Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Monoclonal Gammopathy of Renal Significance: A Molecular Middle Earth between Oncology, Nephrology, and Pathology

Mon, 02/01/2023 - 12:00
Kidney Dis (Basel). 2022 Nov 2;8(6):446-457. doi: 10.1159/000527056. eCollection 2022 Dec.ABSTRACTBACKGROUND: The renal biopsy represents a cornerstone in the definition of monoclonal gammopathy of renal significance (MGRS), helping in identifying patients with sub-detectable neoplastic clones (MGUS) that would deserve aggressive chemotherapies. However, the rising complexity of this onco-nephrology field is significantly challenging the daily work of nephrologists and nephropathologists, leading to the formation of ultra-specialized international centers with dedicated personnel/instrumentation and stressing the need for a better understanding of the underlying molecular landscape of these entities.SUMMARY: In this setting, the application of proteomic techniques, some with in situ capabilities (e.g., MALDI-MS imaging), for the investigation of the most challenging MGRS is progressively shedding light on the pathobiology of these diseases, providing new insights in the diagnosis and prognosis of these cases. This transformation is further enhanced by the application of next-generation digital pathology platforms, leading to a significant improvement of the cultural background for physicians thanks to second opinions, database and atlas creation, enhancement of diagnostic reports, with obvious repercussions for patients both in terms of turnaround time and appropriateness.KEY MESSAGES: The present review is aimed at bridging the gap between clinical questions (i.e., a better characterization of MGRS) and the molecular landscape of onco-nephrology entities.PMID:36590677 | PMC:PMC9798844 | DOI:10.1159/000527056

Breathomics profiling of metabolic pathways affected by major depression: Possibilities and limitations

Mon, 02/01/2023 - 12:00
Front Psychiatry. 2022 Dec 14;13:1061326. doi: 10.3389/fpsyt.2022.1061326. eCollection 2022.ABSTRACTBACKGROUND: Major depressive disorder (MDD) is one of the most common psychiatric disorders with multifactorial etiologies. Metabolomics has recently emerged as a particularly potential quantitative tool that provides a multi-parametric signature specific to several mechanisms underlying the heterogeneous pathophysiology of MDD. The main purpose of the present study was to investigate possibilities and limitations of breath-based metabolomics, breathomics patterns to discriminate MDD patients from healthy controls (HCs) and identify the altered metabolic pathways in MDD.METHODS: Breath samples were collected in Tedlar bags at awakening, 30 and 60 min after awakening from 26 patients with MDD and 25 HCs. The non-targeted breathomics analysis was carried out by proton transfer reaction mass spectrometry. The univariate analysis was first performed by T-test to rank potential biomarkers. The metabolomic pathway analysis and hierarchical clustering analysis (HCA) were performed to group the significant metabolites involved in the same metabolic pathways or networks. Moreover, a support vector machine (SVM) predictive model was built to identify the potential metabolites in the altered pathways and clusters. The accuracy of the SVM model was evaluated by receiver operating characteristics (ROC) analysis.RESULTS: A total of 23 differential exhaled breath metabolites were significantly altered in patients with MDD compared with HCs and mapped in five significant metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055), branched chain amino acids valine, leucine and isoleucine biosynthesis (p = 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440). Moreover, the SVM predictive model showed that butylamine (p = 0.0005, pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p = 0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential metabolites within identified clusters with HCA and altered pathways, and discriminated between patients with MDD and non-depressed ones with high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96).CONCLUSION: According to the results of this study, the non-targeted breathomics analysis with high-throughput sensitive analytical technologies coupled to advanced computational tools approaches offer completely new insights into peripheral biochemical changes in MDD.PMID:36590606 | PMC:PMC9795849 | DOI:10.3389/fpsyt.2022.1061326

Gut microbiota and fecal metabolic signatures in rat models of disuse-induced osteoporosis

