Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Mechanism of Learning and Memory Impairment in Rats Exposed to Arsenic and/or Fluoride Based on Microbiome and Metabolome

Sun, 02/04/2023 - 12:00
Biomed Environ Sci. 2023 Mar 20;36(3):253-268. doi: 10.3967/bes2023.028.ABSTRACTOBJECTIVE: Arsenic (As) and fluoride (F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level (microbiome and metabolome).METHODS: We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.RESULTS: Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome,featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic (GABAergic) synapse, and arachidonic acid (AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.CONCLUSION: Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites.PMID:37005079 | DOI:10.3967/bes2023.028

A comparison of feature extraction capabilities of advanced UHPLC-HRMS data analysis tools in plant metabolomics

Sun, 02/04/2023 - 12:00
Anal Chim Acta. 2023 May 8;1254:341127. doi: 10.1016/j.aca.2023.341127. Epub 2023 Mar 21.ABSTRACTData analysis of ultrahigh performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) is an essential and time-consuming step in plant metabolomics and feature extraction is the fundamental step for current tools. Various methods lead to different feature extraction results in practical applications, which may puzzle users for selecting adequate data analysis tools to deal with collected data. In this work, we provide a comprehensive method evaluation for some advanced UHPLC-HRMS data analysis tools in plant metabolomics, including MS-DIAL, XCMS, MZmine, AntDAS, Progenesis QI, and Compound Discoverer. Both mixtures of standards and various complex plant matrices were specifically designed for evaluating the performances of the involved method in analyzing both targeted and untargeted metabolomics. Results indicated that AntDAS provide the most acceptable feature extraction, compound identification, and quantification results in targeted compound analysis. Concerning the complex plant dataset, both MS-DIAL and AntDAS can provide more reliable results than the others. The method comparison is maybe useful for the selection of suitable data analysis tools for users.PMID:37005031 | DOI:10.1016/j.aca.2023.341127

Integrated metabolomics and phosphoproteomics reveal the protective role of exosomes from human umbilical cord mesenchymal stem cells in naturally aging mouse livers

Sun, 02/04/2023 - 12:00
Exp Cell Res. 2023 Mar 31:113566. doi: 10.1016/j.yexcr.2023.113566. Online ahead of print.ABSTRACTBACKGROUND: Aging is characterized by a general decline in cellular function, which ultimately affects whole body homeostasis. This study aimed to investigate the effects and underlying mechanisms of exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-exos) on the livers of naturally aging mice.METHOD: Twenty-two-month-old C57BL6 mice were used as a natural aging animal model, divided into a saline-treated wild-type aged control group (WT-AC) and a hUCMSC-exo-treated group (WT-AEX), and then detected by morphology, metabolomics and phosphoproteomics.RESULTS: Morphological analysis showed that hUCMSC-exos ameliorated structural disorder and decreased markers of senescence and genome instability in aging livers. Metabolomics showed that hUCMSC-exos decreased the contents of saturated glycerophospholipids, palmitoyl-glycerols and eicosanoid derivatives associated with lipotoxicity and inflammation, consistent with the decreased phosphorylation of metabolic enzymes, such as propionate-CoA ligase (Acss2), at S267 detected by phosphoproteomics. Moreover, phosphoproteomics indicated that hUCMSC-exos reduced the phosphorylation of proteins participating in nuclear transport and cancer signaling, such as heat shock protein HSP90-beta (Hsp90ab1) at S226 and nucleoprotein TPR (Tpr) at S453 and S379, while increasing those involved in intracellular communication, such as calnexin (Canx) at S563 and PDZ domain-containing protein 8 (Pdzd8). Finally, phosphorylated HSP90β and Tpr were verified predominantly in hepatocytes.CONCLUSION: HUCMSC-exos improved metabolic reprogramming and genome stability mainly associated with phosphorylated HSP90β in hepatocytes in natural aging livers. This work provides a comprehensive resource of biological data by omics to support future investigations of hUCMSC-exos in aging.PMID:37004949 | DOI:10.1016/j.yexcr.2023.113566

Development of a root exudate collection protocol for metabolomics analysis using Nuclear Magnetic Resonance

