Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Integrating multi-index determination coupled with hierarchical cluster analysis to evaluate the quality consistency of PVE30, an anti-HSV "glycoprotein" macromolecule of Prunellae Spica

Mon, 27/11/2023 - 12:00
Phytochem Anal. 2023 Nov 27. doi: 10.1002/pca.3309. Online ahead of print.ABSTRACTINTRODUCTION: Prunellae Spica (PS), derived from the dried fruit spikes of Prunella vulgaris L., is a traditional Chinese medicinal herb. Our previous studies found that PVE30, a water-extracting ethanol-precipitating "glycoprotein" macromolecule of PS, was a potential anti-herpes simplex virus (HSV) candidate. However, due to the complex structure and diverse bioactivity of the "glycoprotein", ensuring its quality consistency across different batches of PVE30 becomes particularly challenging. This poses a significant hurdle for new drug development based on PVE30.OBJECTIVE: Our study aimed to integrate multi-index determination coupled with hierarchical cluster analysis (HCA) to holistically profile the quality consistency of "glycoprotein" in PVE30.METHODS: High-performance gel permeation chromatography with refractive index detector (HPGPC-RID) was used to characterise the molecular weight (Mw) distribution, HPLC-PDA was used to quantitatively analyse the composed monosaccharides and amino acids, and UV-VIS was used to quantify the contents of polysaccharides and proteins. Qualitative and quantitative consistency was analysed for each single index in 16 batches of PVE30, and a 16 × 38 data matrix, coupled with HCA, was used to evaluate the holistic quality consistency of PVE30.RESULTS: The newly developed and validated methods were exclusive, linear, precise, accurate, and stable enough to quantify multi-indexes in PVE30. Single-index analysis revealed that 16 batches of PVE30 were qualitatively consistent in Mw distribution, polysaccharides and proteins, and the composition of composed monosaccharides and amino acids but quantitatively inconsistent in the relative contents of some "glycoprotein" macromolecules, as well as the composed monosaccharides/amino acids. HCA showed that the holistic quality of PVE30 was inconsistent, the inconsistency was uncorrelated with the regions where PS was commercially collected, and the contents of 17 amino acids and 2 monosaccharides contributed most to the holistic quality inconsistency.CONCLUSION: Multi-index determination coupled with HCA was successful in evaluating the quality consistency of PVE30, and the significant difference in quantitative indices was not caused by the origin of PS. The cultivating basis should be confirmed for PVE30-based new drug development.PMID:38009261 | DOI:10.1002/pca.3309

Phenotypic flexibility in metabolic adjustments and digestive function in white-shouldered starlings: responses to short-term temperature acclimation

Mon, 27/11/2023 - 12:00
J Exp Biol. 2023 Nov 27:jeb.246214. doi: 10.1242/jeb.246214. Online ahead of print.ABSTRACTChanging the intrinsic rate of metabolic heat production is the main adaptive strategy for small birds to cope with different ambient temperatures. In this experiment, we tested the hypothesis that the small passerine, white-shouldered starlings (Sturnus sinensis), can modulate basal metabolism under temperature acclimation by changing the morphological, physiological and biochemical states of their tissues and organs. We measured the effects of temperature on body mass, basal metabolic rate (BMR), wet mass of various internal organs, state 4 respiration (S4R) and cytochrome c oxidase (CCO) activities in the pectoral muscle and organs, metabolites in the pectoral muscle, energy intake, histological dynamics and the activities of duodenal digestive enzymes. Warm acclimation decreased BMR to a greater extent than cold acclimation. At the organ level, birds in the cold-acclimated group had significantly heavier intestines but significantly lighter pectoral muscles. At the cellular level, birds in the cold-acclimated group showed significantly higher S4R in the liver and heart and CCO activity in the liver and kidney at both the mass-specific and whole-organ levels. A metabolomic analysis of the pectoral tissue revealed significantly higher lipid decomposition, amino acid degradation, ATP hydrolysis, and GTP and biotin synthesis in cold-acclimated birds. Acclimation to cold significantly increased the gross energy intake (GEI), feces energy (FE) and digestive energy intake (DEI) but significantly decreased the digestive efficiency of these birds. Furthermore, cold-acclimated birds had a higher maltase activity and longer villi in the duodenum. Taken together, these data showed that white-shouldered starlings exhibited high phenotypic flexibility in metabolic adjustments and digestive function under temperature acclimation, consistent with the notion that small birds cope with the energy challenges presented by a cold environment by modulating tissue function in a way that would affect BMR.PMID:38009187 | DOI:10.1242/jeb.246214

Differential genomic effects of four nano-sized and one micro-sized CeO<sub>2</sub> particles on HepG2 cells