Mon, 02/01/2023 - 12:00
Front Cell Infect Microbiol. 2022 Dec 14;12:1018897. doi: 10.3389/fcimb.2022.1018897. eCollection 2022.ABSTRACTBACKGROUND: Assessing the correlation between gut microbiota (GM) and bone homeostasis has increasingly attracted research interest. Meanwhile, GM dysbiosis has been found to be associated with abnormal bone metabolism. However, the function of GM in disuse-induced osteoporosis (DIO) remains poorly understood. In our research, we evaluated the characteristics of GM and fecal metabolomics to explore their potential correlations with DIO pathogenesis.METHODS: DIO rat models and controls (CON) underwent micro-CT, histological analyses, and three-point bending tests; subsequently, bone microstructures and strength were observed. ELISAs were applied for the measurement of the biochemical markers of bone turnover while GM abundance was observed using 16S rDNA sequencing. Metabolomic analyses were used to analyze alterations fecal metabolites. The potential correlations between GM, metabolites, and bone loss were then assessed.RESULTS: In the DIO group, the abundance of GM was significantly altered compared to that in the CON group. Moreover, DIO significantly altered fecal metabolites. More specifically, an abnormally active pathway associated with bile acid metabolism, as well as differential bacterial genera related to bone/tissue volume (BV/TV), were identified. Lithocholic acid, which is the main secondary bile acid produced by intestinal bacteria, was then found to have a relationship with multiple differential bacterial genera. Alterations in the intestinal flora and metabolites in feces, therefore, may be responsible for DIO-induced bone loss.CONCLUSIONS: The results indicated that changes in the abundance of GM abundance and fecal metabolites were correlated with DIO-induced bone loss, which might provide new insights into the DIO pathogenesis. The detailed regulatory role of GM and metabolites in DIO-induced bone loss needs to be explored further.PMID:36590590 | PMC:PMC9798431 | DOI:10.3389/fcimb.2022.1018897

New metabolic signature for Chagas disease reveals sex steroid perturbation in humans and mice

Mon, 02/01/2023 - 12:00
Heliyon. 2022 Dec 15;8(12):e12380. doi: 10.1016/j.heliyon.2022.e12380. eCollection 2022 Dec.ABSTRACTThe causative agent of Chagas disease (CD), Trypanosoma cruzi, claims thousands of lives each year. Current diagnostic tools are insufficient to ensure parasitological detection in chronically infected patients has been achieved. A host-derived metabolic signature able to distinguish CD patients from uninfected individuals and assess antiparasitic treatment efficiency is introduced. Serum samples were collected from chronic CD patients, prior to and three years after treatment, and subjected to untargeted metabolomics analysis against demographically matched CD-negative controls. Five metabolites were confirmed by high-resolution tandem mass spectrometry. Several database matches for sex steroids were significantly altered in CD patients. A murine experiment corroborated sex steroid perturbation in T. cruzi-infected mice, particularly in male animals. Proteomics analysis also found increased steroidogenesis in the testes of infected mice. Metabolic alterations identified in this study shed light on the pathogenesis and provide the basis for developing novel assays for the diagnosis and screening of CD patients.PMID:36590505 | PMC:PMC9800200 | DOI:10.1016/j.heliyon.2022.e12380

Modulating gut microbiota and metabolites with dietary fiber oat β-glucan interventions to improve growth performance and intestinal function in weaned rabbits

Mon, 02/01/2023 - 12:00
Front Microbiol. 2022 Dec 15;13:1074036. doi: 10.3389/fmicb.2022.1074036. eCollection 2022.ABSTRACTThe effect of oat β-glucan on intestinal function and growth performance of weaned rabbits were explored by multi-omics integrative analyses in the present study. New Zealand White rabbits fed oat β-glucan [200 mg/kg body weight (BW)] for 4 weeks, and serum markers, colon histological alterations, colonic microbiome, colonic metabolome, and serum metabolome were measured. The results revealed that oat β-glucan increased BW, average daily gain (ADG), average daily food intake (ADFI), and decreased serum tumor necrosis factor-α (TNF-α) interleukin-1β (IL-1β), and lipopolysaccharide (LPS) contents, but did not affect colonic microstructure. Microbiota community analysis showed oat β-glucan modulated gut microbial composition and structure, increased the abundances of beneficial bacteria Lactobacillus, Prevotellaceae_UCG-001, Pediococcus, Bacillus, etc. Oat β-glucan also increased intestinal propionic acid, valeric acid, and butyric acid concentrations, decreased lysine and aromatic amino acid (AAA) derivative contents. Serum metabolite analysis revealed that oat β-glucan altered host carbohydrate, lipid, and amino acid metabolism. These results suggested that oat β-glucan could inhibit systemic inflammation and protect intestinal function by regulating gut microbiota and related metabolites, which further helps to improve growth performance in weaned rabbits.PMID:36590438 | PMC:PMC9798315 | DOI:10.3389/fmicb.2022.1074036

Effects of oat (<em>Avena sativa</em> L.) hay diet supplementation on the intestinal microbiome and metabolome of Small-tail Han sheep