Sun, 02/04/2023 - 12:00
Plant Sci. 2023 Mar 31:111694. doi: 10.1016/j.plantsci.2023.111694. Online ahead of print.ABSTRACTLarge amounts of root exudates are released by plant roots into the soil. Due to their importance in regulating the rhizosphere properties, it is necessary to unravel the precise composition and function of exudates at the root-soil interface. However, obtaining root exudates without inducing artefacts is a difficult task. To analyse the low molecular weight molecules secreted by pea roots, a protocol of root exudate collection was developed to perform a metabolomics analysis using Nuclear Magnetic Resonance (NMR). To date a few NMR studies are dedicated to root exudates. Plant culture, exudates collection and sample preparation methods had thus to be adapted to the NMR approach. Here, pea seedlings were hydroponically grown. The obtained NMR fingerprints show that osmotic stress increases the quantity of the exudates but not their diversity. We therefore selected a protocol reducing the harvest time and using an ionic solvent and applied it to the analysis of faba bean exudates. NMR analysis of the metabolic profiles allowed to discriminate between pea and faba bean according to their exudate composition. This protocol is therefore very promising for studying the composition of root exudates from different plant species as well as their evolution in response to different environmental conditions or pathophysiological events.PMID:37004941 | DOI:10.1016/j.plantsci.2023.111694

Integrating -omics approaches into population-based studies of endocrine disrupting chemicals: A scoping review

Sun, 02/04/2023 - 12:00
Environ Res. 2023 Mar 31:115788. doi: 10.1016/j.envres.2023.115788. Online ahead of print.ABSTRACTHealth effects of endocrine disrupting chemicals (EDCs) are challenging to detect in the general population. Omics technologies become increasingly common to identify early biological changes before the apparition of clinical symptoms, to explore toxic mechanisms and to increase biological plausibility of epidemiological associations. This scoping review systematically summarises the application of omics in epidemiological studies assessing EDCs-associated biological effects to identify potential gaps and priorities for future research. Ninety-eight human studies (2004-2021) were identified through database searches (PubMed, Scopus) and citation chaining and focused on phthalates (34 studies), phenols (19) and PFASs (17), while PAHs (12) and recently-used pesticides (3) were less studied. The sample sizes ranged from 10 to 12,476 (median = 159), involving non-pregnant adults (38), pregnant women (11), children/adolescents (15) or both latter populations studied together (23). Several studies included occupational workers (10) and/or highly exposed groups (11) focusing on PAHs, PFASs and pesticides, while studies on phenols and phthalates were performed in the general population only. Analysed omics layers included metabolic profiles (30, including 14 targeted analyses), miRNA (13), gene expression (11), DNA methylation (8), microbiome (5) and proteins (3). Twenty-one studies implemented targeted multi-assays focusing on clinical routine blood lipid traits, oxidative stress or hormones. Overall, DNA methylation and gene expression associations with EDCs did not overlap across studies, while some EDC-associated metabolite groups, such as carnitines, nucleotides and amino acids in untargeted metabolomic studies, and oxidative stress markers in targeted studies, were consistent across studies. Studies had common limitations such as small sample sizes, cross-sectional designs and single sampling for exposure biomonitoring. In conclusion, there is a growing body of evidence evaluating the early biological responses to exposure to EDCs. This review points to a need for larger longitudinal studies, wider coverage of exposures and biomarkers, replication studies and standardisation of research methods and reporting.PMID:37004856 | DOI:10.1016/j.envres.2023.115788