Mon, 27/11/2023 - 12:00
Mater Express. 2023 Oct;13(10):1799-1811. doi: 10.1166/mex.2023.2527.ABSTRACTThe objective of this research was to perform a genomics study of five cerium oxide particles, 4 nano and one micrometer-sized particles which have been studied previously by our group with respect to cytotoxicity, biochemistry and metabolomics. Human liver carcinoma HepG2 cells were exposed to between 0.3 to 300 ug/ml of CeO2 particles for 72 hours and then total RNA was harvested. Fatty acid accumulation was observed with W4, X5, Z7 and less with Q but not Y6. The gene expression changes in the fatty acid metabolism genes correlated the fatty acid accumulation we detected in the prior metabolomics study for the CeO2 particles named W4, Y6, Z7 and Q, but not for X5. In particular, the observed genomics effects on fatty acid uptake and fatty acid oxidation offer a possible explanation of why many CeO2 particles increase cellular free fatty acid concentrations in HepG2 cells. The major genomic changes observed in this study were sirtuin, ubiquitination signaling pathways, NRF2-mediated stress response and mitochondrial dysfunction. The sirtuin pathway was affected by many CeO2 particle treatments. Sirtuin signaling itself is sensitive to oxidative stress state of the cells and may be an important contributor in CeO2 particle induced fatty acid accumulation. Ubiquitination pathway regulates many protein functions in the cells, including sirtuin signaling, NRF2 mediated stress, and mitochondrial dysfunction pathways. NRF2-mediated stress response and mitochondrial were reported to be altered in many nanoparticles treated cells. All these pathways may contribute to the fatty acid accumulation in the CeO2 particle treated cells.PMID:38009104 | PMC:PMC10667950 | DOI:10.1166/mex.2023.2527

Validation of vaginal microbiome proxies for in vitro experiments that biomimic Lactobacillus-dominant vaginal cultures

Mon, 27/11/2023 - 12:00
Am J Reprod Immunol. 2023 Dec;90(6):e13797. doi: 10.1111/aji.13797.ABSTRACTThe vaginal microbiome includes diverse microbiota dominated by Lactobacillus [L.] spp. that protect against infections, modulate inflammation, and regulate vaginal homeostasis. Because it is challenging to incorporate vaginal microbiota into in vitro models, including organ-on-a-chip systems, we assessed microbial metabolites as reliable proxies in addition to traditional vaginal epithelial cultures (VECs). Human immortalized VECs cultured on transwells with an air-liquid interface generated stratified cell layers colonized by transplanted healthy microbiomes (L. jensenii- or L. crispatus-dominant) or a community representing bacterial vaginosis (BV). After 48-h, a qPCR array confirmed the expected donor community profiles. Pooled apical and basal supernatants were subjected to metabolomic analysis (untargeted mass spectrometry) followed by ingenuity pathways analysis (IPA). To determine the bacterial metabolites' ability to recreate the vaginal microenvironment in vitro, pooled bacteria-free metabolites were added to traditional VEC cultures. Cell morphology, viability, and cytokine production were assessed. IPA analysis of metabolites from colonized samples contained fatty acids, nucleic acids, and sugar acids that were associated with signaling networks that contribute to secondary metabolism, anti-fungal, and anti-inflammatory functions indicative of a healthy vaginal microbiome compared to sterile VEC transwell metabolites. Pooled metabolites did not affect cell morphology or induce cell death (∼5.5%) of VEC cultures (n = 3) after 72-h. However, metabolites created an anti-inflammatory milieu by increasing IL-10 production (p = .06, T-test) and significantly suppressing pro-inflammatory IL-6 (p = .0001), IL-8 (p = .009), and TNFα (p = .0007) compared to naïve VEC cultures. BV VEC conditioned-medium did not affect cell morphology nor viability; however, it induced a pro-inflammatory environment by elevating levels of IL-6 (p = .023), IL-8 (p = .031), and TNFα (p = .021) when compared to L.-dominate microbiome-conditioned medium. VEC transwells provide a suitable ex vivo system to support the production of bacterial metabolites consistent with the vaginal milieu allowing subsequent in vitro studies with enhanced accuracy and utility.PMID:38009054 | DOI:10.1111/aji.13797

Insight into the mechanism and toxicology of nitrofurantoin: a metabolomics approach

Mon, 27/11/2023 - 12:00
Drug Chem Toxicol. 2023 Nov 26:1-10. doi: 10.1080/01480545.2023.2285255. Online ahead of print.ABSTRACTSafety and effectiveness are the two ends of the balance in drug development that needs to be evaluated. The biotransformation of drugs within a living organism could potentiate biochemical insults in the tissue and compromise the safety of drugs. Nitrofurantoin (NFT) is a cheap clinical antibiotic with a wide array of activities against gram-positive and gram-negative organisms. The NFT scaffold has been utilized to develop other derivates or analogues in the quest to repurpose drugs against other infectious diseases. Several techniques were developed over the years to study the mechanism of NFT metabolism and toxicity, such as voltammetry, chromatographic analysis, protein precipitation, liquid-liquid extraction, etc. Due to limitations in these methods, the mechanism of NFT biotransformation in the cell is poorly understood. Metabolomics has been adopted in drug metabolism to understand the mechanism of drug toxicity and could provide a solution to overcome the limitations of current techniques to determine mechanisms of toxicity. Unfortunately, little or no information regarding the metabolomics approach in NFT metabolism and toxicity is available. Hence, this review highlights the metabolomic techniques that can be adopted in NFT metabolism and toxicological studies to encourage the research community to widely adopt and utilize metabolomics in understanding NFT's metabolism and toxicity.PMID:38008969 | DOI:10.1080/01480545.2023.2285255