Mon, 02/01/2023 - 12:00
Front Microbiol. 2022 Dec 16;13:1032622. doi: 10.3389/fmicb.2022.1032622. eCollection 2022.ABSTRACTSupplementation of the sheep diet with oats (Avena sativa L.) improves animal growth and meat quality, however effects on intestinal microbes and their metabolites was not clear. This study aimed to establish the effect of dietary oat supplementation on rumen and colonic microbial abundance and explore the relationship with subsequent changes in digesta metabolites. Twenty Small-tail Han sheep were randomly assigned to a diet containing 30 g/100 g of maize straw (Control) or oat hay (Oat). After 90-days on experimental diets, rumen and colon digesta were collected and microbial diversity was determined by 16S rRNA gene Illumina NovaSeq sequencing and metabolomics was conducted using Ultra-high performance liquid chromatography Q-Exactive mass spectrometry (UHPLC-QE-MS). Compared to Control group, oat hay increased the abundance of Bacteroidetes and Fibrobacteres as well as known short-chain fatty acid (SCFA) producers Prevotellaceae, Ruminococcaceae and Fibrobacteraceae in rumen (p < 0.05). In rumen digesta, the Oat group showed had higher levels of (3Z,6Z)-3,6-nonadienal, Limonene-1,2-epoxide, P-tolualdehyde, and Salicylaldehyde compared to Control (p < 0.05) and these metabolites were positively correlated with the abundance of cecal Prevotellaceae NK3B31. In conclusion, supplementation of the sheep diet with oat hay improved desirable microbes and metabolites in the rumen, providing insight into mechanisms whereby meat quality can be improved by oat hay supplementation.PMID:36590432 | PMC:PMC9801518 | DOI:10.3389/fmicb.2022.1032622

The role of microbial ecology in improving the performance of anaerobic digestion of sewage sludge

Mon, 02/01/2023 - 12:00
Front Microbiol. 2022 Dec 14;13:1079136. doi: 10.3389/fmicb.2022.1079136. eCollection 2022.ABSTRACTThe use of next-generation diagnostic tools to optimise the anaerobic digestion of municipal sewage sludge has the potential to increase renewable natural gas recovery, improve the reuse of biosolid fertilisers and help operators expand circular economies globally. This review aims to provide perspectives on the role of microbial ecology in improving digester performance in wastewater treatment plants, highlighting that a systems biology approach is fundamental for monitoring mesophilic anaerobic sewage sludge in continuously stirred reactor tanks. We further highlight the potential applications arising from investigations into sludge ecology. The principal limitation for improvements in methane recoveries or in process stability of anaerobic digestion, especially after pre-treatment or during co-digestion, are ecological knowledge gaps related to the front-end metabolism (hydrolysis and fermentation). Operational problems such as stable biological foaming are a key problem, for which ecological markers are a suitable approach. However, no biomarkers exist yet to assist in monitoring and management of clade-specific foaming potentials along with other risks, such as pollutants and pathogens. Fundamental ecological principles apply to anaerobic digestion, which presents opportunities to predict and manipulate reactor functions. The path ahead for mapping ecological markers on process endpoints and risk factors of anaerobic digestion will involve numerical ecology, an expanding field that employs metrics derived from alpha, beta, phylogenetic, taxonomic, and functional diversity, as well as from phenotypes or life strategies derived from genetic potentials. In contrast to addressing operational issues (as noted above), which are effectively addressed by whole population or individual biomarkers, broad improvement and optimisation of function will require enhancement of hydrolysis and acidogenic processes. This will require a discovery-based approach, which will involve integrative research involving the proteome and metabolome. This will utilise, but overcome current limitations of DNA-centric approaches, and likely have broad application outside the specific field of anaerobic digestion.PMID:36590430 | PMC:PMC9801413 | DOI:10.3389/fmicb.2022.1079136

Glucogenic and lipogenic diets affect <em>in vitro</em> ruminal microbiota and metabolites differently

Mon, 02/01/2023 - 12:00
Front Microbiol. 2022 Dec 16;13:1039217. doi: 10.3389/fmicb.2022.1039217. eCollection 2022.ABSTRACTThis study was conducted to evaluate the effects of two glucogenic diets (C: ground corn and corn silage; S: steam-flaked corn and corn silage) and a lipogenic diet (L: sugar beet pulp and alfalfa silage) on the ruminal bacterial and archaeal structures, the metabolomic products, and gas production after 48 h in vitro fermentation with rumen fluid of dairy cows. Compared to the C and S diets, the L dietary treatment leaded to a lower dry matter digestibility (DMD), lower propionate production and ammonia-nitrogen concentration. The two glucogenic diets performed worse in controlling methane and lactic acid production compared to the L diet. The S diet produced the greatest cumulative gas volume at any time points during incubation compared to the C and L diet. The metabolomics analysis revealed that the lipid digestion especially the fatty acid metabolism was improved, but the amino acid digestion was weakened in the L treatment than in other treatments. Differences in rumen fermentation characteristics were associated with (or resulting from) changes in the relative abundance of bacterial and archaeal genera. The rumen fluid fermented with L diet had a significantly higher number of cellulolytic bacteria, including the genera of Ruminococcus, Butyrivibrio, Eubacterium, Lachnospira, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. The relative abundances of amylolytic bacteria genera including Selenomonas_1, Ruminobacter, and Succinivibrionaceae_UCG-002 were higher in samples for diets C and S. The results indicated that the two glucogenic diets leaded to a higher relative abundance of bacteria which functions in succinate pathway resulting in a higher propionate production. The steam-flaked corn diet had a higher gas production and lower level of metabolites in fatty acids and amino acids. Most highly abundant bacteria were observed to be not sensitive to dietary alterations of starch and fiber, except for several amylolytic bacteria and cellulolytic bacteria. These finding offered new insights on the digesting preference of ruminal bacteria, which can assist to improve the rumen functioning.PMID:36590412 | PMC:PMC9800790 | DOI:10.3389/fmicb.2022.1039217

