Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

A case of 2,8-DHA crystalline nephropathy caused by adenine phosphoribosyltransferase deficiency: diagnosis and treatment

Wed, 28/12/2022 - 12:00
CEN Case Rep. 2022 Dec 28. doi: 10.1007/s13730-022-00768-1. Online ahead of print.ABSTRACTAdenine phosphoribosyltransferase (APRT) deficiency is a rare autosomal recessive disorder that leads to the accumulation of poorly soluble 2,8-dihydroxyadenine (DHA) in the kidneys, resulting in a variety of renal presentations including nephrolithiasis, acute kidney injury, and chronic kidney disease (CKD) caused by crystal nephropathy. Here, we report a case of a 43-year-old man with 2,8-DHA crystalline nephropathy caused by APRT deficiency strongly suspected by renal biopsy results and definitively diagnosed by a urine gas chromatography-mass spectrometry (GC/MS)-based plasma metabolomic assessment. This case represents the importance of awareness and recognition of the signs and symptoms of this rare condition and its progression to CKD, which can be prevented by the early administration of xanthine oxidoreductase inhibitors.PMID:36576711 | DOI:10.1007/s13730-022-00768-1

Guidelines and considerations for building multidimensional libraries for untargeted MS-based metabolomics

Wed, 28/12/2022 - 12:00
Metabolomics. 2022 Dec 28;19(1):4. doi: 10.1007/s11306-022-01965-w.ABSTRACTINTRODUCTION: Feature annotation is crucial in untargeted metabolomics but remains a major challenge. The large pool of metabolites collected under various instrumental conditions is underrepresented in publicly available databases. Retention time (RT) and collision cross section (CCS) measurements from liquid chromatography ion mobility high-resolution mass spectrometers can be employed in addition to MS/MS spectra to improve the confidence of metabolite annotation. Recent advancements in machine learning focus on improving the accuracy of predictions for CCS and RT values. Therefore, high-quality experimental data are crucial to be used either as training datasets or as a reference for high-confidence matching.METHODS: This manuscript provides an easy-to-use workflow for the creation of an in-house metabolite library, offers an overview of alternative solutions, and discusses the challenges and advantages of using open-source software. A total of 100 metabolite standards from various classes were analyzed and subjected to the described workflow for library generation.RESULTS AND DISCUSSION: The outcome was an open-access available NIST format metabolite library (.msp) with multidimensional information. The library was used to evaluate CCS prediction tools, MS/MS spectra heterogeneities (e.g., multiple adducts, in-source fragmentation, radical fragment ions using collision-induced dissociation), and the reporting of RT.PMID:36576608 | DOI:10.1007/s11306-022-01965-w

Lenz Lenses in a Cryoprobe: Boosting NMR Sensitivity Toward Environmental Monitoring of Mass-Limited Samples

Wed, 28/12/2022 - 12:00
Anal Chem. 2022 Dec 28. doi: 10.1021/acs.analchem.2c04203. Online ahead of print.ABSTRACTNuclear magnetic resonance (NMR) spectroscopy is commonly employed in a wide range of metabolomic research. Unfortunately, due to its relatively low sensitivity, smaller samples become challenging to study by NMR. Cryoprobes can be used to increase sensitivity by cooling the coil and preamplifier, offering sensitivity improvements of ∼3 to 4x. Alternatively, microcoils can be used to increase mass sensitivity by improving sample filling and proximity, along with decreased electrical resistance. Unfortunately, combining the two approaches is not just technically challenging, but as the coil decreases, so does its thermal fingerprint, reducing the advantage of cryogenic cooling. Here, an alternative solution is proposed in the form of a Lenz lens inside a cryoprobe. Rather than replacing the detection coil, Lenz lenses allow the B1 field from a larger coil to be refocused onto a much smaller sample area. In turn, the stronger B1 field at the sample provides strong coupling to the cryocoil, improving the signal. By combining a 530 I.D. Lenz lens with a cryoprobe, sensitivity was further improved by 2.8x and 3.5x for 1H and 13C, respectively, over the cryoprobe alone for small samples. Additionally, the broadband nature of the Lenz lenses allowed multiple nuclei to be studied and heteronuclear two-dimensional (2D) NMR approaches to be employed. The sensitivity improvements and 2D capabilities are demonstrated on 430 nL of hemolymph and eight eggs (∼350 μm O.D.) from the model organismDaphnia magna. In summary, combining Lenz lenses with cryoprobes offers a relatively simple approach to boost sensitivity for tiny samples while retaining cryoprobe advantages.PMID:36576271 | DOI:10.1021/acs.analchem.2c04203

