Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolomic Changes in Patients Affected by Multiple Sclerosis and Treated with Fingolimod

Wed, 29/03/2023 - 12:00
Metabolites. 2023 Mar 15;13(3):428. doi: 10.3390/metabo13030428.ABSTRACTCurrent treatment for Multiple Sclerosis (MS) consists of a multidisciplinary approach including disease-modifying therapies. The response to treatment is heterogeneous, representing a crucial challenge in the classification of patients. Metabolomics is an innovative tool that can identifies biomarkers/predictors of treatment response. We aimed to evaluate plasma metabolic changes in a group of naïve Relapsing-Remitting MS patients starting Fingolimod treatment, to find specific metabolomic features that predict the therapeutic response as well as the possible side effects. The study included 42 Relapsing-Remitting MS blood samples, of which 30 were classified as responders after two years of FINGO treatment, whereas 12 patients were Not-Responders. For fifteen patients, samples were collected at four time points: before starting the therapy; at six months after the initiation; at twelve months after; and at twenty-four months after initiation. The serum was analysed through Nuclear Magnetic Resonance and multivariate and univariate statistical analysis. Considering the single comparison between each time point, it was possible to identify a set of metabolites changing their concentrations based on the drug intake. FINGO influences aminoacidic and energy metabolisms and reduces oxidative stress and the activity of the immune system, both typical features of MS.PMID:36984868 | DOI:10.3390/metabo13030428

Metabolomic Analysis Demonstrates the Impacts of Polyketide Synthases PKS14 and PKS15 on the Production of Beauvericins, Bassianolide, Enniatin A, and Ferricrocin in Entomopathogen <em>Beauveria bassiana</em>

Wed, 29/03/2023 - 12:00
Metabolites. 2023 Mar 14;13(3):425. doi: 10.3390/metabo13030425.ABSTRACTBeauveria bassiana is a globally distributed entomopathogenic fungus that produces various secondary metabolites to support its pathogenesis in insects. Two polyketide synthase genes, pks14 and pks15, are highly conserved in entomopathogenic fungi and are important for insect virulence. However, understanding of their mechanisms in insect pathogenicity is still limited. Here, we overexpressed these two genes in B. bassiana and compared the metabolite profiles of pks14 and pks15 overexpression strains to those of their respective knockout strains in culture and in vivo using tandem liquid chromatography-mass spectrometry (LC-MS/MS) with Global Natural Products Social Molecular Networking (GNPS). The pks14 and pks15 clusters exhibited crosstalk with biosynthetic clusters encoding insect-virulent metabolites, including beauvericins, bassianolide, enniatin A, and the intracellular siderophore ferricrocin under certain conditions. These secondary metabolites were upregulated in the pks14-overexpressing strain in culture and the pks15-overexpressing strain in vivo. These data suggest that pks14 and pks15, their proteins or their cluster components might be directly or indirectly associated with key pathways in insect pathogenesis of B. bassiana, particularly those related to secondary metabolism. Information about interactions between the polyketide clusters and other biosynthetic clusters improves scientific understanding about crosstalk among biosynthetic pathways and mechanisms of pathogenesis.PMID:36984865 | DOI:10.3390/metabo13030425

Decoding Metabolic Reprogramming in Plants under Pathogen Attacks, a Comprehensive Review of Emerging Metabolomics Technologies to Maximize Their Applications

Wed, 29/03/2023 - 12:00
Metabolites. 2023 Mar 13;13(3):424. doi: 10.3390/metabo13030424.ABSTRACTIn their environment, plants interact with a multitude of living organisms and have to cope with a large variety of aggressions of biotic or abiotic origin. What has been known for several decades is that the extraordinary variety of chemical compounds the plants are capable of synthesizing may be estimated in the range of hundreds of thousands, but only a fraction has been fully characterized to be implicated in defense responses. Despite the vast importance of these metabolites for plants and also for human health, our knowledge about their biosynthetic pathways and functions is still fragmentary. Recent progress has been made particularly for the phenylpropanoids and oxylipids metabolism, which is more emphasized in this review. With an increasing interest in monitoring plant metabolic reprogramming, the development of advanced analysis methods should now follow. This review capitalizes on the advanced technologies used in metabolome mapping in planta, including different metabolomics approaches, imaging, flux analysis, and interpretation using bioinformatics tools. Advantages and limitations with regards to the application of each technique towards monitoring which metabolite class or type are highlighted, with special emphasis on the necessary future developments to better mirror such intricate metabolic interactions in planta.PMID:36984864 | DOI:10.3390/metabo13030424

