Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Effect of Deferoxamine on Post-Transfusion Iron, Inflammation, and In Vitro Microbial Growth in a Canine Hemorrhagic Shock Model: A Randomized Controlled Blinded Pilot Study

Tue, 28/02/2023 - 12:00
Vet Sci. 2023 Feb 5;10(2):121. doi: 10.3390/vetsci10020121.ABSTRACTRed blood cell (RBC) transfusion is associated with recipient inflammation and infection, which may be triggered by excessive circulating iron. Iron chelation following transfusion may reduce these risks. The aim of this study was to evaluate the effect of deferoxamine on circulating iron and inflammation biomarkers over time and in vitro growth of Escherichia coli (E. coli) following RBC transfusion in dogs with atraumatic hemorrhage. Anesthetized dogs were subject to atraumatic hemorrhage and transfusion of RBCs, then randomized to receive either deferoxamine or saline placebo of equivalent volume (n = 10 per group) in a blinded fashion. Blood was sampled before hemorrhage and then 2, 4, and 6 h later. Following hemorrhage and RBC transfusion, free iron increased in all dogs over time (both p < 0.001). Inflammation biomarkers interleukin-6 (IL6), CXC motif chemokine-8 (CXCL8), interleukin-10 (IL10), and keratinocyte-derived chemokine (KC) increased in all dogs over time (all p < 0.001). Logarithmic growth of E. coli clones within blood collected 6 h post-transfusion was not different between groups. Only total iron-binding capacity was different between groups over time, being significantly increased in the deferoxamine group at 2 and 4 h post-transfusion (both p < 0.001). In summary, while free iron and inflammation biomarkers increased post-RBC transfusion, deferoxamine administration did not impact circulating free iron, inflammation biomarkers, or in vitro growth of E. coli when compared with placebo.PMID:36851425 | DOI:10.3390/vetsci10020121

Generation of Transgenic Sperm Expressing GFP by Lentivirus Transduction of Spermatogonial Stem Cells In Vivo in Cynomolgus Monkeys

Tue, 28/02/2023 - 12:00
Vet Sci. 2023 Feb 1;10(2):104. doi: 10.3390/vetsci10020104.ABSTRACTNonhuman primates (NHPs) have been considered as the best models for biomedical research due to their high similarities in genomic, metabolomic, physiological and pathological features to humans. However, generation of genetically modified NHPs through traditional methods, such as microinjection into the pronuclei of one-cell embryos, is prohibitive due to the targeting efficiency and the number of NHPs needed as oocyte/zygote donors. Using spermatogonial stem cells (SSCs) as the target of gene editing, producing gene-edited sperm for fertilization, is proven to be an effective way to establish gene editing animal disease models. In this experiment, we used ultrasound to guide the echo dense injection needle into the rete testis space, allowing the EGFP lentivirus to be slowly injected at positive pressure from the rete testis into seminiferous tubules. We found Thy1 can be used as a surface marker of cynomolgus monkey SSCs, confirming that SSCs carry the GFP gene. Finally, we successfully obtained transgenic sperm, with a similar freezing and recovery rate to that of WT animals.PMID:36851408 | DOI:10.3390/vetsci10020104

Crosstalk between COVID-19 Infection and Kidney Diseases: A Review on the Metabolomic Approaches

Tue, 28/02/2023 - 12:00
Vaccines (Basel). 2023 Feb 20;11(2):489. doi: 10.3390/vaccines11020489.ABSTRACTThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.PMID:36851366 | DOI:10.3390/vaccines11020489

A Systematic Role of Metabolomics, Metabolic Pathways, and Chemical Metabolism in Lung Cancer