<em>Flavonifractor plautii</em> Protects Against Elevated Arterial Stiffness

Wed, 28/12/2022 - 12:00
Circ Res. 2022 Dec 28. doi: 10.1161/CIRCRESAHA.122.321975. Online ahead of print.ABSTRACTBACKGROUND: Dysbiosis of gut microbiota plays a pivotal role in vascular dysfunction and microbial diversity was reported to be inversely correlated with arterial stiffness. However, the causal role of gut microbiota in the progression of arterial stiffness and the specific species along with the molecular mechanisms underlying this change remain largely unknown.METHODS: Participants with elevated arterial stiffness and normal controls free of medication were matched for age and sex. The microbial composition and metabolic capacities between the 2 groups were compared with the integration of metagenomics and metabolomics. Subsequently, AngII (angiotensin II)-induced and humanized mouse model were employed to evaluate the protective effect of Flavonifractor plautii (F. plautii) and its main effector cis-aconitic acid.RESULTS: Human fecal metagenomic sequencing revealed a significantly high abundance and centrality of F. plautii in normal controls, which was absent in the microbial community of subjects with elevated arterial stiffness. Moreover, blood pressure only mediated part of the effect of F. plautii on lower arterial stiffness. The microbiome of normal controls exhibited an enhanced capacity for glycolysis and polysaccharide degradation, whereas, those of subjects with increased arterial stiffness were characterized by increased biosynthesis of fatty acids and aromatic amino acids. Integrative analysis with metabolomics profiling further suggested that increased cis-aconitic acid served as the main effector for the protective effect of F. plautii against arterial stiffness. Replenishment with F. plautii and cis-aconitic acid improved elastic fiber network and reversed increased pulse wave velocity through the suppression of MMP-2 (matrix metalloproteinase-2) and inhibition of MCP-1 (monocyte chemoattractant protein-1) and NF-κB (nuclear factor kappa-B) activation in both AngII-induced and humanized model of arterial stiffness.CONCLUSIONS: Our translational study identifies a novel link between F. plautii and arterial function and raises the possibility of sustaining vascular health by targeting gut microbiota.PMID:36575982 | DOI:10.1161/CIRCRESAHA.122.321975

Don't let go - co-fractionation mass spectrometry for untargeted mapping of protein-metabolite interactomes

Wed, 28/12/2022 - 12:00
Plant J. 2022 Dec 27. doi: 10.1111/tpj.16084. Online ahead of print.ABSTRACTThe chemical complexity of metabolomes goes hand in hand with the functional diversity. Small molecules have many essential roles, many of which are executed by binding and modulating the function of a protein partner. The complex and dynamic protein-metabolite interactions network underlies most if not all biological processes but remains under-characterized. Herein, we highlight how co-fractionation mass-spectrometry (CF-MS), a well-established approach to map protein assemblies, can be used for proteome and metabolome identification of the protein-metabolite interactions. We will review the recent CF-MS studies, discuss the main advantages and limitations, summarize available CF-MS guidelines, and outline future challenges and opportunities.PMID:36575913 | DOI:10.1111/tpj.16084

Retrograde signaling in plants: a critical review focusing on the GUN pathway and beyond

Wed, 28/12/2022 - 12:00
Plant Commun. 2022 Dec 26:100511. doi: 10.1016/j.xplc.2022.100511. Online ahead of print.ABSTRACTPlastids communicate their developmental and physiological status to the nucleus via retrograde signaling, thus allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated as biogenic' and 'operational' controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response (cpUPR), which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to the production of anthocyanins during stress acclimation through sucrose non-fermenting-1-related protein kinase-1 (SnRK1). Finally, a framework for the identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions in the dissection of organelle-nucleus communication.PMID:36575799 | DOI:10.1016/j.xplc.2022.100511

Preliminary exploration of the metabolic profile and metabolic pathways in newly diagnosed multiple myeloma