Integrative Analysis of Metabolome and Transcriptome Reveals Molecular Insight into Metabolomic Variations during Hawthorn Fruit Development

Wed, 29/03/2023 - 12:00
Metabolites. 2023 Mar 13;13(3):423. doi: 10.3390/metabo13030423.ABSTRACTHawthorn (Crataegus pinnatifida var. major), a cultivated fruit tree, is native and unique to China. Its fruits have high nutritional, health, and medicinal values. However, the development and ripening process of hawthorns is accompanied by dramatic changes in flavor, aroma, and bioactive phytochemicals, which are the fundamental factors that contribute to the potential health benefits and establishment of fruit quality. Therefore, an exploration of the dynamic changes in metabolites and their regulatory networks during the development of hawthorn fruits can elucidate the formation mechanisms of active substances in hawthorn fruits. In this study, we used a broad targeted metabolomics approach to identify and analyze the dynamics of metabolites in hawthorn fruits at five developmental stages. The results revealed 998 primary and secondary metabolites that were classified into 15 categories. The accumulation levels of most sugars increased during fruit development and then accelerated at the fruit ripening stage. The accumulation levels of a few organic acids (e.g., citric acid, isocitric acid, and quinic acid) continuously increased. Many organic acids exhibited significant decreasing trends. Among the 561 secondary metabolites detected, 189 were phenolic acids and 199 were flavonoids. The levels of many flavonoids were significantly reduced at later stages of fruit development; in contrast, the levels of two anthocyanins significantly increased during fruit ripening. Correlation analysis revealed that there is a certain correlation within and between primary as well as secondary metabolites during fruit development. Furthermore, the integration of metabolomic and transcriptomic data in this study revealed that changes in the expression of some differentially expressed genes (DEGs) were associated with the accumulation of metabolites such as sugars, organic acids, and flavonoids, e.g., the upregulated expression levels of CS (citrate synthase) genes were consistent with the continued accumulation of citric acid. Overall, this study demonstrates the metabolic changes that occur during the development of hawthorn fruit, explores the molecular mechanisms that underlie metabolite changes during fruit development, and lays a strong theoretical foundation for the improvement of hawthorn fruit quality and the development of functional components.PMID:36984863 | DOI:10.3390/metabo13030423

Human Milk Lipids and Small Metabolites: Maternal and Microbial Origins

Wed, 29/03/2023 - 12:00
Metabolites. 2023 Mar 13;13(3):422. doi: 10.3390/metabo13030422.ABSTRACTAlthough there has been limited application in the field to date, human milk omics research continues to gain traction. Human milk lipidomics and metabolomics research is particularly important, given the significance of milk lipids and metabolites for infant health. For researchers conducting compositional milk analyses, it is important to consider the origins of these compounds. The current review aims to provide a summary of the existing evidence on the sources of human milk lipids and small metabolites. Here, we describe five major sources of milk lipids and metabolites: de novo synthesis from mammary cells, production by the milk microbiota, dietary consumption, release from non-mammary tissue, and production by the gut microbiota. We synthesize the literature to provide evidence and understanding of these pathways in the context of mammary gland biology. We recommend future research focus areas to elucidate milk lipid and small metabolite synthesis and transport pathways. Better understanding of the origins of human milk lipids and metabolites is important to improve translation of milk omics research, particularly regarding the modulation of these important milk components to improve infant health outcomes.PMID:36984862 | DOI:10.3390/metabo13030422

Blackberry-Loaded AgNPs Attenuate Hepatic Ischemia/Reperfusion Injury via PI3K/Akt/mTOR Pathway