Phenotypically driven subgroups of ASD display distinct metabolomic profiles

Sun, 02/04/2023 - 12:00
Brain Behav Immun. 2023 Mar 31:S0889-1591(23)00083-1. doi: 10.1016/j.bbi.2023.03.026. Online ahead of print.ABSTRACTAutism Spectrum Disorder (ASD) is a heterogeneous condition that includes a broad range of characteristics and associated comorbidities; however, the biology underlying the variability in phenotypes is not well understood. As ASD impacts approximately 1 in 100 children globally, there is an urgent need to better understand the biological mechanisms that contribute to features of ASD. In this study, we leveraged rich phenotypic and diagnostic information related to ASD in 2001 individuals aged 4 to 17 years from the Simons Simplex Collection to derive phenotypically driven subgroups and investigate their respective metabolomes. We performed hierarchical clustering on 40 phenotypes spanning four ASD clinical domains, resulting in three subgroups with distinct phenotype patterns. Using global plasma metabolomic profiling generated by ultrahigh-performance liquid chromatography mass spectrometry, we characterized the metabolome of individuals in each subgroup to interrogate underlying biology related to the subgroups. Subgroup 1 included children with the least maladaptive behavioral traits (N=862); global decreases in lipid metabolites and concomitant increases in amino acid and nucleotide pathways were observed for children in this subgroup. Subgroup 2 included children with the highest degree of challenges across all phenotype domains (N=631), and their metabolome profiles demonstrated aberrant metabolism of membrane lipids and increases in lipid oxidation products. Subgroup 3 included children with maladaptive behaviors and co-occurring conditions that showed the highest IQ scores (N=508); these individuals had increases in metabolism of sphingolipids and fatty acid byproducts. Overall, these findings indicated distinct metabolic patterns within ASD subgroups, which may reflect the biological mechanisms giving rise to specific patterns of ASD characteristics. Our results may have important clinical applications relevant to personalized medicine approaches towards managing ASD symptoms.PMID:37004757 | DOI:10.1016/j.bbi.2023.03.026

Gut microbiota regulates circadian oscillation in hepatic ischemia-reperfusion injury-induced cognitive impairment by interfering with hippocampal lipid metabolism in mice

Sun, 02/04/2023 - 12:00
Hepatol Int. 2023 Apr 1. doi: 10.1007/s12072-023-10509-w. Online ahead of print.ABSTRACTBACKGROUND: Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgery, which can lead to extrahepatic metabolic disorders, such as cognitive impairment. Recent observations have emphasized the critical effects of gut microbial metabolites in regulating the development of liver injury. Herein, we investigated the potential contribution of gut microbiota to HIRI-related cognitive impairment.METHODS: HIRI murine models were established by ischemia-reperfusion surgery in the morning (ZT0, 08:00) and evening (ZT12, 20:00), respectively. Antibiotic-induced pseudo-germ-free mice were gavaged with fecal bacteria of the HIRI models. Behavioral test was used to assess cognitive function. 16S rRNA gene sequencing and metabolomics were used for microbial and hippocampal analysis.RESULTS: Our results established that cognitive impairment caused by HIRI underwent diurnal oscillations; HIRI mice performed poorly on the Y-maze test and the novel object preference test when surgery occurred in the evening compared with the morning. In addition, fecal microbiota transplantation (FMT) from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior. The specific composition and metabolites of gut microbiota were analyzed between the ZT0-HIRI and ZT12-HIRI, and bioinformatic analysis showed that the differential fecal metabolites were significantly enriched in lipid metabolism pathways. After FMT, the hippocampal lipid metabolome between the P-ZT0-HIRI and P-ZT12-HIRI groups was analyzed to reveal a series of lipid molecules with significant differences.CONCLUSIONS: Our findings indicate that gut microbiota are involved in circadian differences of HIRI-related cognitive impairment by affecting hippocampal lipid metabolism.PMID:37004699 | DOI:10.1007/s12072-023-10509-w

Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial

Sun, 02/04/2023 - 12:00
J Physiol Biochem. 2023 Apr 1. doi: 10.1007/s13105-023-00958-0. Online ahead of print.ABSTRACTThe potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevención con Dieta Mediterránea (PREDIMED) trial participants and incidence of AF. We conducted a nested case-control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention.Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16-1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF.Current Controlled Trials number, ISRCTN35739639.PMID:37004634 | DOI:10.1007/s13105-023-00958-0

Bovine colostrum as a fortifier to human milk in very preterm infants - A randomized controlled trial (FortiColos)