Gestodene causes masculinization of the western mosquitofish (Gambusia affinis): Insights from ovary metabolomics

Sun, 26/11/2023 - 12:00
Sci Total Environ. 2023 Nov 24:168693. doi: 10.1016/j.scitotenv.2023.168693. Online ahead of print.ABSTRACTGestodene (GES) is a common synthetic progesterone frequently detected in aquatic environments. Chronic exposure to GES can cause masculinization of a variety of fish; however, whether metabolism is closely related to the masculinization has yet to be explored. Hence, the ovary metabolome of adult female western mosquitofish (Gambusia affinis) after exposing to GES (0.0, 5.0, 50.0, and 500.0 ng/L) for 40 days was analyzed by using high-performance liquid chromatography ionization with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The results showed that GES increased the levels of. cysteine, taurine, ophthalmic acid and cAMP while decreased methionine, these metabolites changes may owing to the oxidative stress of the ovaries; while taurcholic acid and uric acid were decreased along with induced oocyte apopotosis. Steroids hormone metabolism was also significantly affected, with progesterone and cortisol being the most affected. Enzyme-linked immunoassay results showed that estradiol levels were decreased while testosterone levels were increased with GES exposure. In addition, correlation analysis showed that the differential metabolites of some amino acids (e.g. leucine) were strongly correlated with the levels of steroids hormones secreted by the pituitary gland. The results of this study suggest that GES affects ovarian metabolism via the hypothalamus-pituitary-gonad and hypothalamic-pituitary-adrenal axes, impair antioxidant capacity, induce apoptosis in the ovary of G. affinis, and finally caused masculinization.PMID:38008334 | DOI:10.1016/j.scitotenv.2023.168693

The metabolites of light: Untargeted metabolomic approaches bring new clues to understand light-driven acclimation of intertidal mudflat biofilm

Sun, 26/11/2023 - 12:00
Sci Total Environ. 2023 Nov 24:168692. doi: 10.1016/j.scitotenv.2023.168692. Online ahead of print.ABSTRACTThe microphytobenthos (MPB), a microbial community of primary producers, play a key role in coastal ecosystem functioning, particularly in intertidal mudflats. These mudflats experience challenging variations of irradiance, forcing the micro-organisms to develop photoprotective mechanisms to survive and thrive in this dynamic environment. Two major adaptations to light are well described in literature: the excess of light energy dissipation through non-photochemical quenching (NPQ), and the vertical migration in the sediment. These mechanisms trigger considerable scientific interest, but the biological processes and metabolic mechanisms involved in light-driven vertical migration remain largely unknown. To our knowledge, this study investigates for the first time metabolomic responses of a migrational mudflat biofilm exposed for 30 min to a light gradient of photosynthetically active radiation (PAR) from 50 to 1000 μmol photons m-2 s-1. The untargeted metabolomic analysis allowed to identify metabolites involved in two types of responses to light irradiance levels. On the one hand, the production of SFAs and MUFAs, primarily derived from bacteria, indicates a healthy photosynthetic state of MPB under low light (LL; 50 and 100 PAR) and medium light (ML; 250 PAR) conditions. Conversely, when exposed to high light (HL; 500, 750 and 1000 PAR), the MPB experienced light-induced stress, triggering the production of alka(e)nes and fatty alcohols. The physiological and ecological roles of these compounds are poorly described in literature. This study sheds new light on the topic, as it suggests that these compounds may play a crucial and previously unexplored role in light-induced stress acclimation of migrational MPB biofilms. Since alka(e)nes are produced from FAs decarboxylation, these results thus emphasize for the first time the importance of FAs pathways in microphytobenthic biofilms acclimation to light.PMID:38008320 | DOI:10.1016/j.scitotenv.2023.168692

Pharmaceuticals and endocrine disrupting compounds modulate adverse effects of climate change on resource quality in freshwater food webs