Wed, 29/03/2023 - 12:00
Metabolites. 2023 Mar 13;13(3):419. doi: 10.3390/metabo13030419.ABSTRACTLiver ischemia-reperfusion injury (IRI) is a pathophysiological insult that often occurs during liver surgery. Blackberry leaves are known for their anti-inflammatory and antioxidant activities.AIMS: To achieve site-specific delivery of blackberry leaves extract (BBE) loaded AgNPs to the hepatocyte in IRI and to verify possible molecular mechanisms.METHODS: IRI was induced in male Wister rats. Liver injury, hepatic histology, oxidative stress markers, hepatic expression of apoptosis-related proteins were evaluated. Non-targeted metabolomics for chemical characterization of blackberry leaves extract was performed.KEY FINDINGS: Pre-treatment with BBE protected against the deterioration caused by I/R, depicted by a significant improvement of liver functions and structure, as well as reduction of oxidative stress with a concomitant increase in antioxidants. Additionally, BBE promoted phosphorylation of antiapoptotic proteins; PI3K, Akt and mTOR, while apoptotic proteins; Bax, Casp-9 and cleaved Casp-3 expressions were decreased. LC-HRMS-based metabolomics identified a range of metabolites, mainly flavonoids and anthocyanins. Upon comprehensive virtual screening and molecular dynamics simulation, the major annotated anthocyanins, cyanidin and pelargonidin glucosides, were suggested to act as PLA2 inhibitors.SIGNIFICANCE: BBE can ameliorate hepatic IRI augmented by BBE-AgNPs nano-formulation via suppressing, oxidative stress and apoptosis as well as stimulation of PI3K/Akt/mTOR signaling pathway.PMID:36984859 | DOI:10.3390/metabo13030419

Primary Treatment Effects for High-Grade Serous Ovarian Carcinoma Evaluated by Changes in Serum Metabolites and Lipoproteins

Wed, 29/03/2023 - 12:00
Metabolites. 2023 Mar 12;13(3):417. doi: 10.3390/metabo13030417.ABSTRACTHigh-grade serous ovarian carcinoma (HGSOC) is the most common and deadliest ovarian cancer subtype. Despite advances in treatment, the overall prognosis remains poor. Regardless of efforts to develop biomarkers to predict surgical outcome and recurrence risk and resistance, reproducible indicators are scarce. Exploring the complex tumor heterogeneity, serum profiling of metabolites and lipoprotein subfractions that reflect both systemic and local biological processes were utilized. Furthermore, the overall impact on the patient from the tumor and the treatment was investigated. The aim was to characterize the systemic metabolic effects of primary treatment in patients with advanced HGSOC. In total 28 metabolites and 112 lipoproteins were analyzed by nuclear magnetic resonance (NMR) spectroscopy in longitudinal serum samples (n = 112) from patients with advanced HGSOC (n = 24) from the IMPACT trial with linear mixed effect models and repeated measures ANOVA simultaneous component analysis. The serum profiling revealed treatment-induced changes in both lipoprotein subfractions and circulating metabolites. The development of a more atherogenic lipid profile throughout the treatment, which was more evident in patients with short time to recurrence, indicates an enhanced systemic inflammation and increased risk of cardiovascular disease after treatment. The findings suggest that treatment-induced changes in the metabolome reflect mechanisms behind the diversity in disease-related outcomes.PMID:36984856 | DOI:10.3390/metabo13030417

Erratum: Metabolomics analysis of stool in rats with type 2 diabetes mellitus after single-anastomosis duodenal-ileal bypass with sleeve gastrectomy

Tue, 28/03/2023 - 12:00
Front Endocrinol (Lausanne). 2023 Mar 28;14:1128339. doi: 10.3389/fendo.2023.1128339. eCollection 2023.ABSTRACT[This corrects the article DOI: 10.3389/fendo.2022.1013959.].PMID:37082128 | PMC:PMC10111614 | DOI:10.3389/fendo.2023.1128339

Targeting IGF1R signaling enhances the sensitivity of cisplatin by inhibiting proline and arginine metabolism in oesophageal squamous cell carcinoma under hypoxia