Wed, 28/12/2022 - 12:00
Zhonghua Zhong Liu Za Zhi. 2022 Dec 23;44(12):1369-1375. doi: 10.3760/cma.j.cn112152-20201212-01066.ABSTRACTObjective: To explore the metabolite profile and metabolic pathways of newly diagnosed multiple myeloma (MM). Methods: Gas chromatography-mass spectrometry (GC-MS) was employed for the high-throughput detection and identification of serum samples from 55 patients with MM and 37 healthy controls matched for age and sex from 2016 to 2017 collected at the First Affiliated Hospital of Soochow University. The relative standard deviation (RSD) of quality control (QC) samples was employed to validate the reproducibility of GC-MS approach. The differential metabolites between patients with MM and healthy controls were detected by partial least squares discrimination analysis (PLS-DA), and t-test with false discovery rate (FDR) correction. Metabolomics pathway analysis (MetPA) was employed to construct metabolic pathways. Results: There were 55 MM patients, including 34 males and 21 females. The median age was 60 years old (42-73 years old). There were 30 cases of IgG type, 9 cases of IgA type, 1 case of IgM type, 2 cases of non-secreted type, 1 case of double clone type and 12 cases of light chain type, including 3 cases of kappa light chain type and 9 cases of lambda light chain type. The result of QC sample test showed that the proportion of compounds with the RSD of the relative content of metabolites < 15% was 70.21% obtained by the reproducibility of GC-MS experimental data, which implied that the experimental data were reliable. A total of 17 metabolites were screened differently with the healthy control group, including myristic acid, hydroxyproline, cysteine, palmitic acid, L-leucine, stearic acid, methionine, phenylalanine, glycerin, serine, isoleucine, tyrosine, valine, citric acid, inositol, threonine, and oxalic acid (VIP>1, P<0.05). Metabolic pathway analysis suggested that metabolic disorders in MM patients comprised mainly phenylalanine metabolism, glyoxylic acid and dicarboxylic acid metabolism, phosphoinositide metabolism, cysteine and methionine metabolism, glycerolipid metabolism, glycine, serine, and threonine metabolism. Conclusion: Compared with normal people, patients with newly diagnosed MM have obvious differences in metabolic profiles and metabolic pathways.PMID:36575789 | DOI:10.3760/cma.j.cn112152-20201212-01066

The small brown planthopper (Laodelphaxstriatellus) as a vector of the rice stripe virus

Wed, 28/12/2022 - 12:00
Arch Insect Biochem Physiol. 2022 Dec 27:e21992. doi: 10.1002/arch.21992. Online ahead of print.ABSTRACTThe small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.PMID:36575628 | DOI:10.1002/arch.21992

Imaginal disc growth factor is involved in melanin synthesis and energy metabolism in Bombyx mori

Wed, 28/12/2022 - 12:00
Arch Insect Biochem Physiol. 2022 Dec 27:e21995. doi: 10.1002/arch.21995. Online ahead of print.ABSTRACTThe imaginal disc growth factor (IDGF), belonging to the glycoside hydrolase 18 family, plays an important role in various physiological processes in insects. However, the detail physiological function of IDGF is still unclear. In this study, transcriptome analysis was performed on the fatbody isolated from staged control and BmIDGF mutant silkworm larvae. Transcriptional profiling revealed that the absence of BmIDGF significantly affected differentially expressed genes involved in tyrosine and purine metabolism, as well as multiple energy metabolism pathways, including glycolysis, galactose, starch, and sucrose metabolism. The interruption of BmIDGF caused similar and specific gene expression changes to male and female fatbody. Furthermore, a genome-scale metabolic network integrating metabolomic and transcriptomic datasets revealed 11 pathways significantly altered at the transcriptional and metabolic levels, including amino acid, carbohydrate, uric acid metabolism pathways, insect hormone biosynthesis, and ABC transporters. In conclusion, this multiomics analysis suggests that IDGF is involved in gene-metabolism interactions, revealing its unique role in melanin synthesis and energy metabolism. This study provides new insights into the physiological function of IDGF in insects.PMID:36575612 | DOI:10.1002/arch.21995

Distinct metabolic biomarkers to distinguish IgG4-related disease from Sjogren's syndrome and pancreatic cancer and predict disease prognosis