Sun, 26/11/2023 - 12:00
Sci Total Environ. 2023 Nov 24:168751. doi: 10.1016/j.scitotenv.2023.168751. Online ahead of print.ABSTRACTFreshwater biodiversity, ecosystem functions and services are changing at an unprecedented rate due to the impacts of vast number of stressors overlapping in time and space. Our study aimed at characterizing individual and combined impacts of pollution with pharmaceuticals (PhACs) and endocrine disrupting compounds (EDCs) and increased water temperature (as a proxy for climate change) on primary producers and first level consumers in freshwaters. We conducted a microcosm experiment with a simplified freshwater food web containing moss (Bryophyta) and shredding caddisfly larvae of Micropterna nycterobia (Trichoptera). The experiment was conducted with four treatments; control (C), increased water temperature + 4 °C (T2), emerging contaminants' mix (EC = 15 PhACs & 5 EDCs), and multiple stressor treatment (MS = EC + T2). Moss exhibited an overall mild response to selected stressors and their combination. Higher water temperature negatively affected development of M. nycterobia through causing earlier emergence of adults and changes in their lipidome profiles. Pollution with PhACs and EDCs had higher impact on metabolism of all life stages of M. nycterobia than warming. Multiple stressor effect was recorded in M. nycterobia adults in metabolic response, lipidome profiles and as a decrease in total lipid content. Sex specific response to stressor effects was observed in adults, with impacts on metabolome generally more pronounced in females, and on lipidome in males. Thus, our study highlights the variability of both single and multiple stressor impacts on different traits, different life stages and sexes of a single insect species. Furthermore, our research suggests that the combined impacts of warming, linked to climate change, and contamination with PhACs and EDCs could have adverse consequences on the population dynamics of aquatic insects. Additionally, these findings point to a potential decrease in the quality of resources available for both aquatic and potentially terrestrial food webs.PMID:38008314 | DOI:10.1016/j.scitotenv.2023.168751

Jiawei guomin decoction regulates the degranulation of mast cells in atopic dermatitis mice via the HIS/PAR-2 pathway

Sun, 26/11/2023 - 12:00
J Ethnopharmacol. 2023 Nov 24:117485. doi: 10.1016/j.jep.2023.117485. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Guomin decoction (GMD) is a traditional Chinese medicine commonly used in clinical practice. It has traditionally been used to treat all allergic diseases. Currently, Jiawei Guomin Decoction (JWGMD) is used to treat sensitive skin after initial therapy. Although it has a significant clinical therapeutic effect, the exact role of mast cell degranulation in treating atopic dermatitis (AD) is still unclear.AIM OF THE STUDY: GMD and JWGMD can both treat allergic diseases, while JWGMD focuses on skin allergies. This study aims to explore the potential effect of JWGMD on the degranulation of mast cells in an AD mouse model induced by 2,4-dinitrofluorobenzene (DNFB) and investigate the effectiveness of JWGMD in alleviating disease progression to further provide specific therapeutic targets for treating AD.MATERIALS AND METHODS: The scratching times and skin lesions of model mice induced by DNFB were observed, and skin tissues were collected for subsequent measurement. Histopathological changes in the back skin of mice were observed by haematoxylin eosin (H&E) staining, Toluidine blue staining was used to detect the degranulation of mouse skin mast cells, and the relationship between the expression of histamine (HIS), mast cell tryptase (MCT) and mast cell degranulation was analysed by enzyme-linked immunosorbent assay (ELISA). The expression of protease-activated receptor-2 (PAR-2), histamine 1 receptor (H1R), H2R, H4R and MCT proteins in AD mice was detected by western blot (WB). Immunofluorescence assay (IFA) further confirmed the localization of PAR-2, H1R, H2R, H4R, and MCT proteins in the skin. Quantitative real-time PCR (qPCR) was used to determine PAR-2, H1R, H2R and H4R mRNA levels in skin lesions to further clarify the mechanism by which JWGMD amplifies mast cell degranulation in AD. In addition, a reliable ultrahigh-performance liquid chromatography-quadrupole electrostatic field orbitrap mass spectrometry (UPLC-QE-MS) nontargeted metabolomics analysis was performed to analyse the differences in metabolite abundance between GMD and JWGMD, and these results were used to identify the active components in JWGMD that may have antipruritic and anti-inflammatory properties and inhibit mast cell degranulation.RESULTS: After intermittent stimulation with DNFB, the skin lesions showed extensive desquamation, dryness, scabbing, skin thickening, and slight bleeding. Both treatments alleviated this phenomenon and reduced the number of scratches, with JWGMD being the most effective. JWGMD can significantly reduce inflammatory cell infiltration, oedema, and some capillary neogenesis in mice and reduce the degranulation of mast cells. The ELISA results showed that JWGMD can increase the levels of MCT and HIS proteins. The WB and IFA results demonstrated that JWGMD reduced the expression levels of PAR-2, H1R, H4R, and MCT proteins in skin lesions, with protein localization mainly in the epidermal layer, while H2R protein levels were increased and mainly localized in the dermis. In addition, JWGMD downregulates the mRNA expression of PAR-2, H1R, H2R, and H4R. Interestingly, through UPLC-QE-MS nontargeted metabolomic analysis, we detected the anti-inflammatory and antiallergy active substances in JWGMD, such as methyl eugenol, dictamnine and sinapine.CONCLUSIONS: JWGMD may alleviate itching through methyl syringol, dictamnine, sinapine and other substances, and its mechanism may be related to inhibiting the HIS/PAR-2 pathway in AD model mice and further regulating the self-amplification of mast cell degranulation. JWGMD is a potential drug for treating AD. Therefore, it deserves continuous attention and research.PMID:38008276 | DOI:10.1016/j.jep.2023.117485