Tue, 28/03/2023 - 12:00
J Exp Clin Cancer Res. 2023 Mar 28;42(1):73. doi: 10.1186/s13046-023-02623-2.ABSTRACTBACKGROUND: Cisplatin (DDP)-based chemotherapy is commonly adopted as the first-line treatment for patients with oesophageal squamous cell carcinoma (OSCC), but the high rate of drug resistance limits its clinical application and the underlying mechanisms at play remain unclear. The aims of this study were to elucidate the role of abnormal signal transmission and metabolism in the chemoresistance of OSCC under hypoxia and to identify targeted drugs that enhance the sensitivity of DDP chemotherapy.METHODS: Upregulated genes in OSCC were determined by RNA sequencing (RNA-seq), the Cancer Genome Atlas (TCGA) database, immunohistochemistry (IHC), real-time quantitative PCR (RT-qPCR), and western blotting (WB). The clinicopathological significance of insulin-like growth factor-I receptor (IGF1R), argininosuccinate synthetase 1 (ASS1), and pyrroline-5-carboxylate reductase 1 (PYCR1) in OSCC was analysed using tissue micriarray (TMA). Metabolic abnormalities were determined by untargeted metabolomics analysis. The DDP-resistance role of IGF1R, ASS1, and PYCR1 in OSCC was investigated in vitro and in vivo.RESULTS: Generally, tumour cells exist in a hypoxic microenvironment. By genomic profiling, we determined that IGF1R, as a receptor tyrosine kinase (RTK), was upregulated in OSCC under low-oxygen conditions. Clinically, enhanced IGF1R expression was associated with higher tumour stages and a poorer prognosis in OSCC patients, and its inhibitor, linsitinib, showed synergistic effects with DDP therapy in vivo and in vitro. Since oxygen-deprivation frequently lead to metabolic reprogramming, we further learned via metabolomics analysis that abnormal IGF1R pathways promoted the expression of metabolic enzymes ASS1 and PYCR1 by the transcriptional activity of c-MYC. In detail, enhanced expression of ASS1 promotes arginine metabolism for biological anabolism, whereas PYCR1 activates proline metabolism for redox balance, which maintains the proliferation ability of OSCC cells during DDP treatment under hypoxic conditions.CONCLUSION: Enhanced expression of ASS1 and PYCR1 via IGF1R pathways rewired arginine and proline metabolism, promoting DDP resistance in OSCC under hypoxia. Linsitinib targeting IGF1R signaling may lead to promising combination therapy options for OSCC patients with DDP resistance.PMID:36978187 | DOI:10.1186/s13046-023-02623-2

Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis

Tue, 28/03/2023 - 12:00
Crit Care. 2023 Mar 28;27(1):127. doi: 10.1186/s13054-023-04412-x.ABSTRACTBACKGROUND: The gut microbiome plays a pivotal role in the progression of sepsis. However, the specific mechanism of gut microbiota and its metabolites involved in the process of sepsis remains elusive, which limits its translational application.METHOD: In this study, we used a combination of the microbiome and untargeted metabolomics to analyze stool samples from patients with sepsis enrolled at admission, then microbiota, metabolites, and potential signaling pathways that might play important roles in disease outcome were screened out. Finally, the above results were validated by the microbiome and transcriptomics analysis in an animal model of sepsis.RESULTS: Patients with sepsis showed destruction of symbiotic flora and elevated abundance of Enterococcus, which were validated in animal experiments. Additionally, patients with a high burden of Bacteroides, especially B. vulgatus, had higher Acute Physiology and Chronic Health Evaluation II scores and longer stays in the intensive care unit. The intestinal transcriptome in CLP rats illustrated that Enterococcus and Bacteroides had divergent profiles of correlation with differentially expressed genes, indicating distinctly different roles for these bacteria in sepsis. Furthermore, patients with sepsis exhibited disturbances in gut amino acid metabolism compared with healthy controls; namely, tryptophan metabolism was tightly related to an altered microbiota and the severity of sepsis.CONCLUSION: Alterations in microbial and metabolic features in the gut corresponded with the progression of sepsis. Our findings may help to predict the clinical outcome of patients in the early stage of sepsis and provide a translational basis for exploring new therapies.PMID:36978107 | DOI:10.1186/s13054-023-04412-x

NEWS: the 2023 Metabolomics publication awards

Tue, 28/03/2023 - 12:00
Metabolomics. 2023 Mar 29;19(4):27. doi: 10.1007/s11306-023-02000-2.NO ABSTRACTPMID:36977802 | DOI:10.1007/s11306-023-02000-2