Antioxidant capacity, phytochemical profiles, and phenolic metabolomics of selected edible seeds and their sprouts

Mon, 02/01/2023 - 12:00
Front Nutr. 2022 Dec 14;9:1067597. doi: 10.3389/fnut.2022.1067597. eCollection 2022.ABSTRACTSprouts are recognized as nutritional and functional vegetables. In this study, 17 selected seeds were germinated simultaneously. The antioxidant capacity and total phenolic content (TPC) were determined for seeds and sprouts of all species. Both seed and sprout of white radish, with the highest antioxidant capacity, and TPC among all the 17 species, were further determined for phenolic metabolomics. Four phenolic classes with 316 phenolic metabolites were identified. 198 significantly different metabolites with 146 up-regulated and 52 down-regulated were confirmed, and high amounts of phenolic acids and flavonoids were found to be accumulated in the sprout. Several metabolism and biosynthesis, including phenylpropanoid, favone and flavonol, phenylalanine, and various secondary metabolites, were significantly activated. Significant correlations were found among FRAP, DPPH, ABTS, TPC, and phenolic profiles. Therefore, white radish sprout could be served as antioxidant and could be a good source of dietary polyphenols.PMID:36590202 | PMC:PMC9798843 | DOI:10.3389/fnut.2022.1067597

Sacubitril/Valsartan contributes to improving the diabetic kidney disease and regulating the gut microbiota in mice

Mon, 02/01/2023 - 12:00
Front Endocrinol (Lausanne). 2022 Dec 16;13:1034818. doi: 10.3389/fendo.2022.1034818. eCollection 2022.ABSTRACTBACKGROUND: Diabetic kidney disease (DKD), as a serious microvascular complication of diabetes, has limted treatment options. It is reported that the Sacubitril/Valsartan (Sac/Val) can improve kidney function, and the disordered gut microbiota and part of its metabolites are related to the development of DKD. Therefore, we aim to explore whether the effect of Sac/Val on DKD is associated with the gut microbiota and related plasma metabolic profiles.METHODS: Male C57BL/6J mice were randomly divided into 3 groups: Con group (n = 5), DKD group (n = 6), and Sac/Val group (n = 6) . Sac/Val group was treated with Sac/Val solution. The intervention was given once every 2 days for 6 weeks. We measured the blood glucose and urine protein level of mice at different times. We then collected samples at the end of experiment for the 16s rRNA gene sequencing analysis and the untargeted plasma metabonomic analysis.RESULTS: We found that the plasma creatinine concentration of DKD-group mice was significantly higher than that of Con-group mice, whereas it was reduced after the Sac/Val treatment. Compared with DKD mice, Sac/Val treatment could decrease the expression of indicators related to EndMT and renal fibrosis like vimentin, collagen IV and fibronectin in kidney. According to the criteria of LDA ≥ 2.5 and p<0.05, LefSe analysis of gut microbiota identified 13 biomarkers in Con group, and 33 biomarkers in DKD group, mainly including Prevotella, Escherichia_Shigella and Christensenellaceae_R_7_group, etc. For the Sac/Val group, there were 21 biomarkers, such as Bacteroides, Rikenellaceae_RC9_gut_group, Parabacteroides, Lactobacillus, etc. Plasma metabolomics analysis identified a total of 648 metabolites, and 167 important differential metabolites were screened among groups. KEGG pathway of tryptophan metabolism: M and bile secretion: OS had the highest significance of enrichment.CONCLUSIONS: Sac/Val improves the renal function of DKD mice by inhibiting renal fibrosis. This drug can also regulate gut microbiota in DKD mice.PMID:36589853 | PMC:PMC9802116 | DOI:10.3389/fendo.2022.1034818

Glucagon-like peptide-2 protects the gastric mucosa <em>via</em> regulating blood flow and metabolites