Sun, 02/04/2023 - 12:00
Clin Nutr. 2023 Mar 15;42(5):773-783. doi: 10.1016/j.clnu.2023.03.008. Online ahead of print.ABSTRACTBACKGROUND: Human milk for very preterm infants need fortification for optimal growth and development but the optimal fortification product remains to be identified.AIMS: To investigate feasibility, safety and preliminary efficacy on growth and blood biochemistry when using intact bovine colostrum (BC) as a fortifier to human milk in very preterm infants.METHODS: In an open-label, multicenter, randomized controlled pilot trial (infants 26-31 weeks' gestation), mother's own milk or donor human milk was fortified with powdered BC (n = 115) or a conventional fortifier (CF, bovine-milk-based, n = 117) until 35 weeks' postmenstrual age. Fortifiers and additional micronutrients were added to human milk according to local guidelines to achieve optimal growth (additional protein up to +1.4 g protein/100 mL human milk). Anthropometry was recorded weekly. Clinical morbidities including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) were recorded. Clinical biochemistry included plasma amino acid (AA) levels to assess protein metabolic responses to the new fortifier.RESULTS: A total of 232 infants, gestational age (GA) 28.5 ± 1.4 (weeks + days), fulfilled inclusion criteria. Birthweight, GA and delta Z scores from birth to end of intervention on weight, length or head circumference did not differ between groups, nor between the subgroups of small for gestational age infants. Likewise, incidence of NEC (BC: 3/115 vs. CF: 5/117, p = 0.72, unadjusted values), LOS (BC: 23/113 vs. CF: 14/116, p = 0.08) and other morbidities did not differ. BC infants received more protein than CF infants (+10%, p < 0.05) and showed several elevated AA levels (+10-40%, p < 0.05).CONCLUSION: Infants fortified with BC showed similar growth but received more protein and showed a moderate increase in plasma AA-levels, compared with CF. Adjustments in protein composition and micronutrients in BC-based fortifiers may be required to fully suit the needs for very preterm infants.PMID:37004355 | DOI:10.1016/j.clnu.2023.03.008

Metabolomic analysis of aqueous humor reveals potential metabolite biomarkers for differential detection of macular edema

Sun, 02/04/2023 - 12:00
Eye Vis (Lond). 2023 Apr 1;10(1):14. doi: 10.1186/s40662-023-00331-8.ABSTRACTBACKGROUND: Macular edema (ME) is a major complication of retinal disease with multiple mechanisms involved in its development. This study aimed to investigate the metabolite profile of aqueous humor (AH) in patients with ME of different etiologies and identify potential metabolite biomarkers for early diagnosis of ME.METHODS: Samples of AH were collected from 60 patients with ME and 20 age- and sex-matched controls and analyzed by liquid chromatography-mass spectrometry (LC/MS)-based metabolomics. A series of univariate and multivariate statistical analyses were performed to identify differential metabolites and enriched metabolite pathways.RESULTS: The metabolic profile of AH differed significantly between ME patients and healthy controls, and differentially expressed metabolites were identified. Pathway analysis revealed that these differentially expressed metabolites are mainly involved in lipid metabolism and amino acid metabolism. Moreover, significant differences were identified in the metabolic composition of AH from patients with ME due to different retinal diseases including age-related macular degeneration (AMD-ME), diabetic retinopathy (DME) and branch retinal vein occlusion (BRVO-ME). In total, 39 and 79 etiology-specific altered metabolites were identified for AMD-ME and DME, respectively. Finally, an AH-derived machine learning-based diagnostic model was developed and successfully validated in the test cohort with an area under the receiver operating characteristic (ROC) curve of 0.79 for AMD-ME, 0.94 for DME and 0.77 for BRVO-ME.CONCLUSIONS: Our study illustrates the potential underlying metabolic basis of AH of different etiologies across ME populations. We also identify AH-derived metabolite biomarkers that may improve the differential diagnosis and treatment stratification of ME patients with different etiologies.PMID:37004107 | DOI:10.1186/s40662-023-00331-8

Pasture-finishing of bison improves animal metabolic health and potential health-promoting compounds in meat