Effect of thallus melanisation on the sensitivity of lichens to heat stress

Tue, 28/03/2023 - 12:00
Sci Rep. 2023 Mar 28;13(1):5083. doi: 10.1038/s41598-023-32215-1.ABSTRACTExtreme climatic phenomena such as heat waves, heavy rainfall and prolonged droughts are one of the main problems associated with ongoing climate change. The global increase in extreme rainfalls associated with summer heatwaves are projected to increase in amplitude and frequency in the near future. However, the consequences of such extreme events on lichens are largely unknown. The aim was to determine the effect of heat stress on the physiology of lichen Cetraria aculeata in a metabolically active state and to verify whether strongly melanised thalli are more resistant than poorly melanised thalli. In the present study, melanin was extracted from C. aculeata for the first time. Our study showed that the critical temperature for metabolism is around 35 °C. Both symbiotic partners responded to heat stress, manifested by the decreased maximum quantum yield of PSII photochemistry, high level of cell membrane damage, increased membrane lipid peroxidation and decreased dehydrogenase activity. Highly melanised thalli were more sensitive to heat stress, which excludes the role of melanins as compounds protecting against heat stress. Therefore, mycobiont melanisation imposes a trade-off between protection against UV and avoidance of damage caused by high temperature. It can be concluded that heavy rainfall during high temperatures may significantly deteriorate the physiological condition of melanised thalli. However, the level of membrane lipid peroxidation in melanised thalli decreased over time after exposure, suggesting greater efficiency of antioxidant defence mechanisms. Given the ongoing climate changes, many lichen species may require a great deal of plasticity to maintain their physiological state at a level that ensures their survival.PMID:36977766 | DOI:10.1038/s41598-023-32215-1

Exploring the effect of the Uyghur medicine Munziq Balgam on a collagen-induced arthritis rat model by UPLC-MS/MS-based metabolomics approach

Tue, 28/03/2023 - 12:00
J Ethnopharmacol. 2023 Mar 26:116437. doi: 10.1016/j.jep.2023.116437. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Munziq Balgam (MBm) is a classic preparation of a traditional Uyghur medicine used for many years to treat abnormal body fluid diseases. The formula, as an in-hospital preparation, has already been used in the Hospital of Xinjiang Traditional Uyghur Medicine to treat rheumatoid arthritis (RA) with significant clinical effects.AIM OF THE STUDY: This study intends to reveal the intervention effect of MBm on collagen-induced arthritis (CIA) rats, discover the potential biomarkers with efficacy, and explore the mechanisms of metabolic regulation by using metabolomics method.MATERIAL AND METHODS: Sprague Dawley (SD) rats were randomly divided into five groups: blank group, CIA model group, Munziq Balgam nomal-dosage, Munziq Balgam high-dosage group and control group. Body weight, paw swelling, arthritis index, immune indices and histopathological experiments were carried out. Plasma from rats were detected by UPLC-MS/MS. Metabolomics of plasma was performed to analyze metabolic profiles, potential biomarkers, and metabolic pathways of MBm for CIA rats. The main metabolic result of Uyghur medicine MBm was compared with that of Zhuang medicine Longzuantongbi granules (LZTBG) to explore the characteristics of two ethnic medicines from different regions for RA.RESULTS: MBm could significantly alleviate symptoms of CIA rats by relieving arthritis symptoms on paw redness and swelling, inflammatory cell infiltration, synovial hyperplasia, pannus, cartilage and bone tissue destruction, as well as inhibiting the expression of IL-1β, IL-6, TNF-α, UA and ALP. Linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, sphingolipid metabolism, primary bile acid biosynthesis, porphyrin and chlorophyll metabolism and fatty acid degradation served as the main nine pathways of the interventional effect of MBm on CIA rats. Twenty-three different metabolites were screened out and strongly associated with the indicator makes of RA. Eight potential efficacy-related biomarkers were finally discovered in metabolic pathway network (phosphatidylcholine, bilirubin, sphinganine 1-phosphate, phytosphingosine, SM (d18:1/16:0), pantothenic acid, l-palmitoylcarnitine, chenodeoxycholate). Three metabolites (chenodeoxycholate, hyodeoxycholic acid and O-palmitoleoylcarnitine) were changed in both the metabolic study of MBm and LZTBG intervention effects on CIA rats. Additionally, MBm and LZTBG shared the same 6 metabolic pathways including linoleic acid, alpha-linolenic acid, pantothenate and CoA biosynthesis, achidonic acid, gycerophospholipid, and primary bile acid biosynthesis.CONCLUSION: The study suggested that MBm may effectively alleviate RA by regulating inflammation, immunity-related pathways and multiple targets. Metabolomics analysis showed that MBm (Xinjiang, the north of China) and LZTBG (Guangxi, the south of China), two ethnic medicines from different regions in China, share common metabolites and pathways but also have distinct differences in their interventions for RA.PMID:36977448 | DOI:10.1016/j.jep.2023.116437