Tue, 28/02/2023 - 12:00
Vaccines (Basel). 2023 Feb 7;11(2):381. doi: 10.3390/vaccines11020381.ABSTRACTLung cancer (LC) is considered as one of the leading causes of cancer-associated mortalities. Cancer cells' reprogrammed metabolism results in changes in metabolite concentrations, which can be utilized to identify a distinct metabolic pattern or fingerprint for cancer detection or diagnosis. By detecting different metabolic variations in the expression levels of LC patients, this will help and enhance early diagnosis methods as well as new treatment strategies. The majority of patients are identified at advanced stages after undergoing a number of surgical procedures or diagnostic testing, including the invasive procedures. This could be overcome by understanding the mechanism and function of differently regulated metabolites. Significant variations in the metabolites present in the different samples can be analyzed and used as early biomarkers. They could also be used to analyze the specific progression and type as well as stages of cancer type making it easier for the treatment process. The main aim of this review article is to focus on rewired metabolic pathways and the associated metabolite alterations that can be used as diagnostic and therapeutic targets in lung cancer diagnosis as well as treatment strategies.PMID:36851259 | DOI:10.3390/vaccines11020381

Multi-Omics Analyses Reveal the Mechanisms of Early Stage Kidney Toxicity by Diquat

Tue, 28/02/2023 - 12:00
Toxics. 2023 Feb 16;11(2):184. doi: 10.3390/toxics11020184.ABSTRACTDiquat (DQ), a widely used bipyridyl herbicide, is associated with significantly higher rates of kidney injuries compared to other pesticides. However, the underlying molecular mechanisms are largely unknown. In this study, we identified the molecular changes in the early stage of DQ-induced kidney damage in a mouse model through transcriptomic, proteomic and metabolomic analyses. We identified 869 genes, 351 proteins and 96 metabolites that were differentially expressed in the DQ-treated mice relative to the control mice (p < 0.05), and showed significant enrichment in the PPAR signaling pathway and fatty acid metabolism. Hmgcs2, Cyp4a10, Cyp4a14 and Lpl were identified as the major proteins/genes associated with DQ-induced kidney damage. In addition, eicosapentaenoic acid, linoleic acid, palmitic acid and (R)-3-hydroxybutyric acid were the major metabolites related to DQ-induced kidney injury. Overall, the multi-omics analysis showed that DQ-induced kidney damage is associated with dysregulation of the PPAR signaling pathway, and an aberrant increase in Hmgcs2 expression and 3-hydroxybutyric acid levels. Our findings provide new insights into the molecular basis of DQ-induced early kidney damage.PMID:36851058 | DOI:10.3390/toxics11020184

Differential Cell Metabolic Pathways in Gills and Liver of Fish (White Seabream <em>Diplodus sargus</em>) Coping with Dietary Methylmercury Exposure

Tue, 28/02/2023 - 12:00
Toxics. 2023 Feb 16;11(2):181. doi: 10.3390/toxics11020181.ABSTRACTMercury (Hg) is a dangerous and persistent trace element. Its organic and highly toxic form, methylmercury (MeHg), easily crosses biological membranes and accumulates in biota. Nevertheless, understanding the mechanisms of dietary MeHg toxicity in fish remains a challenge. A time-course experiment was conducted with juvenile white seabreams, Diplodus sargus (Linnaeus, 1758), exposed to realistic levels of MeHg in feed (8.7 μg g-1, dry weight), comprising exposure (E; 7 and 14 days) and post-exposure (PE; 28 days) periods. Total Hg levels increased with time in gills and liver during E and decreased significantly in PE (though levels of control fish were reached only for gills), with liver exhibiting higher levels (2.7 times) than gills. Nuclear magnetic resonance (NMR)-based metabolomics revealed multiple and often differential metabolic changes between fish organs. Gills exhibited protein catabolism, disturbances in cholinergic neurotransmission, and changes in osmoregulation and lipid and energy metabolism. However, dietary MeHg exposure provoked altered protein metabolism in the liver with decreased amino acids, likely for activation of defensive strategies. PE allowed for the partial recovery of both organs, even if with occurrence of oxidative stress and changes of energy metabolism. Overall, these findings support organ-specific responses according to their sensitivity to Hg exposure, pointing out that indications obtained in biomonitoring studies may depend also on the selected organ.PMID:36851056 | DOI:10.3390/toxics11020181

Hepatocellular Metabolic Abnormalities Induced by Long-Term Exposure to Novel Brominated Flame Retardant, Hexabromobenzene