Metabolomic analysis reveals the toxicity mechanisms of bisphenol A on the Microcystis aeruginosa under different phosphorus levels

Sun, 26/11/2023 - 12:00
Environ Pollut. 2023 Nov 24:123022. doi: 10.1016/j.envpol.2023.123022. Online ahead of print.ABSTRACTHarmful cyanobacterial blooms have been a global environmental problem. Discharge of anthropogenic pollutants and excess nutrient import into the freshwater bodies may be the biggest drivers of bloom. Bisphenol A (BPA), a typical endocrine-disrupting compound, is frequently detected in different natural waters, which was a threat to the balance of aquatic ecosystem. Yet mechanistic understanding of the bloom and microcystin generation under combined pollution conditions is still a mystery. Herein, the cellular and metabolomic responses to BPA exposure and phosphorus (P) levels in Microcystis aeruginosa were investigated throughout its growth period. The results showed that the stress response of M. aeruginosa to BPA was characterized by a decrease in growth density, an increase in P utilization, an increase in ATPase activity, a disruption of the photosynthetic system, and an increase in the production and release of microcystins (MCs). However, these effects are highly dependent on the growth stage of the cyanobacterial cell and the magnitude of the added P concentration. In addition, exposure to a high concentration (10 μM) of BPA significantly stimulated the production of 20.7% more and the release of 29.2% more MCs from M. aeruginosa cells at a low P level. The responses of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA) suggested that exposure to BPA exposure at a low P level can lead to oxidative stress in M. aeruginosa. In addition, the differentially expressed 63 metabolites showed that cell growth, energy generation and photosynthesis were mainly regulated by the metabolic network of 3-phosphoglyceric acid (3-PGA), D-glucose 6-phosphate, UDP-α-D-galactose and UDP-N-acetyl-D-galactosamine (UDP-GalNAc) metabolism. Amino acids and lipid metabolism collectively mediated MCs production and release. These findings will provide important references for the control of harmful cyanobacterial blooms under combined pollution.PMID:38008252 | DOI:10.1016/j.envpol.2023.123022

Low-temperature acclimation related with developmental regulations of polyamines and ethylene metabolism in wheat recombinant inbred lines

Sun, 26/11/2023 - 12:00
Plant Physiol Biochem. 2023 Nov 22;205:108198. doi: 10.1016/j.plaphy.2023.108198. Online ahead of print.ABSTRACTWinter survival is determined by complicated developmental regulations enabling wheat to adjust their transcriptome and metabolome to develop low temperature (LT) tolerance. The aim of the study was to clarify the metabolic responses developmentally regulated in six F6 recombinant inbred lines from a cross between Pishtaz (spring parent) and Mironovskaya 808 (winter parent). Spring genotypes, including pishtaz, RILs 4006 and 4014 showed lower LT tolerance, PAs (except the spermin), GABA and proline contents and DPPH• scavenging capacity. In these genotypes, genes and enzymes involved in the pathways of PAs and GABA degradation and ethylene biosynthesis were more active than other genotypes. RILs 4012 and 4016 with short vernalization displayed higher tolerance and lower H2O2 content compared to Pishtaz. Strong vernalization requirements in winter and facultative genotypes (Mironovskaya 808 parent and RILs 4003 and 4005) results in up-regulation of the metabolites and genes involved in PAs and GABA biosynthesis pathways (particularly when vernalization fulfillment occurred) to establish high tolerance as compared to genotypes without vernalization requirement. LT tolerance in all genotypes significantly decreased after vernalization fulfillment in February. Results indicated that LT tolerance was partly validated from developmental regulation of PAs, GABA, and ethylene metabolism during venalization and LT acclimation.PMID:38008007 | DOI:10.1016/j.plaphy.2023.108198

Urinary metabolite signatures reflect the altered host metabolism in severe obstructive sleep apnea