Extreme plasticity of reproductive state in a female rodent

Tue, 28/03/2023 - 12:00
Curr Biol. 2023 Mar 27;33(6):R215-R216. doi: 10.1016/j.cub.2023.02.004.ABSTRACTSuccessful sexual reproduction relies on the coordination of multiple biological systems, yet traditional concepts of biological sex often ignore the natural plasticity in morphology and physiology underlying sex. Most female mammals develop a patent (i.e., opened) vaginal entrance (introitus) prenatally or postnatally before or during puberty, usually under the influence of estrogens, and remain patent for the remainder of their lifespan1. An exception is the southern African giant pouched rat (Cricetomys ansorgei), whose vaginal introitus remains sealed well into adulthood2. Here, we explore this phenomenon and report that the reproductive organs and the vaginal introitus can undergo astounding and reversible transformation. Non-patency is characterized by reduced uterine size and the presence of a sealed vaginal introitus. Furthermore, the female urine metabolome shows that patent and non-patent females profoundly differ in their urine content, a reflection of differences in physiology and metabolism. Surprisingly, patency state did not predict fecal estradiol or progesterone metabolite concentrations. Exploring the plasticity that exists in reproductive anatomy and physiology can uncover that traits long considered 'fixed' in adulthood can become plastic under specific evolutionary pressures. Moreover, the barriers to reproduction that such plasticity creates present unique challenges to maximizing reproductive potential.PMID:36977379 | DOI:10.1016/j.cub.2023.02.004

Gut Microbiome-Host Metabolome Homeostasis upon Exposure to PFOS and GenX in Male Mice

Tue, 28/03/2023 - 12:00
Toxics. 2023 Mar 19;11(3):281. doi: 10.3390/toxics11030281.ABSTRACTAlterations of the normal gut microbiota can cause various human health concerns. Environmental chemicals are one of the drivers of such disturbances. The aim of our study was to examine the effects of exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS)-specifically, perfluorooctane sulfonate (PFOS) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (GenX)-on the microbiome of the small intestine and colon, as well as on liver metabolism. Male CD-1 mice were exposed to PFOS and GenX in different concentrations and compared to controls. GenX and PFOS were found to have different effects on the bacterial community in both the small intestine and colon based on 16S rRNA profiles. High GenX doses predominantly led to increases in the abundance of Clostridium sensu stricto, Alistipes, and Ruminococcus, while PFOS generally altered Lactobacillus, Limosilactobacillus, Parabacteroides, Staphylococcus, and Ligilactobacillus. These treatments were associated with alterations in several important microbial metabolic pathways in both the small intestine and colon. Untargeted LC-MS/MS metabolomic analysis of the liver, small intestine, and colon yielded a set of compounds significantly altered by PFOS and GenX. In the liver, these metabolites were associated with the important host metabolic pathways implicated in the synthesis of lipids, steroidogenesis, and in the metabolism of amino acids, nitrogen, and bile acids. Collectively, our results suggest that PFOS and GenX exposure can cause major perturbations in the gastrointestinal tract, aggravating microbiome toxicity, hepatotoxicity, and metabolic disorders.PMID:36977046 | DOI:10.3390/toxics11030281

Gestational and Lactational Co-Exposure to DEHP and BPA Impairs Hepatic Function via PI3K/AKT/FOXO1 Pathway in Offspring