Sun, 02/04/2023 - 12:00
J Anim Sci Biotechnol. 2023 Apr 1;14(1):49. doi: 10.1186/s40104-023-00843-2.ABSTRACTBACKGROUND: With rising concerns regarding the effects of red meat on human and environmental health, a growing number of livestock producers are exploring ways to improve production systems. A promising avenue includes agro-ecological practices such as rotational grazing of locally adapted ruminants. Additionally, growing consumer interest in pasture-finished meat (i.e., grass-fed) has raised questions about its nutritional composition. Thus, the goal of this study was to determine the impact of two common finishing systems in North American bison-pasture-finished or pen-finished on concentrates for 146 d-on metabolomic, lipidomic, and fatty acid profiles of striploins (M. longissimus lumborum).RESULTS: Six hundred and seventy-one (671) out of 1570 profiled compounds (43%) differed between pasture- and pen-finished conditions (n = 20 animals per group) (all, P < 0.05). Relative to pasture-finished animals, the muscle of pen-finished animals displayed elevated glucose metabolites (~ 1.6-fold), triglycerides (~ 2-fold), markers of oxidative stress (~ 1.5-fold), and proteolysis (~ 1.2-fold). In contrast, pasture-finished animals displayed improved mitochondrial (~ 1.3-fold higher levels of various Krebs cycle metabolites) and carnitine metabolism (~ 3-fold higher levels of long-chain acyl carnitines) (all P < 0.05). Pasture-finishing also concentrated higher levels of phenolics (~ 2.3-fold), alpha-tocopherol (~ 5.8-fold), carotene (~ 2.0-fold), and very long-chain fatty acids (~ 1.3-fold) in their meat, while having lower levels of a common advanced lipoxidation (4-hydroxy-nonenal-glutathione; ~ 2-fold) and glycation end-product (N6-carboxymethyllysine; ~ 1.7-fold) (all P < 0.05). In contrast, vitamins B5, B6, and C, gamma/beta-tocopherol, and three phenolics commonly found in alfalfa were ~ 2.5-fold higher in pen-finished animals (all P < 0.05); suggesting some concentrate feeding, or grazing plants rich in those compounds, may be beneficial.CONCLUSIONS: Pasture-finishing (i.e., grass-fed) broadly improves bison metabolic health and accumulates additional potential health-promoting compounds in their meat compared to concentrate finishing in confinement (i.e., pen-finished). Our data, however, does not indicate that meat from pen-finished bison is therefore unhealthy. The studied bison meat-irrespective of finishing practice-contained favorable omega 6:3 ratios (< 3.2), and amino acid and vitamin profiles. Our study represents one of the deepest meat profiling studies to date (> 1500 unique compounds), having revealed previously unrecognized differences in animal metabolic health and nutritional composition because of finishing mode. Whether observed nutritional differences have an appreciable effect on human health remains to be determined.PMID:37004100 | DOI:10.1186/s40104-023-00843-2

Novel bacterial proteolytic and metabolic activity associated with dental erosion-induced oral dysbiosis

Sun, 02/04/2023 - 12:00
Microbiome. 2023 Mar 31;11(1):69. doi: 10.1186/s40168-023-01514-0.ABSTRACTBACKGROUND: Dental erosion is a disease of the oral cavity where acids cause a loss of tooth enamel and is defined as having no bacterial involvement. The tooth surface is protected from acid attack by salivary proteins that make up the acquired enamel pellicle (AEP). Bacteria have been shown to readily degrade salivary proteins, and some of which are present in the AEP. This study aimed to explore the role of bacteria in dental erosion using a multi-omics approach by comparing saliva collected from participants with dental erosion and healthy controls.RESULTS: Salivary proteomics was assessed by liquid-chromatography mass spectrometry (LC-MS) and demonstrated two altered AEP proteins in erosion, prolactin inducible protein (PIP), and zinc-alpha-2 glycoprotein (ZAG). Immunoblotting further suggested that degradation of PIP and ZAG is associated with erosion. Salivary microbiome analysis was performed by sequencing the bacterial 16S rRNA gene (V1-V2 region, Illumina) and showed that participants with dental erosion had a significantly (p < 0.05) less diverse microbiome than healthy controls (observed and Shannon diversity). Sequencing of bacterial mRNA for gene expression (Illumina sequencing) demonstrated that genes over-expressed in saliva from erosion participants included H + proton transporter genes, and three protease genes (msrAB, vanY, and ppdC). Salivary metabolomics was assessed using nuclear magnetic resonance spectrometry (NMR). Metabolite concentrations correlated with gene expression, demonstrating that the dental erosion group had strong correlations between metabolites associated with protein degradation and amino acid fermentation.CONCLUSIONS: We conclude that microbial proteolysis of salivary proteins found in the protective acquired enamel pellicle strongly correlates with dental erosion, and we propose four novel microbial genes implicated in this process. Video Abstract.PMID:37004076 | DOI:10.1186/s40168-023-01514-0

Interactions between the lipidome and genetic and environmental factors in autism

Sat, 01/04/2023 - 12:00
Nat Med. 2023 Apr;29(4):936-949. doi: 10.1038/s41591-023-02271-1. Epub 2023 Apr 19.ABSTRACTAutism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.PMID:37076741 | PMC:PMC10115648 | DOI:10.1038/s41591-023-02271-1

It's a Small World After All…or Is It?