Tue, 27/12/2022 - 12:00
BMC Med. 2022 Dec 27;20(1):497. doi: 10.1186/s12916-022-02700-x.ABSTRACTBACKGROUND: The pathogenesis of immunoglobulin G4-related disease (IgG4-RD) remains unclear. IgG4-RD often mimics other diseases, including pancreatic cancer (PC) and Sjogren's syndrome (SS), which may easily lead to misdiagnosis. This study was performed to explore the metabolite changes and potential biomarkers of IgG4-RD and other misdiagnosed diseases.METHODS: Untargeted liquid chromatography-tandem mass spectrometry metabolomics profiling of plasma samples from a cohort comprising healthy controls (HCs) and patients with IgG4-RD (n = 87), PC (n = 33), and SS (n = 31) was performed. A random forest machine learning model was used to verify the relevance of the identified metabolites in the diagnosis of different diseases and the prediction of disease prognosis.RESULTS: The ATP-binding cassette transporter pathway was found to be most closely related to IgG4-RD, which was significantly up-regulated in the IgG4-RD group than in all the matched groups. Five metabolites were proved to be valuable biomarkers for IgG4-RD. Caftaric acid, maltotetraose, D-glutamic acid, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphoserine, and hydroxyproline were useful in distinguishing between IgG4-RD, PC, SS, and HC [area under the curve (AUC) = 1]. A combination of phenylalanine betaine, 1-(1z-hexadecenyl)-sn-glycero-3-phosphocholine, Pi 40:8, uracil, and N1-methyl-2-pyridone-5-carboxamide showed a moderate value in predicting relapse in patients with IgG4-RD (AUC = 0.8).CONCLUSIONS: Our findings revealed the metabolite changes of IgG4-RD and provide new insights for deepening our understanding of IgG4-RD despite the lack of validation in external cohorts. Metabolomic biomarkers have significance in the clinical diagnosis and disease prognosis of IgG4-RD.PMID:36575511 | DOI:10.1186/s12916-022-02700-x

Integrated metabolomic and transcriptomic analyses of regulatory mechanisms associated with uniconazole-induced dwarfism in banana

Tue, 27/12/2022 - 12:00
BMC Plant Biol. 2022 Dec 28;22(1):614. doi: 10.1186/s12870-022-04005-w.ABSTRACTBACKGROUND: Uniconazole is an effective plant growth regulator that can be used in banana cultivation to promote dwarfing and enhance lodging resistance. However, the mechanisms underlying banana dwarfing induced by uniconazole are unknown. In uniconazole-treated bananas, gibberellin (GA) was downregulated compared to the control groups. An integrative analysis of transcriptomes and metabolomes was performed on dwarf bananas induced by uniconazole and control groups. The key pathways involved in uniconazole-induced dwarfism in banana were determined according to the overlap of KEGG annotation of differentially expressed genes and (DEGs) differential abundant metabolites (DAMs).RESULTS: Compared with the control groups, the levels of some flavonoids, tannins, and alkaloids increased, and those of most lipids, amino acids and derivatives, organic acids, nucleotides and derivatives, and terpenoids decreased in uniconazole-treated bananas. Metabolome analysis revealed the significant changes of flavonoids in uniconazole-treated bananas compared to control samples at both 15 days and 25 days post treatment. Transcriptome analysis shows that the DEGs between the treatment and control groups were related to a series of metabolic pathways, including lignin biosynthesis, phenylpropanoid metabolism, and peroxidase activity. Comprehensive analysis of the key pathways of co-enrichment of DEGs and DAMs from 15 d to 25 d after uniconazole treatment shows that flavonoid biosynthesis was upregulated.CONCLUSIONS: In addition to the decrease in GA, the increase in tannin procyanidin B1 may contribute to dwarfing of banana plants by inhibiting the activity of GA. The increased of flavonoid biosynthesis and the change of lignin biosynthesis may lead to dwarfing phenotype of banana plants. This study expands our understanding of the mechanisms underlying uniconazole-induced banana dwarfing.PMID:36575388 | DOI:10.1186/s12870-022-04005-w

The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis

Tue, 27/12/2022 - 12:00
Nat Commun. 2022 Dec 27;13(1):7965. doi: 10.1038/s41467-022-35707-2.ABSTRACTFerroptosis is a type of regulated necrosis caused by unrestricted lipid peroxidation and subsequent plasma membrane rupture. However, the lipid remodeling mechanism that determines sensitivity to ferroptosis remains poorly understood. Here, we report a previously unrecognized role for the lipid flippase solute carrier family 47 member 1 (SLC47A1) as a regulator of lipid remodeling and survival during ferroptosis. Among 49 phospholipid scramblases, flippases, and floppases we analyzed, only SLC47A1 had mRNA that was selectively upregulated in multiple cancer cells exposed to ferroptotic inducers. Large-scale lipidomics and functional analyses revealed that the silencing of SLC47A1 increased RSL3- or erastin-induced ferroptosis by favoring ACSL4-SOAT1-mediated production of polyunsaturated fatty acid cholesterol esters. We identified peroxisome proliferator activated receptor alpha (PPARA) as a transcription factor that transactivates SLC47A1. The depletion of PPARA and SLC47A1 similarly sensitized cells to ferroptosis induction, whereas transfection-enforced re-expression of SLC47A1 restored resistance to ferroptosis in PPARA-deficient cells. Pharmacological or genetic blockade of the PPARA-SLC47A1 pathway increased the anticancer activity of a ferroptosis inducer in mice. These findings establish a direct molecular link between ferroptosis and lipid transporters, which may provide metabolic targets for overcoming drug resistance.PMID:36575162 | DOI:10.1038/s41467-022-35707-2