Sun, 26/11/2023 - 12:00
J Chromatogr B Analyt Technol Biomed Life Sci. 2023 Nov 18;1231:123938. doi: 10.1016/j.jchromb.2023.123938. Online ahead of print.ABSTRACTObstructive sleep apnea (OSA) is a common sleep-related breathing disorder. The onset and progression of OSA are often linked with severe cardiovascular and metabolic comorbidities. At the same time, given the increasing prevalence of OSA, novel methods to screen OSA and its follow-up are needed. Untargeted metabolic profiling of OSA patients and healthy controls was planned to capture a snapshot of urinary metabolites and potential biomarkers using the gas chromatography-mass spectrometry (GC-MS) method.Polysomnography (PSG) confirmed severe OSA patients with AHI index ≥ 30 were considered for urine sample collection. The sample size was constituted of OSA (n = 36) and healthy controls (n = 36). Metabolite extraction and derivatization were performed and metabolomic analysis was performed by using GC-MS.The obtained data set was statistically analyzed using univariate and multivariate analysis. The Orthogonal partial least-squares discriminant analysis (OPLS-DA) was performed to screen differential metabolites between OSA patients and healthy controls.The metabolomic analysis revealed a total of 142 significantly altered metabolites of interest.Biomarker analysis allows for the creation of a list of putative urinary biomarkers including GABA, malic acid, glutamic acid, epichoric acid etc., with an accuracy of 99.8 % to 100 % for OSA screening. Subsequently, pathway analysis revealed that related biochemical pathways like the tricarboxylic acid cycle (TCA), glutamate/glutamine, amino acid and fatty acid metabolism, that are significantly interlinked with these metabolic biomarkers can play a crucial role in the pathogenesis of OSA. This study paves the way to undertake mass screening in a larger population to identify specific and reliable biomarkers.PMID:38007916 | DOI:10.1016/j.jchromb.2023.123938

Liriodendrin exerts protective effects against chronic endometritis in rats by modulating gut microbiota composition and the arginine/nitric oxide metabolic pathway

Sun, 26/11/2023 - 12:00
Int Immunopharmacol. 2023 Nov 25;126:111235. doi: 10.1016/j.intimp.2023.111235. Online ahead of print.ABSTRACTBACKGROUND: Chronic endometritis (CE), a gynecological disease, is characterized by inflammation. Liriodendrin is reported to exhibit anti-inflammatory properties. However, the therapeutic effects of liriodendrin on CE and the underlying molecular mechanisms have not been elucidated. This study aimed to investigate the therapeutic effects of liriodendrin on CE in rats and the underlying mechanisms.METHODS: A CE rat model was established and administered with liriodendrin for 21 days. The serum levels of inflammatory cytokines were examined using enzyme-linked immunosorbent assay. The uterine mRNA levels of cytokines were examined using quantitative real-time polymerase chain reaction analysis. The activation of the Toll-like receptor 4 (TLR4)/NF-κB pathway was investigated using western blotting analysis. The effects of liriodendrin on intestinal flora and serum metabolites were examined using 16S rRNA sequencing and untargeted serum metabolomics, respectively. The protein and mRNA levels of arginase-2 (Arg-2) and the nitric oxide (NO) metabolic pathway-related factors were assessed. Molecular docking was performed to explore the interaction between liriodendrin and Arg-2.RESULTS: Liriodendrin alleviated the CE-induced pathological changes in the uterus, modulated the serum levels of inflammatory cytokines, and downregulated the mRNA and protein levels of TLR4/NF-κB pathway-related factors. Treatment with liriodendrin mitigated the CE-induced upregulation of Firmicutes/Bacteroidetes ratio and Lachnospiraceae abundance and downregulation of Ruminococcaceae abundance. Serum metabolomic analysis revealed that liriodendrin regulated the biosynthesis of choline metabolism pathway-related factors. Liriodendrin suppressed the CE-induced upregulation of Arg-2 and downregulation of inducible nitric oxide synthase (iNOS) expression, and NO levels by directly binding to the amino acid residues of Arg-2 through hydroxyl bonds.CONCLUSIONS: Liriodendrin exerted therapeutic effects on CE in rats through the alleviation of inflammation by modulating the gut microbiota structure, directly downregulating Arg-2, and regulating the arginine/NO metabolic pathway.PMID:38007851 | DOI:10.1016/j.intimp.2023.111235

Analysis of Inhibitory Behaviour of Ferulic Acid and p-Coumaric Acid on Saccharomyces Cerevisiae Cells

Sun, 26/11/2023 - 12:00
Stud Health Technol Inform. 2023 Nov 23;308:365-371. doi: 10.3233/SHTI230861.ABSTRACTMetabolomics has been widely used to identify changes in relevant differential metabolites. The metabolites of Saccharomyces cerevisiae cells supplemented with ferulic acid and p-coumaric acid were prepared and extracted. Untargeted metabolomics analysis of saccharomyces cerevisiae metabolites was performed. In addition, GNPS, Respect and MassBank databases were used to search and compare the information in the whole database. It was found that 100 and 92 different metabolites were significantly changed (P value < 0.05,VIP value > 1,) in Saccharomyces cerevisiae cells treated with ferulic acid and p-coumaric acid respectively. Including isothiocyanate, L-threonine, adenosine, glycerin phospholipid choline, niacinamide and palmitic acid. These metabolites with significant differences were enriched by KEGG pathway using MetPA database.PMID:38007761 | DOI:10.3233/SHTI230861

Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection

Sat, 25/11/2023 - 12:00
Nat Commun. 2023 Nov 25;14(1):7737. doi: 10.1038/s41467-023-43671-8.ABSTRACTHospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.PMID:38007555 | DOI:10.1038/s41467-023-43671-8

Plasma metabolomics profiling of 580 patients from an Early Detection Research Network prostate cancer cohort