Mon, 02/01/2023 - 12:00
Front Endocrinol (Lausanne). 2022 Dec 16;13:1036559. doi: 10.3389/fendo.2022.1036559. eCollection 2022.ABSTRACTINTRODUCTION: Refractory peptic ulcers lead to perforation and hemorrhage, which are fatal. However, these remain a therapeutic challenge. Gastric mucosal blood flow is crucial in maintaining gastric mucosal health. It's reported that Glucagon-like peptide-2 (GLP-2), a gastrointestinal hormone, stimulated intestinal blood flow. However, the direct role of GLP-2 in gastric mucosal blood flow and metabolites remain unclear. Here, we speculated that GLP-2 might protect the gastric mucosa by increasing gastric mucosal blood flow and regulating metabolites. This study was conducted to evaluate the role of GLP-2 in gastric mucosal lesions and its underlying mechanism.METHODS: We analyzed endogenous GLP-2 during gastric mucosal injury in the serum. Rats were randomly divided into two groups, with 36 rats in each group as follows: (1) normal control group (NC1); (2) ethanol model group (EC1); rats in EC1 and NC1 groups were intragastrically administered ethanol (1 ml/200 g body weight) and distilled water (1 ml/200 g body weight). The serum was collected 10 min before intragastric administration and 15, 30, 60, 90, and 120 min after intragastric administration. Furthermore, additional male Sprague-Dawley rats were randomly divided into three groups, with six rats in each group as follows: (1) normal control group (NC); (2) ethanol model group (EC); (3) 10 μg/200 g body weight GLP-2 group (GLP-2). Rats in the NC and EC groups were intraperitoneally injected with saline. Those in the GLP-2 group were intraperitoneally injected with GLP-2. Thirty minutes later, rats in the EC and GLP-2 groups were intragastrically administered ethanol (1 ml/200 g body weight), and rats in the NC group were intragastrically administered distilled water (1 ml/200 g body weight). After the intragastric administration of ethanol for 1 h, the animals were anesthetized and gastric mucosal blood flow was measured. Serum were collected for ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) metabolomics.RESULTS: There were no significant change in endogenous GLP-2 during gastric mucosal injury (P<0.05). Pretreatment with GLP-2 significantly reduced ethanol-induced gastric mucosal lesions by improving the gastric mucosal blood flow, as examined using a laser Doppler flow meter, Guth Scale, hematoxylin-eosin staining, and two-photon microscopy. UPLC-MS/MS analyses showed that GLP-2 also maintained a steady state of linoleic acid metabolism.CONCLUSIONS: Taken together, GLP-2 protects the gastric mucosa against ethanol-induced lesions by improving gastric mucosa blood flow and affecting linoleic acid metabolism.PMID:36589839 | PMC:PMC9801410 | DOI:10.3389/fendo.2022.1036559

Screening and diagnosis of triple negative breast cancer based on rapid metabolic fingerprinting by conductive polymer spray ionization mass spectrometry and machine learning

Mon, 02/01/2023 - 12:00
Front Cell Dev Biol. 2022 Dec 15;10:1075810. doi: 10.3389/fcell.2022.1075810. eCollection 2022.ABSTRACTWe present the use of conductive spray polymer ionization mass spectrometry (CPSI-MS) combined with machine learning (ML) to rapidly gain the metabolic fingerprint from 1 μl liquid extraction from the biopsied tissue of triple-negative breast cancer (TNBC) in China. The 76 discriminative metabolite markers are verified at the primary carcinoma site and can also be successfully tracked in the serum. The Lasso classifier featured with 15- and 22-metabolites detected by CPSI-MS achieve a sensitivity of 88.8% for rapid serum screening and a specificity of 91.1% for tissue diagnosis, respectively. Finally, the expression levels of their corresponding upstream enzymes and transporters have been initially confirmed. In general, CPSI-MS/ML serves as a cost-effective tool for the rapid screening, diagnosis, and precise characterization for the TNBC metabolism reprogramming in the clinical practice.PMID:36589750 | PMC:PMC9798417 | DOI:10.3389/fcell.2022.1075810