Lead optimization of aryl hydrocarbon receptor ligands for treatment of inflammatory skin disorders

Tue, 27/12/2022 - 12:00
Biochem Pharmacol. 2022 Dec 24:115400. doi: 10.1016/j.bcp.2022.115400. Online ahead of print.ABSTRACTTherapeutic aryl hydrocarbon receptor (AHR) modulating agents gained attention in dermatology as non-steroidal anti-inflammatory drugs that improve skin barrier properties. By exploiting AHR's known ligand promiscuity, we generated novel AHR modulating agents by lead optimization of a selective AHR modulator (SAhRM; SGA360). Twenty-two newly synthesized compounds were screened yielding two novel derivatives, SGA360f and SGA388, in which agonist activity led to enhanced keratinocyte terminal differentiation. SGA388 showed the highest agonist activity with potent normalization of keratinocyte hyperproliferation, restored expression of skin barrier proteins and dampening of chemokine expression by keratinocytes upon Th2-mediated inflammation in vitro. The topical application of SGA360f and SGA388 reduced acute skin inflammation in vivo by reducing cyclooxygenase levels, resulting in less neutrophilic dermal infiltrates. The minimal induction of cytochrome P450 enzyme activity, lack of cellular toxicity and mutagenicity classifies SGA360f and SGA388 as novel potential therapeutic AHR ligands and illustrates the potential of medicinal chemistry to fine-tune AHR signaling for the development of targeted therapies in dermatology and beyond.PMID:36574884 | DOI:10.1016/j.bcp.2022.115400

Temporal metabolic profiling of erythrocytes in mice infected with Babesia microti

Tue, 27/12/2022 - 12:00
Microb Pathog. 2022 Dec 24:105954. doi: 10.1016/j.micpath.2022.105954. Online ahead of print.ABSTRACTBACKGROUND: Babesiosis is an emerging zoonosis worldwide that is caused by tick-borne apicomplexans, Babesiaspp., which threatens the health of domesticated and wild mammals and even humans. Although it has done serious harm to animal husbandry and public health, the study of Babesia is still progressing slowly. Until now, no effective anti-Babesia vaccines have been available, and administration of combined drugs tends to produce side effects. Therefore, non-targeted metabolomics was employed in the present study to examine the temporal dynamic changes in the metabolic profile of the infected erythrocytes. The goal was to obtain new insight into pathogenesis of Babesia and to explore vaccine candidates or novel drug targets.METHODS: C57BL/6 mice were infected with B. microti and erythrocytes at different time points (0, 3, 6 d, 9, 12, and 22-days post-infection) were subjected to parasitemia surveillance and then metabolomics analysis using liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses were performed to clearly separate and identify dysregulated metabolites in Babesia-infected mice. The analyses included principal components analysis (PCA) and orthogonal partial least squares-discrimination analysis (OPLS-DA). The time-series trends of the impacted molecules were analyzed using the R package Mfuzz and the fuzzy clustering principle. The temporal profiling of amino acids, lipids, and nucleotides in blood cells infected with B. microti were also investigated.RESULTS: B. microti infection resulted in a fast increase of parasitemia and serious alteration of the mouse metabolites. Through LC-MS metabolomics analysis, 10,289 substance peaks were detected and annotated to 3,705 components during the analysis period. There were 1,166 dysregulated metabolites, which were classified into 8 clusters according to the temporal trends. Consistent with the trend of parasitemia, the numbers of differential metabolites reached a peak of 525 at 6-days post-infection. Moreover, the central carbon metabolism in cancer demonstrated the most serious change during the infection process except for that observed at 6 dpi. Sabotage occurred in components involved in the TCA cycle, amino acids, lipids, and nucleotide metabolism.CONCLUSION: Our findings revealed a great alteration in the metabolites of Babesia-infected mice and shed new light on the pathogenesis of B. microti at the metabolic level. The results might lead to novel information about the mechanisms of pathopoiesis, babesisosis, and anti-parasite drug/vaccine development in the future.PMID:36574865 | DOI:10.1016/j.micpath.2022.105954

Untangling Determinants of gut microbiota and tumor immunologic status through a multi-omics approach in colorectal cancer