Tue, 28/02/2023 - 12:00
Toxics. 2023 Jan 21;11(2):101. doi: 10.3390/toxics11020101.ABSTRACTNovel brominated flame retardants (NBFRs) are widely used to avoid environmental accumulation concerns and because of the regulations imposed on classical BFRs. However, recent studies have not revealed the negative effects of NBFR accumulation and exposure on humans. We conducted a metabolomics study on hexabromobenzene (HBB), one of the NBFRs, to investigate its effect on hepatocytes. Gas chromatography-mass spectrometry-based metabolite profiling was performed to observe metabolic perturbations by treating human livertissue-derived HepG2 cell lines with HBB for maximum 21 days. Metabolic pathway enrichment using 17 metabolite biomarkers determined via univariate and multivariate statistical analysis verified that long-term accumulation of HBB resulted in distinct diminution of eight amino acids and five other metabolites. Molecular docking of the biomarker-related enzymes revealed the potential molecular mechanism of hepatocellular response to HBB exposure, which disrupts the energy metabolism of hepatic cells. Collectively, this study may provide insights into the hidden toxicity of bioaccumulating HBB and unveil the risks associated with non-regulated NBFRs.PMID:36850976 | DOI:10.3390/toxics11020101

Broadly applicable TCR-based therapy for multiple myeloma targeting the immunoglobulin J chain

Tue, 28/02/2023 - 12:00
J Hematol Oncol. 2023 Feb 27;16(1):16. doi: 10.1186/s13045-023-01408-6.ABSTRACTBACKGROUND: The immunoglobulin J chain (Jchain) is highly expressed in the majority of multiple myeloma (MM), and Jchain-derived peptides presented in HLA molecules may be suitable antigens for T-cell therapy of MM.METHODS: Using immunopeptidomics, we identified Jchain-derived epitopes presented by MM cells, and pHLA tetramer technology was used to isolate Jchain-specific T-cell clones.RESULTS: We identified T cells specific for Jchain peptides presented in HLA-A1, -A24, -A3, and -A11 that recognized and lysed JCHAIN-positive MM cells. TCRs of the most promising T-cell clones were sequenced, cloned into retroviral vectors, and transferred to CD8 T cells. Jchain TCR T cells recognized target cells when JCHAIN and the appropriate HLA restriction alleles were expressed, while JCHAIN or HLA-negative cells, including healthy subsets, were not recognized. Patient-derived JCHAIN-positive MM samples were also lysed by Jchain TCR T cells. In a preclinical in vivo model for established MM, Jchain-A1, -A24, -A3, and -A11 TCR T cells strongly eradicated MM cells, which resulted in 100-fold lower tumor burden in Jchain TCR versus control-treated mice.CONCLUSIONS: We identified TCRs targeting Jchain-derived peptides presented in four common HLA alleles. All four TCRs demonstrated potent preclinical anti-myeloma activity, encouraging further preclinical testing and ultimately clinical development.PMID:36850001 | DOI:10.1186/s13045-023-01408-6