Tue, 28/03/2023 - 12:00
Toxics. 2023 Feb 24;11(3):216. doi: 10.3390/toxics11030216.ABSTRACTDi-(2-Ethylhexyl) phthalate (DEHP) and bisphenol A (BPA) present significant environmental endocrine-disrupting chemical properties. Although studies have implied reproductive impairment from exposure to BPA and DEHP, no study to date has shown the effect and mechanism of hepatic function after gestational and lactational co-exposure to DEHP and BPA in offspring. A total of 36 perinatal rats were randomly divided into four groups, DEHP (600 mg/kg/day), BPA (80 mg/kg/day), DEHP combined with BPA (600 mg/kg/day + 80 mg/kg/day), and control. Notably, 11 chemical targets were screened after identifying eight substances associated with chemically-induced hepatic damage. Molecular docking simulations revealed a high-scoring combination of eight metabolic components and targets of the PI3K/AKT/FOXO1 signaling pathway. The DEHP and BPA combination disrupted hepatic steatosis, ultimately affecting systemic the glucose and the lipid metabolic homeostasis with significant toxicity. Mechanistically, co-exposure to DEHP and BPA causes liver dysfunction and hepatic insulin resistance via PI3K/AKT/FOXO1 pathway in offspring. This is the first study of the hepatic function and mechanism of co-exposure to DEHP and BPA that combines metabolomics, molecular docking, and traditional toxicity assessment methods.PMID:36976981 | DOI:10.3390/toxics11030216

Metabolomic profiling of different clones of vitis vinifera L. cv. "Glera" and "Glera lunga" grapes by high-resolution mass spectrometry

Tue, 28/03/2023 - 12:00
Metabolomics. 2023 Mar 28;19(4):25. doi: 10.1007/s11306-023-01997-w.ABSTRACTINTRODUCTION: Prosecco wine production has been strongly extended in the last decade and several new clones have been introduced. "Glera" (minimum 85%) and "Glera lunga" are grape varieties of great economic impact used to produce Prosecco wines. Study of grape berry secondary metabolites is effective in the classification of vine varieties and clones. High-resolution mass spectrometry provides complete panorama of these metabolites in single analysis and coupling to statistical multivariate analysis is successfully applied in vine chemotaxonomy.OBJECTIVES: update and deepen the knowledge on the "Glera" and "Glera lunga" berry grapes chemotaxonomy and investigate some of the most produced and marketed clones by using the modern analytical and statistical tools.METHODS: five clones of "Glera" and two of "Glera lunga" grown in the same vineyard with same agronomical practices were studied for three vintages. Grape berry metabolomics was characterized by UHPLC/QTOF and multivariate statistical analysis was performed on the signals of main metabolites of oenological interest.RESULTS: "Glera" and "Glera lunga" showed different monoterpene profiles ("Glera" is richer in glycosidic linalool and nerol) and differences in polyphenols (catechin, epicatechin and procyanidins, trans-feruloyltartaric acid, E-ε-viniferin, isorhamnetin-glucoside, quercetin galactoside). Vintage affected the accumulation of these metabolites in berry. No statistical differentiation among the clones of each variety, was found.CONCLUSIONS: Coupling HRMS metabolomics/statistical multivariate analysis enabled clear differentiation between the two varieties. The examined clones of same variety showed similar metabolomic profiles and enological characteristics, but vineyard planting using different clones can result in more consistent final wines reducing the vintage variability linked to genotype × environment interaction.PMID:36976385 | DOI:10.1007/s11306-023-01997-w

Optimizing XCMS parameters for GC-MS metabolomics data processing: a case study

Tue, 28/03/2023 - 12:00
Metabolomics. 2023 Mar 28;19(4):26. doi: 10.1007/s11306-023-01992-1.ABSTRACTBACKGROUND AND AIMS: Optimizing metabolomics data processing parameters is a challenging and fundamental task to obtain reliable results. Automated tools have been developed to assist this optimization for LC-MS data. GC-MS data require substantial modifications in processing parameters, as the chromatographic profiles are more robust, with more symmetrical and Gaussian peaks. This work compared an automated XCMS parameter optimization using the Isotopologue Parameter Optimization (IPO) software with manual optimization of GC-MS metabolomics data. Additionally, the results were compared to online XCMS platform.METHODS: GC-MS data from control and test groups of intracellular metabolites from Trypanosoma cruzi trypomastigotes were used. Optimizations were performed on the quality control (QC) samples.RESULTS: The results in terms of the number of molecular features extracted, repeatability, missing values, and the search for significant metabolites showed the importance of optimizing the parameters for peak detection, alignment, and grouping, especially those related to peak width (fwhm, bw) and noise ratio (snthresh).CONCLUSION: This is the first time that a systematic optimization using IPO has been performed on GC-MS data. The results demonstrate that there is no universal approach for optimization but automated tools are valuable at this stage of the metabolomics workflow. The online XCMS proves to be an interesting processing tool, helping, above all, in the choice of parameters as a starting point for adjustments and optimizations. Although the tools are easy to use, there is still a need for technical knowledge about the analytical methods and instruments used.PMID:36976375 | DOI:10.1007/s11306-023-01992-1