Tue, 27/12/2022 - 12:00
Pharmacol Res. 2022 Dec 24:106633. doi: 10.1016/j.phrs.2022.106633. Online ahead of print.ABSTRACTThe changes in gut microbiota have been implicated in colorectal cancer (CRC). The interplays between the host and gut microbiota remain largely unclear, and few studies have investigated these interplays using integrative multi-omics data. In this study, large-scale multi-comic datasets, including microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing of CRC patients, were analyzed individually and integrated through advanced bioinformatics methods. We further examined the clinical relevance of these findings in the mice recolonized with microbiota from human. We found that CRC patients had distinct microbiota compositions compared to healthy controls. A machine-learning model was developed with 28 biomarkers for detection of CRC, which had high accuracy and clinical applicability. We identified multiple significant correlations between genera and well-characterized genes, suggesting the potential role of gut microbiota in tumor immunity. Further analysis showed that specific metabolites worked as profound communicators between these genera and tumor immunity. Integrating microbiota and metabolome perspectives, we catalogued gut taxonomic and metabolomic features that represented the key multi-omics signature of CRC. Furthermore, gut microbiota from CRC patients transplanted to compromise the response of CRC to immunotherapy. These phenotypes were strongly associated with the alterations in gut microbiota, immune cell infiltration as well as multiple metabolic pathways. The comprehensive interplays across multi-comic data of CRC might explain how gut microbiota influenced tumor immunity. Hence, we proposed that modifying the CRC microbiota using healthy donors might serve as a promising strategy to improve response to immunotherapy.PMID:36574857 | DOI:10.1016/j.phrs.2022.106633

Integrating serum pharmacochemistry and metabolomics to study the combination mechanisms of Bupleurum chinense DC and Paeonia lactiflora pall for treating depression

Tue, 27/12/2022 - 12:00
J Ethnopharmacol. 2022 Dec 24:116068. doi: 10.1016/j.jep.2022.116068. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Bupleurum chinense DC-Paeonia lactiflora Pall (BCD-PLP) is a common clinical herb pair in traditional Chinese medicine (TCM) prescriptions commonly used to treat depression. However, its combination mechanisms with its anti-depressive effects remain highly unclear.AIM OF THE STUDY: Here, an effective strategy has been developed to study the combination mechanisms of Bupleurum chinense DC (BCD) and Paeonia lactiflora Pall (PLP) by integrating serum pharmacochemistry analysis, metabolomics technology, and molecular docking technology.MATERIALS AND METHODS: First, the depression model rats were replicated by the chronic unpredictable mild stress (CUMS) procedure, and the difference in the chemical composition in vivo before and after the combination of BCD and PLP was analyzed by integrating background subtraction and multivariate statistical analysis techniques. Then, UPLC/HRMS-based serum metabolomics was performed to analyze the synergistic effect on metabolite regulation before and after the combination of BCD and PLP. Further, the correlation analysis between the differential exogenous chemical components and the differential endogenous metabolites before and after the combination was employed to dissect the combination mechanisms from a global perspective of combining metabolomics and serum pharmacochemistry. Finally, the molecular docking between the differential chemical components and the key metabolic enzymes was applied to verify the regulatory effect of the differential exogenous chemical components on the differential endogenous metabolites.RESULTS: The serum pharmacochemistry analysis results demonstrated that the combination of BCD and PLP could significantly affect the content of 10 components in BCD (including 5 prototype components were significantly decreased and 5 metabolites were significantly increased) and 8 components in PLP (including 4 prototype components and 3 metabolites were significantly increased, 1 metabolite was significantly decreased), which indicated that the combination could enhance BCD prototype components' metabolism and the absorption of the PLP prototype components. Besides, metabolomics results indicated that the BCD-PLP herb pair group significantly reversed more metabolites (8) than BCD and PLP single herb group (5 & 4) and has a stronger regulatory effect on metabolite disorders caused by CUMS. Furthermore, the correlation analysis results suggested that saikogenin F and saikogenin G were significantly positively correlated with the endogenous metabolite itaconate, an endogenous anti-inflammatory metabolite; and benzoic acid was significantly positively correlated with D-serine, an endogenous metabolite with an antidepressant effect. Finally, the molecular docking results further confirmed that the combination of BCD and PLP could affect the activities of cis-aconitic acid decarboxylase and D-amino acid oxidase by increasing the in vivo concentration of saikogenin F and benzoic acid, which further enhances its anti-inflammatory activity and anti-depressive effect.CONCLUSIONS: In this study, an effective strategy has been developed to study the combination mechanisms of BCD and PLP by integrating serum pharmacochemistry analysis, multivariate statistical analysis, metabolomics technology, and molecular docking technology. Based on this strategy, the present study indicated that the combination of BCD and PLP could affect the activities of cis-aconitic acid decarboxylase and D-amino acid oxidase by increasing the concentration of saikogenin F and benzoic acid in vivo, which further enhances its anti-depressive effect. In short, this strategy will provide a reliable method for elucidating the herb-herb compatibility mechanism of TCM.PMID:36574791 | DOI:10.1016/j.jep.2022.116068