The role of bile acid metabolism in the occurrence and development of NAFLD

Mon, 02/01/2023 - 12:00
Front Mol Biosci. 2022 Dec 15;9:1089359. doi: 10.3389/fmolb.2022.1089359. eCollection 2022.ABSTRACTNon-alcoholic fatty liver disease (NAFLD) has become one of the important causes of cirrhosis and liver cancer, resulting in a huge medical burden worldwide. Currently, effective non-invasive diagnostic indicators and drugs for NAFLD are still lacking. With the development of metabolomics technology, the changes in metabolites during the development of NAFLD have been gradually revealed. Bile acid (BA) is the main endpoint of cholesterol metabolism in the body. In addition, it also acts as a signaling factor to regulate metabolism and inflammation in the body through the farnesyl X receptor and G protein-coupled BA receptor. Studies have shown that BA metabolism is associated with the development of NAFLD, but a large number of animal and clinical studies are still needed. BA homeostasis is maintained through multiple negative feedback loops and the enterohepatic circulation of BA. Recently, treatment of NAFLD by interfering with BA synthesis and metabolism has become a new research direction. Here, we review the changes in BA metabolism and its regulatory mechanisms during the development of NAFLD and describe the potential of studies exploring novel non-invasive diagnostic indicators and therapeutic targets for NAFLD based on BA metabolism.PMID:36589245 | PMC:PMC9798289 | DOI:10.3389/fmolb.2022.1089359

Grapevine response to a <em>Dittrichia viscosa</em> extract and a <em>Bacillus velezensis</em> strain

Mon, 02/01/2023 - 12:00
Front Plant Sci. 2022 Dec 16;13:1075231. doi: 10.3389/fpls.2022.1075231. eCollection 2022.ABSTRACTThe present study aims to evaluate the response of the three Mediterranean local grapevines 'Garnacha Blanca', 'Garnacha Tinta', and 'Macabeo' to treatments with biocontrol products, namely a botanical extract (Akivi, Dittrichia viscosa extract) and a beneficial microorganism (Bacillus UdG, Bacillus velezensis). A combination of transcriptomics and metabolomics approaches were chosen in order to study grapevine gene expression and to identify gene marker candidates, as well as, to determine differentially concentrated grapevine metabolites in response to biocontrol product treatments. Grapevine plants were cultivated in greenhouse under controlled conditions and submitted to the treatments. Thereafter, leaves were sampled 24h after treatment to carry out the gene expression study by RT-qPCR for the three cultivars and by RNA-sequencing for 'Garnacha Blanca'. Differentially expressed genes (DEGs) were investigated for both treatments and highly influenced DEGs were selected to be tested in the three cultivars as treatment gene markers. In addition, the extraction of leaf components was performed to quantify metabolites, such as phytohormones, organic acids, and phenols. Considering the upregulated and downregulated genes and the enhanced metabolites concentrations, the treatments had an effect on jasmonic acid, ethylene, and phenylpropanoids defense pathways. In addition, several DEG markers were identified presenting a stable overexpression after the treatments in the three grapevine cultivars. These gene markers could be used to monitor the activity of the products in field treatments. Further research will be necessary to confirm these primary results under field conditions.PMID:36589113 | PMC:PMC9803176 | DOI:10.3389/fpls.2022.1075231

Transcriptomic and metabolomic analyses reveal the mechanism of uniconazole inducing hypocotyl dwarfing by suppressing BrbZIP39-<em>BrPAL4</em> module mediating lignin biosynthesis in flowering Chinese cabbage

Mon, 02/01/2023 - 12:00
Front Plant Sci. 2022 Dec 14;13:1014396. doi: 10.3389/fpls.2022.1014396. eCollection 2022.ABSTRACTUniconazole, a triazole plant growth regulator, is widely used to regulate plant height and prevent the overgrowth of seedlings. However, the underlying molecular mechanism of uniconazole in inhibiting the hypocotyl elongation of seedlings is still largely unclear, and there has been little research on the integration of transcriptomic and metabolomic data to investigate the mechanisms of hypocotyl elonga-tion. Herein we observed that the hypocotyl elongation of flowering Chinese cabbage seedings was significantly inhibited by uniconazole. Interestingly, based on combined transcriptome and metabolome analyses, we found that the "phenylpropanoid biosynthesis" pathway was significantly affected by uniconazole. In this pathway, only one member of the portal enzyme gene family, named BrPAL4, was remarkably downregulated, which was related to lignin biosynthesis. Furthermore, the yeast one-hybrid and dual-luciferase assays showed that BrbZIP39 could directly bind to the promoter region of BrPAL4 and activate its transcript. The virus-induced gene silencing system further demonstrated that BrbZIP39 could positively regulate hypocotyl elongation and the lignin biosynthesis of hypocotyl. Our findings provide a novel insight into the molecular regulatory mechanism of uniconazole inhibiting hypocotyl elongation in flowering Chinese cabbage and confirm, for the first time, that uniconazole decreases lignin content through repressing the BrbZIP39-BrPAL4 module-mediated phenylpropanoid biosynthesis, which leads to the hypocotyl dwarfing of flowering Chinese cabbage seedlings.PMID:36589099 | PMC:PMC9794620 | DOI:10.3389/fpls.2022.1014396

Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut

Mon, 02/01/2023 - 12:00
Front Plant Sci. 2022 Dec 16;13:1065049. doi: 10.3389/fpls.2022.1065049. eCollection 2022.ABSTRACTPeanut testa (seed coat) contains large amounts of flavonoids that significantly influence seed color, taste, and nutritional qualities. There are various colors of peanut testa, however, their precise flavonoid components and regulatory mechanism of pigmentation remain unclear. In this study, a total of 133 flavonoids were identified and absolutely quantified in the seed coat of four peanut cultivars with different testa color using a widely targeted metabolomic approach. Black peanut skin had more types and substantial higher levels of cyanidin-based anthocyanins, which possibly contribute to its testa coloration. Procyanidins and flavan-3-ols were the major co-pigmented flavonoids in the red, spot and black peanuts, while flavanols were the most abundant constitutes in white cultivar. Although the concentrations as well as composition characteristics varied, the content ratios of procyanidins to flavan-3-ols were similar in all samples except for white peanut. Furthermore, MYB-like transcription factors, anthocyanidin reductases (ANR), and UDP-glycosyltransferases (UGT) were found to be candidate genes involved in testa pigmentation via RNA-seq and weighted gene co-expression network analysis. It is proposed that UGTs and ANR compete for the substrate cyanidin and the prevalence of UGTs activities over ANR one will determine the color pattern of peanut testa. Our results provide a comprehensive report examining the absolute abundance of flavonoid profiles in peanut seed coat, and the finding are expected to be useful for further understanding of regulation mechanisms of seed coat pigmentation in peanut and other crops.PMID:36589085 | PMC:PMC9800836 | DOI:10.3389/fpls.2022.1065049

Combined analysis of the transcriptome and metabolome provides insights into the fleshy stem expansion mechanism in stem lettuce

Mon, 02/01/2023 - 12:00
Front Plant Sci. 2022 Dec 15;13:1101199. doi: 10.3389/fpls.2022.1101199. eCollection 2022.ABSTRACTAs a stem variety of lettuce, the fleshy stem is the main product organ of stem lettuce. The molecular mechanism of fleshy stem expansion in stem lettuce is a complex biological process. In the study, the material accumulation, gene expression, and morphogenesis during fleshy stem expansion process were analyzed by the comparative analysis of metabolome, transcriptome and the anatomical studies. The anatomical studies showed that the occurrence and activity of vascular cambium mainly led to the development of fleshy stems; and the volume of pith cells gradually increased and arranged tightly during the expansion process. A total of 822 differential metabolites and 9,383 differentially expressed genes (DEGs) were identified by the metabolomics and transcriptomics analyses, respectively. These changes significantly enriched in sugar synthesis, glycolysis, and plant hormone anabolism. The expression profiles of genes in the sugar metabolic pathway gradually increased in fleshy stem expansion process. But the sucrose content was the highest in the early stage of fleshy stem expansion, other sugars such as fructose and glucose content increased during fleshy stem expansion process. Plant hormones, including IAA, GA, CTK, and JA, depicted important roles at different stem expansion stages. A total of 1,805 DEGs were identified as transcription factors, such as MYB, bHLH, and bZIP, indicating that these transcription factor families might regulate the fleshy stems expansion in lettuce. In addition, the expression patterns identified by qRT-PCR were consistent with the expression abundance identified by the transcriptome data. The important genes and metabolites identified in the lettuce fleshy stem expansion process will provide important information for the further molecular mechanism study of lettuce fleshy stem growth and development.PMID:36589074 | PMC:PMC9798005 | DOI:10.3389/fpls.2022.1101199

Integrative proteomics and metabolomics approach to identify the key roles of icariin-mediated protective effects against cyclophosphamide-induced spermatogenesis dysfunction in mice

Mon, 02/01/2023 - 12:00
Front Pharmacol. 2022 Dec 14;13:1040544. doi: 10.3389/fphar.2022.1040544. eCollection 2022.ABSTRACTThe alkylating antineoplastic agent cyclophosphamide (CP) is known to be toxic to the male reproductive system, but there are no effective prevention or treatment options. The flavonoid icariin (ICA), which is used in Chinese medicine, has been shown to have a number of biological functions, including testicular protection. The current study looked into the protective effects of ICA in preventing CP-induced spermatogenesis dysfunction. The current study looked into the role of ICA in preventing testicular dysfunction caused by CP. For 5 days, healthy adult mice were given saline or a single dose of CP (50 mg/kg) intraperitoneally (i.p). For the next 30 days, mice were given ICA (80 mg/kg) by gavage. Animals were euthanized 12 h after receiving ICA, and testes were removed for biochemical, histopathological, sperm evaluation, and transmission electron microscope analysis (TEM). We also investigated the potential biological effects of ICA on CP-induced spermatogenesis dysfunction in mice using an integrated proteomic and metabolomic approach. The levels of 8309 proteins and 600 metabolites were measured. The majority of the differential proteins and metabolites were found to be enriched in a variety of metabolic pathways, including the PI3K-Akt signaling pathway, necroptosis, the mTOR signaling pathway, glycerophospholipid metabolism, and ABC transporters, implying that ICA may have molecular mechanisms that contribute to CP-induced spermatogenesis dysfunction in the testis. Taken together, these findings show that ICA effectively reduces testis injury, implying that ICA may have a role in male infertility preservation.PMID:36588705 | PMC:PMC9794755 | DOI:10.3389/fphar.2022.1040544