Rapid remodeling of the soil lipidome in response to a drying-rewetting event

Tue, 28/02/2023 - 12:00
Microbiome. 2023 Feb 27;11(1):34. doi: 10.1186/s40168-022-01427-4.ABSTRACTBACKGROUND: Microbiomes contribute to multiple ecosystem services by transforming organic matter in the soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact the microbial metabolism of organic matter by altering microbial physiology and function. These physiological responses are mediated in part by lipids that are responsible for regulating interactions between cells and the environment. Despite this critical role in regulating the microbial response to stress, little is known about microbial lipids and metabolites in the soil or how they influence phenotypes that are expressed under drying-rewetting cycles. To address this knowledge gap, we conducted a soil incubation experiment to simulate soil drying during a summer drought of an arid grassland, then measured the response of the soil lipidome and metabolome during the first 3 h after wet-up.RESULTS: Reduced nutrient access during soil drying incurred a replacement of membrane phospholipids, resulting in a diminished abundance of multiple phosphorus-rich membrane lipids. The hot and dry conditions increased the prevalence of sphingolipids and lipids containing long-chain polyunsaturated fatty acids, both of which are associated with heat and osmotic stress-mitigating properties in fungi. This novel finding suggests that lipids commonly present in eukaryotes such as fungi may play a significant role in supporting community resilience displayed by arid land soil microbiomes during drought. As early as 10 min after rewetting dry soil, distinct changes were observed in several lipids that had bacterial signatures including a rapid increase in the abundance of glycerophospholipids with saturated and short fatty acid chains, prototypical of bacterial membrane lipids. Polar metabolites including disaccharides, nucleic acids, organic acids, inositols, and amino acids also increased in abundance upon rewetting. This rapid metabolic reactivation and growth after rewetting coincided with an increase in the relative abundance of firmicutes, suggesting that members of this phylum were positively impacted by rewetting.CONCLUSIONS: Our study revealed specific changes in lipids and metabolites that are indicative of stress adaptation, substrate use, and cellular recovery during soil drying and subsequent rewetting. The drought-induced nutrient limitation was reflected in the lipidome and polar metabolome, both of which rapidly shifted (within hours) upon rewet. Reduced nutrient access in dry soil caused the replacement of glycerophospholipids with phosphorus-free lipids and impeded resource-expensive osmolyte accumulation. Elevated levels of ceramides and lipids with long-chain polyunsaturated fatty acids in dry soil suggest that lipids likely play an important role in the drought tolerance of microbial taxa capable of synthesizing these lipids. An increasing abundance of bacterial glycerophospholipids and triacylglycerols with fatty acids typical of bacteria and polar metabolites suggest a metabolic recovery in representative bacteria once the environmental conditions are conducive for growth. These results underscore the importance of the soil lipidome as a robust indicator of microbial community responses, especially at the short time scales of cell-environment reactions. Video Abstract.PMID:36849975 | DOI:10.1186/s40168-022-01427-4

Metformin and long non-coding RNAs in breast cancer

Tue, 28/02/2023 - 12:00
J Transl Med. 2023 Feb 27;21(1):155. doi: 10.1186/s12967-023-03909-x.ABSTRACTBreast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.PMID:36849958 | DOI:10.1186/s12967-023-03909-x

Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought

Tue, 28/02/2023 - 12:00
BMC Plant Biol. 2023 Feb 28;23(1):118. doi: 10.1186/s12870-023-04111-3.ABSTRACTBACKGROUND: Arbuscular mycorrhizal fungi (AMF) have a positive effect on drought tolerance of plants after establishing reciprocal resymbiosis with roots, while the underlying mechanism is not deciphered. Metabolomics can explain the mechanism of plant response to environmental stress by analyzing the changes of all small molecular weight metabolites. The purpose of this study was to use Ultra High Performance Liquid Chromatography Q Exactive Mass Spectrometer to analyze changes in root metabolites of walnut (Juglans regia) after inoculation with an arbuscular mycorrhizal fungus Diversispora spurca under well-watered (WW) and drought stress (DS).RESULTS: Sixty days of soil drought significantly inhibited root mycorrhizal colonization rate, shoot and root biomass production, and leaf water potential in walnut, while AMF inoculation significantly increased biomass production and leaf water potential, accompanied by a higher increase magnitude under DS versus under WW. A total of 3278 metabolites were identified. Under WW, AMF inoculation up-regulated 172 metabolites and down-regulated 61 metabolites, along with no changes in 1104 metabolites. However, under DS, AMF inoculation up-regulated 49 metabolites and down-regulated 116 metabolites, coupled with no changes in 1172 metabolites. Among them, juglone (a quinone found in walnuts) as the first ranked differential metabolite was up-regulated by AMF under WW but not under DS; 2,3,5-trihydroxy-5-7-dimethoxyflavanone as the first ranked differential metabolite was increased by AMF under DS but not under WW. The KEGG annotation showed a large number of metabolic pathways triggered by AMF, accompanied by different metabolic pathways under WW and DS. Among them, oxidative phosphorylation and phenylalanine metabolism and biosynthesis were triggered by AMF in response to WW and DS, where N-acetyl-L-phenylalanine was induced by AMF to increase under DS, while decreasing under WW.CONCLUSION: This study provides new insights into the metabolic mechanisms of mycorrhiza-enhanced drought tolerance in walnuts.PMID:36849930 | DOI:10.1186/s12870-023-04111-3