Sat, 25/11/2023 - 12:00
Sci Data. 2023 Nov 25;10(1):830. doi: 10.1038/s41597-023-02750-7.ABSTRACTProstate cancer is the second most common cancer in men and affects 1 in 9 men in the United States. Early screening for prostate cancer often involves monitoring levels of prostate-specific antigen (PSA) and performing digital rectal exams. However, a prostate biopsy is always required for definitive cancer diagnosis. The Early Detection Research Network (EDRN) is a consortium within the National Cancer Institute aimed at improving screening approaches and early detection of cancers. As part of this effort, the Weill Cornell EDRN Prostate Cancer has collected and biobanked specimens from men undergoing a prostate biopsy between 2008 and 2017. In this report, we describe blood metabolomics measurements for a subset of this population. The dataset includes detailed clinical and prospective records for 580 patients who underwent prostate biopsy, 287 of which were subsequentially diagnosed with prostate cancer, combined with profiling of 1,482 metabolites from plasma samples collected at the time of biopsy. We expect this dataset to provide a valuable resource for scientists investigating prostate cancer metabolism.PMID:38007532 | DOI:10.1038/s41597-023-02750-7

Plasma metabolite predictors of metabolic syndrome incidence and reversion

Sat, 25/11/2023 - 12:00
Metabolism. 2023 Nov 23:155742. doi: 10.1016/j.metabol.2023.155742. Online ahead of print.ABSTRACTBACKGROUND: Metabolic Syndrome (MetS) is a progressive pathophysiological state defined by a cluster of cardiometabolic traits. However, little is known about metabolites that may be predictors of MetS incidence or reversion. Our objective was to identify plasma metabolites associated with MetS incidence or MetS reversion.METHODS: The study included 1468 participants without cardiovascular disease (CVD) but at high CVD risk at enrollment from two case-cohort studies nested within the PREvención con DIeta MEDiterránea (PREDIMED) study with baseline metabolomics data. MetS was defined in accordance with the harmonized International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute criteria, which include meeting 3 or more thresholds for waist circumference, triglyceride, HDL cholesterol, blood pressure, and fasting blood glucose. MetS incidence was defined by not having MetS at baseline but meeting the MetS criteria at a follow-up visit. MetS reversion was defined by MetS at baseline but not meeting MetS criteria at a follow-up visit. Plasma metabolome was profiled by LC-MS. Multivariable-adjusted Cox regression models and elastic net regularized regressions were used to assess the association of 385 annotated metabolites with MetS incidence and MetS reversion after adjusting for potential risk factors.RESULTS: Of the 603 participants without baseline MetS, 298 developed MetS over the median 4.8-year follow-up. Of the 865 participants with baseline MetS, 285 experienced MetS reversion. A total of 103 and 88 individual metabolites were associated with MetS incidence and MetS reversion, respectively, after adjusting for confounders and false discovery rate correction. A metabolomic signature comprised of 77 metabolites was robustly associated with MetS incidence (HR: 1.56 (95 % CI: 1.33-1.83)), and a metabolomic signature of 83 metabolites associated with MetS reversion (HR: 1.44 (95 % CI: 1.25-1.67)), both p < 0.001. The MetS incidence and reversion signatures included several lipids (mainly glycerolipids and glycerophospholipids) and branched-chain amino acids.CONCLUSION: We identified unique metabolomic signatures, primarily comprised of lipids (including glycolipids and glycerophospholipids) and branched-chain amino acids robustly associated with MetS incidence; and several amino acids and glycerophospholipids associated with MetS reversion. These signatures provide novel insights on potential distinct mechanisms underlying the conditions leading to the incidence or reversion of MetS.TWEET: A new study from @HarvardChanSPH led by @zsemnani and @MartaGuasch1 shows unique #metabolomic signatures associated with metabolic syndrome incidence and reversion using data from the PREDIMED study.PMID:38007148 | DOI:10.1016/j.metabol.2023.155742

Enhanced reproductive toxicity of photodegraded polylactic acid microplastics in zebrafish

Sat, 25/11/2023 - 12:00
Sci Total Environ. 2023 Nov 23:168742. doi: 10.1016/j.scitotenv.2023.168742. Online ahead of print.ABSTRACTMicroplastics are widely used due to their numerous advantages. However, they can have detrimental effects on marine ecosystems. When microplastics enter the ocean, they can be absorbed by marine organisms, leading to toxic effects. Additionally, the transformation of microplastics during natural degradation can alter their toxicity, necessitating further investigation. Polylactic acid (PLA) biodegradable plastics are commonly used, yet research on their toxicity, particularly their reproductive effects on aquatic organisms, remains limited. In this study, we conducted photodegradation of PLA using potassium persulfate as a catalyst to simulate natural degradation conditions. Our objective was to assess the reproductive toxicity of photodegraded PLA microplastics on zebrafish. The results revealed that photodegraded PLA exhibited elevated reproductive toxicity, resulting in abnormal oocyte differentiation, disruption of sexual hormone levels, and alterations in ovarian tissue metabolism. Metabolomics analysis indicated that both unphotodegraded PLA (UPLA) and photodegraded PLA (DPLA) disrupted oxidative stress homeostasis in zebrafish ovarian tissue by influencing pathways such as purine metabolism, phenylalanine metabolism, glutathione metabolism, and riboflavin metabolism. Furthermore, the DPLA treatment induced abnormal biosynthesis of taurocholic acid, which was not observed in the UPLA treatment group. Importantly, the DPLA treatment group exhibited more pronounced effects on offspring development compared to the UPLA treatment group, characterized by higher mortality rates, inhibition of embryo hatching, accelerated heart rates, and reduced larval body length. These findings underscore the varying levels of toxicity to zebrafish ovaries before and after PLA photodegradation, along with evidence of intergenerational toxicity.PMID:38007130 | DOI:10.1016/j.scitotenv.2023.168742