Biochemical metabolomic profiling of the Crown-of-Thorns Starfish (Acanthaster): New insight into its biology for improved pest management

Tue, 27/12/2022 - 12:00
Sci Total Environ. 2022 Nov 26:160525. doi: 10.1016/j.scitotenv.2022.160525. Online ahead of print.ABSTRACTThe Crown-of-Thorns Starfish (COTS), Acanthaster species, is a voracious coral predator that destroys coral reefs when in outbreak status. The baseline metabolite and lipid biomolecules of 10 COTS tissues, including eggs from gravid females, were investigated in this study to provide insight into their biology and identify avenues for control. Targeted and untargeted metabolite- and lipidomics-based mass spectrometry approaches were used to obtain tissue-specific metabolite and lipid profiles. Across all COTS tissues, 410 metabolites and 367 lipids were identified. Most abundant were amino acids and peptides (18.7 %) and wax esters (17 %). There were 262 metabolites and 192 lipids identified in COTS eggs. Wax esters were more abundant in the eggs (30 %) followed by triacylglycerols (TG), amino acids, and peptides. The diversity of asterosaponins in eggs (34) was higher than in tissues (2). Several asterosaponins known to modulate sperm acrosome reaction were putatively identified, including glycoside B, asterosaponin-4 (Co-Aris III), and regularoside B (asterosaponin A). The saponins saponin A, thornasteroside A, hillaside B, and non-saponins dictyol J and axinellamine B which have been shown to possess defensive properties, were found in abundance in gonads, skin, and radial nerve tissues. Inosine and 2-hexyldecanoic acid are the most abundant metabolites in tissues and eggs. As a secondary metabolite of purine degradation, inosine plays an important role in purine biosynthesis, while 2-hexyldecanoic acid is known to suppress side-chain crystallization during the synthesis of amphiphilic macromolecules (i.e., phospholipids). These significant spatial changes in metabolite, lipid, and asterosaponin profiles enabled unique insights into key biological tissue-specific processes that could be manipulated to better control COTS populations. Our findings highlight COTS as a novel source of molecules with therapeutic and cosmetic properties (ceramides, sphingolipids, carnosine, and inosine). These outcomes will be highly relevant for the development of strategies for COTS management including chemotaxis-based biocontrol and exploitation of COTS carcasses for the extraction of commercial molecules.PMID:36574554 | DOI:10.1016/j.scitotenv.2022.160525

Untargeted metabolomics and lipidomics identified four subtypes of small cell lung cancer

Tue, 27/12/2022 - 12:00
Metabolomics. 2022 Dec 27;19(1):3. doi: 10.1007/s11306-022-01964-x.ABSTRACTINTRODUCTION: Small cell lung cancer (SCLC) is a heterogeneous malignancy with dismal prognosis. However, few studies have conducted on the metabolic heterogeneity in SCLC.OBJECTIVE: We therefore identify SCLC classifications using untargeted metabolomics and lipidomics. We also compared their survival and the immunotherapy responses.METHODS: Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) analysis was performed in 191 SCLC serum samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to identify metabolic pathways. The Kaplan-Meier and log-rank test were used to analyze the survival curves. The univariate and multivariate Cox proportional hazards regression models were used to evaluate prognostic factors for OS in patients with SCLC.RESULTS: Distinct subtypes of SCLC were identified by consensus clustering algorithm using partioning around medoids (pam) based on untargeted metabolomics and lipidomics. Four distinct subtypes of SCLC were identified, with distinct metabolic pathways. Subgroup 2 had the longest survival whereas Subgroup 1 had the shortest. Subtype 2 benefited most from immunotherapy in OS, as in contrast to Subtype 3 with shortest survival.CONCLUSION: Our study revealed the metabolic heterogeneity in SCLC and identified four subtypes with distinct metabolic features. It indicates promising therapeutic and prognostic value that may guide treatment for SCLC. The subtype-specific clinical trials may be designed and would be instructive for drug development.PMID:36574156 | DOI:10.1007/s11306-022-01964-x