Sat, 01/04/2023 - 12:00
Biopreserv Biobank. 2023 Apr;21(2):219-220. doi: 10.1089/bio.2023.29120.cma.NO ABSTRACTPMID:37074325 | DOI:10.1089/bio.2023.29120.cma

Comprehensive chemical profiling and quantitative analysis of ethnicYi medicine Miao-Fu-Zhi-Tong granules using UHPLC-MS/MS

Sat, 01/04/2023 - 12:00
Chin J Nat Med. 2023 Mar;21(3):214-225. doi: 10.1016/S1875-5364(23)60422-4.ABSTRACTDeveloping analytical methods for the chemical components of natural medicines remains a challenge due to its diversity and complexity. Miao-Fu-Zhi-Tong (MFZT) granules, an ethnic Yi herbal prescription, comprises 10 herbs and has been clinically applied for gouty arthritis (GA) therapy. Herein, a series of chemical profiling strategies including in-house library matching, molecular networking and MS/MS fragmentation behavior validation based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were developed for qualitative analysis of MFZT granules. A total of 207 compounds were identified or characterized in which several rare guanidines were discovered and profiled into alkyl substituted or cyclic subtypes. Moreover, network pharmacology analysis indicated that MFZT's anti-gout mechanism was mostly associated with the nuclear factor kappa-B (NF-κB) signaling, nucleotide oligomerization domain (NOD)-like signaling and rheumatoid arthritis pathways, along with the synergistic effect of 84 potential active compounds. In addition, a quantitative analytical method was developed to simultaneously determine the 29 potential effective components. Among them, berberine, pellodendrine, 3-feruloylquinic acid, neoastilbin, isoacteoside and chlorogenic acid derivatives at higher concentrations were considered as the chemical markers for quality control. These findings provide a holistic chemical basis for MFZT granules and will support the development of effective analytical methods for the herbal formulas of natural medicines.PMID:37003643 | DOI:10.1016/S1875-5364(23)60422-4

Hepatic metabolomics combined with network pharmacology to reveal the correlation between the anti-depression effect and nourishing blood effect of Angelicae Sinensis Radix

Sat, 01/04/2023 - 12:00
Chin J Nat Med. 2023 Mar;21(3):197-213. doi: 10.1016/S1875-5364(23)60421-2.ABSTRACTAngelicae Sinensis Radix (AS) is reproted to exert anti-depression effect (ADE) and nourishing blood effect (NBE) in a rat model of depression. The correlation between the two therapeutic effects and its underlying mechanisms deserves further study. The current study is designed to explore the underlying mechanisms of correlation between the ADE and NBE of AS based on hepatic metabonomics, network pharmacology and molecular docking. According to metabolomics analysis, 30 metabolites involved in 11 metabolic pathways were identified as the potential metabolites for depression. Furthermore, principal component analysis and correlation analysis showed that glutathione, sphinganine, and ornithine were related to pharmacodynamics indicators including behavioral indicators and hematological indicators, indicating that metabolic pathways such as sphingolipid metabolism were involved in the ADE and NBE of AS. Then, a target-pathway network of depression and blood deficiency syndrome was constructed by network pharmacology analysis, where a total of 107 pathways were collected. Moreover, 37 active components obtained from Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer (UPLC-Triple-TOF/MS) in AS extract that passed the filtering criteria were used for network pharmacology, where 46 targets were associated with the ADE and NBE of AS. Pathway enrichment analysis further indicated the involvement of sphingolipid metabolism in the ADE and NBE of AS. Molecular docking analysis indciated that E-ligustilide in AS extract exhibited strong binding activity with target proteins (PIK3CA and PIK3CD) in sphingolipid metabolism. Further analysis by Western blot verified that AS regulated the expression of PIK3CA and PIK3CD on sphingolipid metabolism. Our results demonstrated that sphingolipid metabolic pathway was the core mechanism of the correlation between the ADE and NBE of AS.PMID:37003642 | DOI:10.1016/S1875-5364(23)60421-2