A review of the epidemiological and laboratory evidence of the role of aluminum exposure in pathogenesis of cardiovascular diseases

Sat, 25/11/2023 - 12:00
Environ Res. 2023 Nov 23:117740. doi: 10.1016/j.envres.2023.117740. Online ahead of print.ABSTRACTThe objective of the present study was to review the epidemiological and laboratory evidence on the role of aluminum (Al) exposure in the pathogenesis of cardiovascular diseases. Epidemiological data demonstrated an increased incidence of cardiovascular diseases (CVD), including hypertension and atherosclerosis in occupationally exposed subjects and hemodialysis patients. In addition, Al body burden was found to be elevated in patients with coronary heart disease, hypertension, and dyslipidemia. Laboratory studies demonstrated that Al exposure induced significant ultrastructural damage in the heart, resulting in electrocardiogram alterations in association with cardiomyocyte necrosis and apoptosis, inflammation, oxidative stress, inflammation, and mitochondrial dysfunction. In agreement with the epidemiological findings, laboratory data demonstrated dyslipidemia upon Al exposure, resulting from impaired hepatic lipid catabolism, as well as promotion of low-density lipoprotein oxidation. Al was also shown to inhibit paraoxonase 1 activity and to induce endothelial dysfunction and adhesion molecule expression, further promoting atherogenesis. The role of Al in hypertension was shown to be mediated by up-regulation of NADPH-oxidase, inhibition of nitric oxide bioavailability, and stimulation of renin-angiotensin-aldosterone system. It has been also demonstrated that Al exposure targets cerebral vasculature, which may be considered a link between Al exposure and cerebrovascular diseases. Findings from other tissues lend support that ferroptosis, pyroptosis, endoplasmic reticulum stress, and modulation of gut microbiome and metabolome are involved in the development of CVD upon Al exposure. A better understanding of the role of the cardiovascular system as a target for Al toxicity will be useful for risk assessment and the development of treatment and prevention strategies.PMID:38007081 | DOI:10.1016/j.envres.2023.117740

Sophora tonkinensis and active compounds inhibit mitochondrial impairments, inflammation, and LDLR deficiency in myocardial ischemia mice through regulating the vesicle-mediated transport pathway

Sat, 25/11/2023 - 12:00
Fitoterapia. 2023 Nov 23:105756. doi: 10.1016/j.fitote.2023.105756. Online ahead of print.ABSTRACTAncient Chinese medicine literature and modern pharmacological studies show that Sophora tonkinensis Gagnep. (ST) has a protective effect on the heart. A biolabel research based on omics and bioinformatics and experimental validation were used to explore the application value of ST in the treatment of heart diseases. Therapeutic potential, mechanism of action, and material basis of ST in treating heart diseases were analyzed by proteomics, metabolomics, bioinformatics, and molecular docking. Cardioprotective effects and mechanisms of ST and active compounds were verified by echocardiography, HE and Masson staining, biochemical analysis, and ELISA in the isoproterenol hydrochloride-induced myocardial ischemia (MI) mice model. The biolabel research suggested that the therapeutic potential of ST for MI may be particularly significant among the heart diseases it may treat. In the isoprenaline hydrochloride-induced MI mice model, ST and its five active compounds (caffeic acid, gallic acid, betulinic acid, esculetin, and cinnamic acid) showed significant protective effects against echocardiographic changes and histopathological damages of the ischemic myocardial tissue. Meanwhile, they showed a tendency to correct mitochondrial structure and function damage and the abnormal expression of 12 biolables (DCTN1, DCTN3, and SCARB2, etc.) in the vesicle-mediated transport pathway, inflammatory cytokines (IL-1β, IL-6, and IL-10, etc.), and low density lipoprotein receptor (LDLR). The biolabel research identifies a new application value of ST in the treatment of heart diseases. ST and its active compounds inhibit mitochondrial impairments, inflammation, and LDLR deficiency through regulating the vesicle-mediated transport pathway, thus achieving the purpose of treating MI.PMID:38007052 | DOI:10.1016/j.fitote.2023.105756

Pages