Untargeted Metabolomic Analysis Reveals the Metabolic Disturbances and Exacerbation of Oxidative Stress in the Cerebral Cortex of a BTBR Mouse Model of Autism

Tue, 27/12/2022 - 12:00
J Mol Neurosci. 2022 Dec 27. doi: 10.1007/s12031-022-02096-6. Online ahead of print.ABSTRACTThe etiology and pathology of autism spectrum disorders (ASDs) are still poorly understood, which largely limit the treatment and diagnosis of ASDs. Emerging evidence supports that abnormal metabolites in the cerebral cortex of a BTBR mouse model of autism are involved in the pathogenesis of autism. However, systematic study on global metabolites in the cerebral cortex of BTBR mice has not been conducted. The current study aims to characterize metabolic changes in the cerebral cortex of BTBR mice by using an untargeted metabolomic approach based on UPLC-Q-TOF/MS. C57BL/6 J mice were used as a control group. A total of 14 differential metabolites were identified. Compared with the control group, the intensities of PI(16:0/22:5(4Z,7Z,10Z,13Z,16Z)), PC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:1(9Z)), PA(16:0/18:1(11Z)), 17-beta-estradiol-3-glucuronide, and N6,N6,N6-trimethyl-L-lysine decreased significantly (p < 0.01) and the intensities of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, LysoPC(20:4(5Z,8Z,11Z,14Z)/0:0), adenosine monophosphate, adenosine-5'-phosphosulfate, LacCer(d18:1/12:0),3-dehydro-L-gulonate, N-(1-deoxy-1-fructosyl)tryptophan, homovanillic acid, and LPA(0:0/18:1(9Z)) increased significantly (p < 0.01) in the BTBR group. These changes in metabolites were closely related to perturbations in lipid metabolism, energy metabolism, purine metabolism, sulfur metabolism, amino acid metabolism, and carnitine biosynthesis. Notably, exacerbation of the oxidative stress response caused by differential prooxidant metabolites led to alteration of antioxidative systems in the cerebral cortex and resulted in mitochondrial dysfunction, further leading to abnormal energy metabolism as an etiological mechanism of autism. A central role of abnormal metabolites in neurological functions associated with behavioral outcomes and disturbance of sulfur metabolism and carnitine biosynthesis were found in the cerebral cortex of BTBR mice, which helped increase our understanding for exploring the pathological mechanism of autism.PMID:36574152 | DOI:10.1007/s12031-022-02096-6

Despite similar clinical features metabolomics reveals distinct signatures in insulin resistant and progressively obese minipigs

Tue, 27/12/2022 - 12:00
J Physiol Biochem. 2022 Dec 27. doi: 10.1007/s13105-022-00940-2. Online ahead of print.ABSTRACTObesity is a major contributor to the silent and progressive development of type 2 diabetes (T2D) whose prevention could be improved if individuals at risk were identified earlier. Our aim is to identify early phenotypes that precede T2D in diet-induced obese minipigs. We fed four groups of minipigs (n = 5-10) either normal-fat or high-fat high-sugar diet during 2, 4, or 6 months. Morphometric features were recorded, and metabolomics and clinical parameters were assessed on fasting plasma samples. Multivariate statistical analysis on 46 morphometrical and clinical parameters allowed to differentiate 4 distinct phenotypes: NFC (control group) and three others (HF2M, HF4M, HF6M) corresponding to the different stages of the obesity progression. Compared to NFC, we observed a rapid progression of body weight and fat mass (4-, 7-, and tenfold) in obese phenotypes. Insulin resistance (IR; 2.5-fold increase of HOMA-IR) and mild dyslipidemia (1.2- and twofold increase in total cholesterol and HDL) were already present in the HF2M and remained stable in HF4M and HF6M. Plasma metabolome revealed subtle changes of 23 metabolites among the obese groups, including a progressive switch in energy metabolism from amino acids to lipids, and a transient increase in de novo lipogenesis and TCA-related metabolites in HF2M. Low anti-oxidative capacities and anti-inflammatory response metabolites were found in the HF4M, and a perturbed hexose metabolism was observed in HF6M. Overall, we show that IR and progressively obese minipigs reveal phenotype-specific metabolomic signatures for which some of the identified metabolites could be considered as potential biomarkers of early progression to TD2.PMID:36574151 | DOI:10.1007/s13105-022-00940-2

Pages