The fate of bisphenol A, bisphenol S, and their respective glucuronide metabolites in ovarian cells

Sat, 01/04/2023 - 12:00
Reprod Toxicol. 2023 Mar 30:108380. doi: 10.1016/j.reprotox.2023.108380. Online ahead of print.ABSTRACTOvarian cells are critical for reproduction and steroidogenesis, which are functions that can be impacted by exposure to xenobiotics. As in other extra-hepatic tissues, biotransformation events may occur at the ovarian level. Such metabolic events deserve interest, notably as they may modulate the overall exposure and toxicity of xenobiotics. In this study, the comparative metabolic fate of two bisphenols was investigated in ovarian cells. Bisphenol A (BPA), a model endocrine disruptor, and its major substitute bisphenol S (BPS) were selected. Bovine granulosa cells (primary cultures) and theca explants (ex vivo tissue) were exposed for 24hr to tritium-labeled BPA, BPS and their respective glucuronides (i.e. their major circulating forms), at concentrations consistent with low-dose exposure scenarios. Mass balance studies were performed, followed by radio-HPLC profiling. The capability of both cell compartments to biotransform BPA and BPS into their respective sulfo-conjugates was demonstrated, with sulfation being the predominant metabolic route. In theca, there was a significantly higher persistence of BPA (compared to BPS) residues over 24hr. Moreover, only theca explants were able to deconjugate inactive BPA-glucuronide and BPS-glucuronide back into their biologically active aglycone forms. Deconjugation rates were demonstrated to be higher for BPS-G than for BPA-G. These findings raise concerns about the in situ direct release of bisphenols at the level of the ovary and demonstrate the relevance of exploring the biotransformation of bisphenols and their circulating metabolites in different ovarian cells with specific metabolic capabilities. This work also provides essential knowledge for the improved risk assessment of bisphenols.PMID:37003567 | DOI:10.1016/j.reprotox.2023.108380

A metabolomics approach to the validation of predictive metabolites and phenotypic expression in non-alcoholic fatty liver disease

Sat, 01/04/2023 - 12:00
Life Sci. 2023 Mar 30:121626. doi: 10.1016/j.lfs.2023.121626. Online ahead of print.ABSTRACTAIMS: Nonalcoholic fatty liver disease (NAFLD) is becoming more common and severe. Individuals with NAFLD have an altered composition of gut- microbial metabolites. We used metabolomics profiling to identify microbial metabolites that could indicate gut-liver metabolic severity. Noninvasive biomarkers are required for NAFLD, especially for patients at high risk of disease progression.MAIN METHODS: We compared the stool metabolomes, untargeted metabolomics, and clinical data of 80 patients. Patients with nonalcoholic fatty liver (NAFL: n = 16), nonalcoholic steatohepatitis (NASH: n = 26), and cirrhosis (n = 19) and healthy control individuals (HC: n = 19) were enrolled. The identified metabolites in NAFLD were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS) were used to analyze metabolites.KEY FINDINGS: Untargeted metabolomics was used to identify and quantify 103 metabolites. Principal component analysis (PCA) was used to assess the metabolic discrimination of NAFL, NASH, and cirrhosis. Short-chain fatty acids (SCFA) levels were significantly lower in NAFLD patients, including those of acetate (p = 0.03), butyrate (p = 0.0008), and propionate. The stool cholic acid (p = 0.001) level was significantly increased in NAFLD patients. Palmitoylcarnitine and l-carnitine levels were significantly increased in NASH and cirrhosis patients. The phenotypic expression of these metabolites was linked to β-oxidation.SIGNIFICANCE: We demonstrated a distinct metabolome profile in NAFLD patients with NAFL, NASH, and cirrhosis. We also discovered that the expression of certain metabolites and metabolic pathways was linked to NAFLD.PMID:37003543 | DOI:10.1016/j.lfs.2023.121626