The effect of growth hormone on the metabolome of follicular fluid in patients with diminished ovarian reserve

Tue, 28/02/2023 - 12:00
Reprod Biol Endocrinol. 2023 Feb 27;21(1):21. doi: 10.1186/s12958-023-01073-x.ABSTRACTBACKGROUND: Increasing evidence supports that the co-treatment with growth hormone (GH) enhances ovarian response and oocyte quality during controlled ovarian stimulation (COS) in patients with diminished ovarian reserve (DOR). The composition of follicular fluid (FF) plays an essential role in oocyte development and mirrors the communication occurring between the oocyte and follicular microenvironment. However, the effect of GH on the FF metabolome remains unclear.METHODS: This prospective observational study recruited DOR patients undergoing in vitro fertilization (IVF) cycles with minimal stimulation protocol for COS. Each patient receiving GH co-treatment was matched to a patient without GH co-treatment by propensity score matching. The FF was collected after isolating oocytes and assayed by gas chromatograph-mass spectrometry (GC-MS) metabolomics. The Pearson correlation was performed to evaluate the relationship between the number of oocytes retrieved and the levels of differential metabolites. The KEGG database was used to map differential metabolites onto various metabolic pathways.RESULTS: One hundred thirty-four FF metabolites were identified by GC-MS metabolomics. Twenty-four metabolites, including glutathione, itaconic acid and S-adenosylmethionin (SAM) showed significant differences between the GH and control groups (p-value < 0.05 and q-value < 0.1). In addition, the number of oocytes retrieved was significantly higher in the GH group compared to the control group (3 vs 2, p = 0.04) and correlated with the levels of five differential metabolites. Among them, the levels of antioxidant metabolite itaconic acid were upregulated by GH administration, while SAM levels were downregulated.CONCLUSIONS: The co-treatment with GH during COS may improve oocyte development by altering FF metabolite profiles in DOR patients. However, given the downregulation of SAM, a regulator of genomic imprinting, the potential risk of imprinting disturbances should not be neglected.PMID:36849898 | DOI:10.1186/s12958-023-01073-x

The artificial sweetener erythritol and cardiovascular event risk

Tue, 28/02/2023 - 12:00
Nat Med. 2023 Feb 27. doi: 10.1038/s41591-023-02223-9. Online ahead of print.ABSTRACTArtificial sweeteners are widely used sugar substitutes, but little is known about their long-term effects on cardiometabolic disease risks. Here we examined the commonly used sugar substitute erythritol and atherothrombotic disease risk. In initial untargeted metabolomics studies in patients undergoing cardiac risk assessment (n = 1,157; discovery cohort, NCT00590200 ), circulating levels of multiple polyol sweeteners, especially erythritol, were associated with incident (3 year) risk for major adverse cardiovascular events (MACE; includes death or nonfatal myocardial infarction or stroke). Subsequent targeted metabolomics analyses in independent US (n = 2,149, NCT00590200 ) and European (n = 833, DRKS00020915 ) validation cohorts of stable patients undergoing elective cardiac evaluation confirmed this association (fourth versus first quartile adjusted hazard ratio (95% confidence interval), 1.80 (1.18-2.77) and 2.21 (1.20-4.07), respectively). At physiological levels, erythritol enhanced platelet reactivity in vitro and thrombosis formation in vivo. Finally, in a prospective pilot intervention study ( NCT04731363 ), erythritol ingestion in healthy volunteers (n = 8) induced marked and sustained (>2 d) increases in plasma erythritol levels well above thresholds associated with heightened platelet reactivity and thrombosis potential in in vitro and in vivo studies. Our findings reveal that erythritol is both associated with incident MACE risk and fosters enhanced thrombosis. Studies assessing the long-term safety of erythritol are warranted.PMID:36849732 | DOI:10.1038/s41591-023-02223-9