Maturation of honey from Uruçú-Amarela (<em>Melipona mondury</em>): Metagenomics, metabolomics by NMR <sup>1</sup>H, physicochemical and antioxidant properties

Mon, 02/01/2023 - 12:00
Food Chem (Oxf). 2022 Dec 13;6:100157. doi: 10.1016/j.fochms.2022.100157. eCollection 2023 Jul 30.ABSTRACTThe objective of this study was to characterize the microbiota biodiversity of Uruçú-Amarela honey through metagenomics. Furthermore, the impact of maturation temperatures (20 and 30 °C) and time (0-180 days) on the physicochemical and antioxidant properties was investigated. 1H NMR was performed to verify metabolites formed during maturation. Uruçú-Amarela honey was mainly composed by lactic acid bacteria and osmophilic yeasts of genus Zygosaccharomyces. Maturation at 30 °C led to a higher fermentation activity, resulting in greater carbohydrate consumption, ethanol formation (0.0-0.6 %) and increased acidity (34.78-45.74 meq/kg) over the 180 days. It also resulted in honey with higher brown color (a* 0.7 to 3.89, b* 17.50-25.29) and antioxidant capacity, corroborating that the maturation is a suitable preservation technique for stingless bee honey, because it does not cause negative changes as it extends the shelf life of the stingless bee honey.PMID:36588603 | PMC:PMC9794890 | DOI:10.1016/j.fochms.2022.100157

Metabolome of purulent materials of liver abscesses from crossbred cattle and Holstein steers fed finishing diets with or without in-feed tylosin

Mon, 02/01/2023 - 12:00
J Anim Sci. 2023 Jan 2:skac427. doi: 10.1093/jas/skac427. Online ahead of print.ABSTRACTLiver abscesses in feedlot cattle are a polymicrobial infection with Fusobacterium necrophorum and Trueperella pyogenes as the primary and secondary etiologic agents, respectively. Cattle with liver abscesses do not exhibit clinical signs and the abscesses are detected only at slaughter. The objective was to conduct metabolomics analysis of purulent materials of liver abscesses to identify biochemicals. Liver abscesses from crossbred cattle (n=24) and Holstein steers (n=24), each fed high-grain finishing diet with tylosin (n=12) or no tylosin (n=12) were included in the study. Abscess purulent materials were analyzed by ultrahigh performance liquid chromatography-tandem mass spectroscopy. A total of 759 biochemicals were identified and were broadly categorized into carbohydrates, energy metabolism pathways intermediates, peptides, amino acids and their metabolites, lipids and their metabolites, nucleotides, vitamins and cofactors, xenobiotics, and partially characterized molecules. The top 50 biochemicals identified included amino acids, lipids, nucleotides, xenobiotics, peptides and carbohydrates and their metabolites. Among the 15 amino acid metabolites in the top-50 biochemicals, four were tryptophan metabolites, indoleacrylate, indolepropionate, tryptamine, and anthranilate. The 3-phenylpropionate, a product of phenylalanine metabolism, was the predominant metabolite in purulent materials. Between the four treatment groups, a two-way ANOVA analysis identified biochemicals that exhibited significant main effects for cattle type and in-feed tylosin use and their interactions. A total of 59 and 85 biochemicals were different (P < 0.05) between the cattle type (crossbred vs. Holstein steers) and in-feed tylosin use (tylosin vs. no tylosin), respectively. Succinate, an intermediate of lactate fermentation by some bacterial species, was one of the top 30 biochemicals that differentiated the four treatment groups. A number of lysophospholipids, indicative of bacterial and host cell membrane lyses, were identified in the purulent materials. In conclusion, to our knowledge this is the first report on the metabolome of liver abscess purulent materials and several biochemicals identified were related to metabolic activities of the bacterial community, particularly F. necrophorum and T. pyogenes. Biochemicals unique to liver abscesses that appear in the blood may serve as biomarkers and be of diagnostic value to detect liver abscesses of cattle before slaughter.PMID:36588460 | DOI:10.1093/jas/skac427

Pages