Macrotubule associated protein MAP1LC3C regulates lysosomal exocytosis and induces zinc reprogramming in renal cancer cells

Sat, 01/04/2023 - 12:00
J Biol Chem. 2023 Mar 30:104663. doi: 10.1016/j.jbc.2023.104663. Online ahead of print.ABSTRACTMicrotubule Associated Protein 1 Light Chain 3 Gamma (MAP1LC3C or LC3C) is a member of the microtubule associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor suppressing activity and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein (VHL) and folliculin (FLCN). Recently We demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cells stemness. Here we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of Zn-related genes and activity of Polycomb Repressor Complex 2 (PRC2), accompanied by a robust decrease in intracellular Zn. Additionally, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of Lysosomal Associated Membrane Protein 1 (LAMP1) on the plasma membrane of cancer cells in human clear cell renal cell carcinoma (ccRCC) and reduced levels of Zn, suggesting that LE occurs in ccRCC, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor propagating cancer cells is an important aspect of tumor suppressing activity of LC3C.PMID:37003503 | DOI:10.1016/j.jbc.2023.104663

Effects of Isaria cicadae on growth, gut microbiota, and metabolome of Larimichthys crocea

Sat, 01/04/2023 - 12:00
Fish Shellfish Immunol. 2023 Mar 30:108719. doi: 10.1016/j.fsi.2023.108719. Online ahead of print.ABSTRACTThe large yellow croaker (Larimichthys crocea) is the most productive mariculture fish in China, and its aquaculture scale is expanding along the southeastern coast of China, but that development is causing environmental damage by increasing the use of antibiotics and other chemicals. How to improve fish immunity through non-antibiotic substances is still a problem facing aquaculture industry. At present, the experiments have shown that Isaria cicadae spent substrate (IC) can improve the growth performance and immunity of Oreochromis niloticus. Therefore, I. cicadae may be a natural alternative to antibiotic for aquaculture. In order to study the effects of IC on growth performance, serum biochemical indices, intestinal microbiota, and intestinal metabolism of large yellow croakers, the fish were divided into three groups with three replicates in each group. Basal diet, basal diet with 2% and 6% IC supplementation (IC2 and IC6 groups), respectively. The results showed that weight gain rate (WG) and specific growth rate (SGR) of large yellow croaker significantly increased (P < 0.05) in IC6 group. The content of triglyceride (TG), low density lipoprotein cholesterol (LDL-C), total protein (TP) and albumin (ALB) increased significantly (P < 0.05), and total cholesterol (T-CHO) decreased significantly (P < 0.05) in IC2. Compared to IC0 group, the content of malondialdehyde (MDA) and activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) increased significantly (P < 0.05) in IC2 group, the activity of total antioxidant capacity (T-AOC) and GSH-Px increased (P < 0.05) in IC6 group, and the activity of lysozyme (LZM) increased significantly in IC2 and IC6 groups. The addition of IC in the diet significantly increased the diversity of the microbial community in the intestine of large yellow croaker (P < 0.05), significantly improved the relative abundance of Acidobacteriota (P < 0.05) at the phylum level, and reduced the relative abundance of Bacteroidota, Desulfobacterota, and Synergistota (P < 0.05). At the genus level, the relative abundances of Bacteroides, Cetobacterium and Mycoplasma, which are dominant bacteria in fish gut, was significantly increased (P < 0.05). The relative abundance of Ruminofilibacter, Desulfomicrobium, DMER64, Syntrophomonas, Hydrogenophaga, and Aminobacterium were reduced (P < 0.05), Among them, Ruminofilibacter, DMER64, Syntrophomonas and Hydrogenophaga are bacteria that can participate in the hydrolysis and acidification of organic matter, while DMER64 is the hydrogen carrier. The intestinal metabolome analysis showed that IC could improve metabolic composition and function, which was related to host immunity and metabolism. In conclusion, I. cicadae may improve the growth performance, regulate the lipid metabolism and immune and antioxidant capacity of large yellow croakers by regulating intestinal microbiota and intestinal metabolism. This study provides a reference for the application of IC in aquaculture.PMID:37003497 | DOI:10.1016/j.fsi.2023.108719

Pages