The metabolic profile of waist to hip ratio-A multi-cohort study

Mon, 27/02/2023 - 12:00
PLoS One. 2023 Feb 27;18(2):e0282433. doi: 10.1371/journal.pone.0282433. eCollection 2023.ABSTRACTBACKGROUND: The genetic background of general obesity and fat distribution is different, pointing to separate underlying physiology. Here, we searched for metabolites and lipoprotein particles associated with fat distribution, measured as waist/hip ratio adjusted for fat mass (WHRadjfatmass), and general adiposity measured as percentage fat mass.METHOD: The sex-stratified association of 791 metabolites detected by liquid chromatography-mass spectrometry (LC-MS) and 91 lipoprotein particles measured by nuclear magnetic spectroscopy (NMR) with WHRadjfatmass and fat mass were assessed using three population-based cohorts: EpiHealth (n = 2350) as discovery cohort, with PIVUS (n = 603) and POEM (n = 502) as replication cohorts.RESULTS: Of the 193 LC-MS-metabolites being associated with WHRadjfatmass in EpiHealth (false discovery rate (FDR) <5%), 52 were replicated in a meta-analysis of PIVUS and POEM. Nine metabolites, including ceramides, sphingomyelins or glycerophosphatidylcholines, were inversely associated with WHRadjfatmass in both sexes. Two of the sphingomyelins (d18:2/24:1, d18:1/24:2 and d18:2/24:2) were not associated with fat mass (p>0.50). Out of 91, 82 lipoprotein particles were associated with WHRadjfatmass in EpiHealth and 42 were replicated. Fourteen of those were associated in both sexes and belonged to very-large or large HDL particles, all being inversely associated with both WHRadjfatmass and fat mass.CONCLUSION: Two sphingomyelins were inversely linked to body fat distribution in both men and women without being associated with fat mass, while very-large and large HDL particles were inversely associated with both fat distribution and fat mass. If these metabolites represent a link between an impaired fat distribution and cardiometabolic diseases remains to be established.PMID:36848351 | DOI:10.1371/journal.pone.0282433

Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury

Mon, 27/02/2023 - 12:00
Cell Rep. 2023 Jan 31;42(1):112035. doi: 10.1016/j.celrep.2023.112035. Epub 2023 Jan 23.ABSTRACTInvariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.PMID:36848232 | DOI:10.1016/j.celrep.2023.112035

Label-free in vitro assays predict the potency of anti-disialoganglioside chimeric antigen receptor T-cell products

Mon, 27/02/2023 - 12:00
Cytotherapy. 2023 Feb 25:S1465-3249(23)00026-9. doi: 10.1016/j.jcyt.2023.01.008. Online ahead of print.ABSTRACTBACKGROUND AIMS: Chimeric antigen receptor (CAR) T cells have demonstrated remarkable efficacy against hematological malignancies; however, they have not experienced the same success against solid tumors such as glioblastoma (GBM). There is a growing need for high-throughput functional screening platforms to measure CAR T-cell potency against solid tumor cells.METHODS: We used real-time, label-free cellular impedance sensing to evaluate the potency of anti-disialoganglioside (GD2) targeting CAR T-cell products against GD2+ patient-derived GBM stem cells over a period of 2 days and 7 days in vitro. We compared CAR T products using two different modes of gene transfer: retroviral transduction and virus-free CRISPR-editing. Endpoint flow cytometry, cytokine analysis and metabolomics data were acquired and integrated to create a predictive model of CAR T-cell potency.RESULTS: Results indicated faster cytolysis by virus-free CRISPR-edited CAR T cells compared with retrovirally transduced CAR T cells, accompanied by increased inflammatory cytokine release, CD8+ CAR T-cell presence in co-culture conditions and CAR T-cell infiltration into three-dimensional GBM spheroids. Computational modeling identified increased tumor necrosis factor α concentrations with decreased glutamine, lactate and formate as being most predictive of short-term (2 days) and long-term (7 days) CAR T cell potency against GBM stem cells.CONCLUSIONS: These studies establish impedance sensing as a high-throughput, label-free assay for preclinical potency testing of CAR T cells against solid tumors.PMID:36849306 | DOI:10.1016/j.jcyt.2023.01.008

