These findings suggest that NTs in milk may affect neurodevelopment and maturation in early life by regulating the GM composition-gut-brain axis.PMID:38014964 | DOI:10.1021/acs.jafc.3c07349

Comparative biodegradation analysis of three compostable polyesters by a marine microbial community

Tue, 28/11/2023 - 12:00
Appl Environ Microbiol. 2023 Nov 28:e0106023. doi: 10.1128/aem.01060-23. Online ahead of print.ABSTRACTBiodegradable plastics can be used in applications where the end product cannot be efficiently recycled due to high levels of contaminations, e.g., food or soil. Some of these plastics have a dedicated end of life, such as composting, but their degradation in the marine environment is poorly understood. In this study we showed that marine microbial communities can degrade a range of biodegradable polymers with different physical and chemical properties and use these as a sole carbon source for growth. We have also provided insights into the degradation mechanisms using a combined metagenomic and metaproteomic approach. In addition, we have identified three new enzymes that are capable of degrading both aliphatic polymers and aliphatic-aromatic copolymers, which can be used for biotechnological applications.PMID:38014952 | DOI:10.1128/aem.01060-23

Wedelolactone alleviates cholestatic liver injury by regulating FXR-bile acid-NF-κB/NRF2 axis to reduce bile acid accumulation and its subsequent inflammation and oxidative stress

Tue, 28/11/2023 - 12:00
Phytomedicine. 2024 Jan;122:155124. doi: 10.1016/j.phymed.2023.155124. Epub 2023 Sep 29.ABSTRACTBACKGROUND: Cholestatic liver diseases (CLD) comprise a variety of disorders of bile formation, which causes chronic exposure to bile acid (BA) in the liver generally and results in hepatotoxicity and progressive hepatobiliary injury. Wedelolactone (7-methoxy-5, 11, 12-trihydroxy-coumestan, WED), the natural active compound derived from Ecliptae Herba, has been reported with valuable bioactivity for liver protection. Nevertheless, the effect of WED on cholestatic liver injury (CLI) remains unexplored.PURPOSE: The present study aims to elucidate the protective effect of WED on Alpha-naphthylisothiocyanate (ANIT)-induced CLI mice, and to investigate its potential pharmacological mechanism.METHODS: The anit-cholestatic and hepatoprotective effects of WED were evaluated in ANIT-induced CLI mice. Non-targeted metabolomics study combined with ingenuity pathway analysis (IPA) was used to explore the key mechanism of WED. The BA metabolic profile in enterohepatic circulation was analyzed to evaluate the effect of WED in regulating BA metabolism. Furthermore, molecular dynamics (MD) simulation and cellular thermal shift assay (CETSA) were used to simulate and verify the targeting activation of WED on the Farnesoid X receptor (FXR). The core role of FXR in WED promoting BA transportation, and alleviating BA accumulation-induced hepatotoxicity was further evaluated in WT and FXR knockout mice or hepatocytes.RESULTS: WED dose-dependently alleviated ANIT-induced cholestasis and liver injury in mice, and simultaneously suppressed the signaling pathway of nuclear factor-kappa B/nuclear factor-erythroid 2-related factor 2 (NF-κB/NRF2) to relieve inflammation and oxidative stress. At the metabolite level, WED improved the metabolic disorder in CLI mice focusing on the metabolism of BA, arachidonic acid, and glycerophospholipid, that closely related to the process of BA regulation, inflammation, and oxidative damage. WED targeting activated FXR, which then transcribed its target genes, including the bile salt export pump (BSEP) and the BA transporter, and subsequently increased BA transportation to restore the damaged enterohepatic circulation of BA. Meanwhile, WED alleviated hepatic BA accumulation and protected the liver from BA-induced damage via NF-κB/NRF2 signaling pathway. Furthermore, FXR deficiency suppressed the protective effect of WED in vitro and in vivo.CONCLUSION: WED regulated BA metabolism and alleviated hepatic damage in cholestasis. It protected the liver according to adjusted BA transportation and relieved BA accumulation-related hepatotoxicity via FXR-bile acid-NF-κB/NRF2 axis. Our study provides novel insights that WED might be a promising strategy for cholestatic liver disease.PMID:38014837 | DOI:10.1016/j.phymed.2023.155124

Pages