Urinary Metabolomics Identified Metabolic Perturbations Associated with Gutka, a Smokeless Form of Tobacco

Tue, 28/03/2023 - 12:00
Chem Res Toxicol. 2023 Mar 28. doi: 10.1021/acs.chemrestox.2c00401. Online ahead of print.ABSTRACTGutka, a form of smokeless tobacco, is widely used in the Indian subcontinent and in other regions of South Asia. Smokeless tobacco exposure is most likely to increase the incidence of oral cancer in the Indian population, and metabolic changes are a hallmark of cancer. The development of biomarkers for early detection and better prevention measures for smokeless tobacco users at risk of oral cancer can be aided by studying urinary metabolomics and offering insight into altered metabolic profiles. This study aimed to investigate urine metabolic alterations among smokeless tobacco users using targeted LC-ESI-MS/MS metabolomics approaches to better understand the effects of smokeless tobacco on human metabolism. Smokeless tobacco users' specific urinary metabolomics signatures were extracted using univariate, multivariate analysis and machine learning methods. Statistical analysis identified 30 urine metabolites significantly associated with metabolomic alterations in humans who chew smokeless tobacco. Receiver operator characteristic (ROC) curve analysis evidenced the 5 most discriminatory metabolites from each approach that could differentiate between smokeless tobacco users and controls with higher sensitivity and specificity. An analysis of multiple-metabolite machine learning models and single-metabolite ROC curves revealed discriminatory metabolites capable of distinguishing smokeless tobacco users from nonusers more effectively with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in smokeless tobacco users, including arginine biosynthesis, beta-alanine metabolism, TCA cycle, etc. This study devised a novel strategy to identify exposure biomarkers among smokeless tobacco users by combining metabolomics and machine learning algorithms.PMID:36976269 | DOI:10.1021/acs.chemrestox.2c00401

Enhanced Wound Healing Potential of <em>Spirulina platensis</em> Nanophytosomes: Metabolomic Profiling, Molecular Networking, and Modulation of HMGB-1 in an Excisional Wound Rat Model

Tue, 28/03/2023 - 12:00
Mar Drugs. 2023 Feb 24;21(3):149. doi: 10.3390/md21030149.ABSTRACTExcisional wounds are considered one of the most common physical injuries. This study aims to test the effect of a nanophytosomal formulation loaded with a dried hydroalcoholic extract of S. platensis on promoting excisional wound healing. The Spirulina platensis nanophytosomal formulation (SPNP) containing 100 mg PC and 50 mg CH exhibited optimum physicochemical characteristics regarding particle size (598.40 ± 9.68 nm), zeta potential (-19.8 ± 0.49 mV), entrapment efficiency (62.76 ± 1.75%), and Q6h (74.00 ± 1.90%). It was selected to prepare an HPMC gel (SPNP-gel). Through metabolomic profiling of the algal extract, thirteen compounds were identified. Molecular docking of the identified compounds on the active site of the HMGB-1 protein revealed that 12,13-DiHome had the highest docking score of -7.130 kcal/mol. SPNP-gel showed higher wound closure potential and enhanced histopathological alterations as compared to standard (MEBO® ointment) and S. platensis gel in wounded Sprague-Dawley rats. Collectively, NPS promoted the wound healing process by enhancing the autophagy process (LC3B/Beclin-1) and the NRF-2/HO-1antioxidant pathway and halting the inflammatory (TNF-, NF-κB, TlR-4 and VEGF), apoptotic processes (AIF, Caspase-3), and the downregulation of HGMB-1 protein expression. The present study's findings suggest that the topical application of SPNP-gel possesses a potential therapeutic effect in excisional wound healing, chiefly by downregulating HGMB-1 protein expression.PMID:36976198 | DOI:10.3390/md21030149

Pages