Molecular insights into enhanced nitrogen removal induced by trace fluoroquinolone antibiotics in an anammox system

Mon, 27/02/2023 - 12:00
Bioresour Technol. 2023 Feb 25:128784. doi: 10.1016/j.biortech.2023.128784. Online ahead of print.ABSTRACTIt has been widely reported that fluoroquinolones (FQs) can affect the anaerobic ammonium oxidization (anammox) microorganisms, which interferes with the performance of nitrogen removal from wastewater. However, the metabolic mechanism of anammox microorganisms responding to FQs has rarely been explored. In this study, it was found that 20 μg/L FQs promoted the nitrogen removal performance of anammox microorganisms in batch exposure assays, and 36-51% of FQs were removed simultaneously. Combined metabolomics and genome-resolved metagenomic analysis revealed up-regulated carbon fixation in anammox bacteria (AnAOB), while purine and pyrimidine metabolism, protein generation and transmembrane transport were enhanced in AnAOB and symbiotic bacteria by 20 μg/L FQs. Consequently, hydrazine dehydrogenation, nitrite reduction, and ammonium assimilation were bolstered, improving the nitrogen removal efficiency of the anammox system. These results revealed the potential roles of specific microorganisms in response to emerging FQs and provided further information for practical application of anammox technology in wastewater treatment.PMID:36849099 | DOI:10.1016/j.biortech.2023.128784

SPHINGOLIPIDS ARE DEPLETED IN ALCOHOL-RELATED LIVER FIBROSIS

Mon, 27/02/2023 - 12:00
Gastroenterology. 2023 Feb 25:S0016-5085(23)00162-2. doi: 10.1053/j.gastro.2023.02.023. Online ahead of print.ABSTRACTBACKGROUND & AIMS: Alcohol disturbs hepatic lipid synthesis and transport, but the role of lipid dysfunction in alcohol-related liver disease (ALD) is unclear. In this biopsy-controlled, prospective, observational study, we characterized the liver and plasma lipidomes in patients with early ALD.METHODS: We performed mass spectrometry-based lipidomics of paired liver and plasma samples from 315 ALD patients, and of plasma from 51 matched healthy controls. We associated lipid levels to histological fibrosis, inflammation and steatosis with correction for multiple testing and adjustment for confounders. We further investigated sphingolipid regulation by qPCR sequencing of miRNA, prediction of liver-related events, and tested causality with Mendelian randomization.RESULTS: We detected 198 lipids in the liver and 236 lipids in the circulation from 18 lipid classes. Most sphingolipids (sphingomyelins and ceramides) and phosphocholines were co-downregulated in both liver and plasma, where lower abundance correlated with higher fibrosis stage. Sphingomyelins showed the most pronounced negative correlation to fibrosis, mirrored by negative correlations in both liver and plasma with hepatic inflammation. Reduced sphingomyelins furthermore predicted future liver-related events. This seemed to be characteristic of 'pure ALD', as sphingomyelin levels were higher in patients with concomitant metabolic syndrome and ALD/NAFLD overlap. Mendelian randomization in FinnGen and UK Biobanks indicated ALD as the cause of low sphingomyelins, while alcohol use disorder did not correlate with genetic susceptibility to low sphingomyelin levels.CONCLUSION: Alcohol-related liver fibrosis is characterized by selective and progressive lipid depletion in liver and blood, particularly sphingomyelins, which also associates with progression to liver-related events.PMID:36849086 | DOI:10.1053/j.gastro.2023.02.023

Histone deacetylase inhibitors synergize with sildenafil to suppress purine metabolism and proliferation in pulmonary hypertension

Mon, 27/02/2023 - 12:00
Vascul Pharmacol. 2023 Feb 25:107157. doi: 10.1016/j.vph.2023.107157. Online ahead of print.ABSTRACTRATIONALE: Sildenafil, a well-known vasodilator known to interfere with purinergic signaling through effects on cGMP, is a mainstay in the treatment of pulmonary hypertension (PH). However, little is known regarding its effects on the metabolic reprogramming of vascular cells, which is a hallmark of pulmonary hypertension (PH). Purine metabolism, especially intracellular de novo purine biosynthesis is essential for vascular cell proliferation. Since adventitial fibroblasts are critical contributors to proliferative vascular remodeling in pulmonary hypertension, in this study we aimed to investigate if sildenafil, beyond its well-known vasodilator role in smooth muscle cells, impacts intracellular purine metabolism and proliferation of fibroblasts derived from human PH patients.METHODS: Integrated omics approaches (plasma and cell metabolomics) and pharmacological inhibitor approaches were employed in plasma samples and cultured pulmonary artery fibroblasts from PH patients.MEASUREMENTS AND MAIN RESULTS: Plasma metabolome analysis of 27 PH patients before and after treatment with sildenafil, demonstrated a partial, but specific effect of sildenafil on purine metabolites, especially adenosine, adenine, and xanthine. However, circulating markers of cell stress, including lactate, succinate, and hypoxanthine were only decreased in a small subset of sildenafil-treated patients. To better understand potential effects of sildenafil on pathological changes in purine metabolism (especially purine synthesis) in PH, we performed studies on pulmonary fibroblasts from PAH patients (PH-Fibs) and corresponding controls (CO-Fibs), since these cells have previously been shown to demonstrate stable and marked PH associated phenotypic and metabolic changes. We found that PH-Fibs exhibited significantly increased purine synthesis. Treatment of PH-Fibs with sildenafil was insufficient to normalize cellular metabolic phenotype and only modestly attenuated the proliferation. However, we observed that treatments which have been shown to normalize glycolysis and mitochondrial abnormalities including a PKM2 activator (TEPP-46), and the histone deacetylase inhibitors (HDACi), SAHA and apicidin, had significant inhibitory effects on purine synthesis. Importantly, combined treatment with HDACi and sildenafil exhibited synergistic inhibitory effects on proliferation and metabolic reprogramming in PH-Fibs.CONCLUSIONS: While sildenafil alone partially rescues metabolic alterations associated with PH, treatment with HDACi, in combination with sildenafil, represent a promising and potentially more effective strategy for targeting vasoconstriction, metabolic derangement and pathological vascular remodeling in PH.PMID:36849042 | DOI:10.1016/j.vph.2023.107157

Old Meets New: Mass Spectrometry-Based Untargeted Metabolomics Reveals Unusual Larvicidal Nitropropanoyl Glycosides from the Leaves of <em>Heteropterys umbellata</em>

Mon, 27/02/2023 - 12:00
J Nat Prod. 2023 Feb 27. doi: 10.1021/acs.jnatprod.2c00788. Online ahead of print.ABSTRACTThe Aedes aegypti (Diptera: Culicidae) mosquito is the vector of several arboviruses in tropical and subtropical areas of the globe, and synthetic pesticides remain the most widely used combat strategy. This study describes the investigation of secondary metabolites with larvicidal activity from the Malpighiaceae taxon using a metabolomic and bioactivity-based approach. The workflow initially consisted of a larvicidal screening of 394 extracts from the leaves of 197 Malpighiaceae samples, which were extracted using solvents of different polarity, leading to the selection of Heteropterys umbellata for the identification of active compounds. By employing untargeted mass spectrometry-based metabolomics and multivariate analyses (PCA and PLS-DA), it was possible to determine that the metabolic profiles of different plant organs and collection sites differed significantly. A bioguided approach led to the isolation of isochlorogenic acid A (1) and the nitropropanoyl glucosides karakin (2) and 1,2,3,6-tetrakis-O-[3-nitropropanoyl]-beta-glucopyranose (3). These nitro compounds exhibited larvicidal activity, possibly potentialized by synergistic effects of their isomers in chromatographic fractions. Additionally, targeted quantification of the isolated compounds in different extracts corroborated the untargeted results from the statistical analyses. These results support a metabolomic-guided approach in combination with classical phytochemical techniques to search for natural larvicidal compounds for arboviral vector control.PMID:36848642 | DOI:10.1021/acs.jnatprod.2c00788

Pages