PubMed
Observations on neurophysiological pattern and behavioural traits as death-feigning mechanism in Eucryptorrhynchus scrobiculatus (Coleoptera: Curculionidae)
J Exp Biol. 2023 Sep 22:jeb.245864. doi: 10.1242/jeb.245864. Online ahead of print.ABSTRACTIn adaptation to surrounding environmental stimuli, most insects exhibit defense behaviour (death feigning) to improve survival rates in the wild. However, the underlying mechanism of death feigning remains largely unknown. Here, we test the neurophysiological pattern and behavioural traits of death-feigning mechanism in the forestry pest, Eucryptorrhynchus scrobiculatus. Using neuroanatomy, LC-MS/MS target metabolomics detection technology and qRT-PCR, we investigated the effects of neurochemicals and metabolic pathways in experimental weevils. The excision and drug tests were conducted to verify the key regulatory body parts involved in regulating the central nervous system in death feigning. Our results reconstructed the death-feigning mechanism of E. scrobiculatus: when the effective stimuli point of arousal weevil received mechanical stimulation, the thoracoabdominal ganglion transmitted signals into the brain through the ventral nerve cord, and then the brain regulated DA and 5-HT metabolic pathways, reducing the expression of dopamine (dar2), octopamine (oar1, oab2) receptor genes, finally inducing death feigning. This study suggested the variation of neurotransmitters in the brain was an important indicator to evaluate the physiological response of death feigning and provided ecological and theoretical information for future investigation to reveal key behaviour and target genes for pest control.PMID:37736810 | DOI:10.1242/jeb.245864
Serum metabolomics profiling by proton nuclear magnetic resonance spectrometry of the response to single oral macronutrient challenges in women with polycystic ovary syndrome (PCOS) compared with male and female controls
Biol Sex Differ. 2023 Sep 22;14(1):62. doi: 10.1186/s13293-023-00547-2.ABSTRACTBACKGROUND: The polycystic ovary syndrome (PCOS) is associated with insulin resistance, obesity and cardiometabolic comorbidities. We here challenged the hypothesis, using state-of-the-art proton nuclear magnetic resonance spectrometry (1H-NMRS) metabolomics profiling, that androgen excess in women induces a certain masculinization of postprandial metabolism that is modulated by obesity.MATERIALS AND METHODS: Participants were 53 Caucasian young adults, including 17 women with classic PCOS consisting of hyperandrogenism and ovulatory dysfunction, 17 non-hyperandrogenic women presenting with regular menses, and 19 healthy men, selected to be similar in terms of age and body mass index (BMI). Half of the subjects had obesity. Patients were submitted to isocaloric separate glucose, lipid and protein oral challenges in alternate days and fasting and postprandial serum samples were submitted to 1H-NMRS metabolomics profiling for quantification of 36 low-molecular-weight polar metabolites.RESULTS: The largest postprandial changes were observed after glucose and protein intake, with lipid ingestion inducing smaller differences. Changes after glucose intake consisted of a marked increase in carbohydrates and byproducts of glycolysis, and an overall decrease in byproducts of proteolysis, lipolysis and ketogenesis. After the protein load, most amino acids and derivatives increased markedly, in parallel to an increase in pyruvate and a decrease in 3-hydroxybutyric acid and glycerol. Obesity increased β- and D-glucose and pyruvate levels, with this effect being observed mostly after glucose ingestion in women with PCOS. Regardless of the type of macronutrient, men presented increased lysine and decreased 3-hydroxybutyric acid. In addition, non-obese men showed increased postprandial β-glucose and decreased pyroglutamic acid, compared with non-obese control women. We observed a common pattern of postprandial changes in branched-chain and aromatic amino acids, where men showed greater amino acids increases after protein intake than control women and patients with PCOS but only within the non-obese participants. Conversely, this increase was blunted in obese men but not in obese women, who even presented a larger increase in some amino acids compared with their non-obese counterparts. Interestingly, regardless of the type of macronutrient, only obese women with PCOS showed increased leucine, lysine, phenylalanine and tryptophan levels compared with non-obese patients.CONCLUSIONS: Serum 1H-NMRS metabolomics profiling indicated sexual dimorphism in the responses to oral macronutrient challenges, which were apparently driven by the central role of postprandial insulin effects with obesity, and to a lesser extent PCOS, exerting modifying roles derived from insulin resistance. Hence, obesity impaired metabolic flexibility in young adults, yet sex and sex hormones also influenced the regulation of postprandial metabolism.PMID:37736753 | DOI:10.1186/s13293-023-00547-2
Small Intestinal Permeability and Metabolomic Profiles in Feces and Plasma Associate With Clinical Response in Patients With Active Psoriatic Arthritis Participating in a Fecal Microbiota Transplantation Trial: Exploratory Findings From the FLORA Trial
ACR Open Rheumatol. 2023 Sep 22. doi: 10.1002/acr2.11604. Online ahead of print.ABSTRACTOBJECTIVE: We investigated intestinal permeability and fecal, plasma, and urine metabolomic profiles in methotrexate-treated active psoriatic arthritis (PsA) and how this related to clinical response following one sham or fecal microbiota transplantation (FMT).METHODS: This exploratory study is based on the FLORA trial cohort, in which 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate-treatment, were included in a 26-week, double-blind, 1:1 randomized, sham-controlled trial. Participants were randomly allocated to receive either one healthy donor FMT (n = 15) or sham (n = 16) via gastroscopy. The primary trial end point was the proportion of treatment failures through 26 weeks. We performed a lactulose-to-mannitol ratio (LMR) test at baseline (n = 31) and at week 26 (n = 26) to assess small intestinal permeability. Metabolomic profiles in fecal, plasma, and urine samples collected at baseline, weeks 4, 12, and 26 were measured using 1 H Nuclear Magnetic Resonance.RESULTS: Trial failures (n = 7) had significantly higher LMR compared with responders (n = 19) at week 26 (0.027 [0.017-0.33]) vs. 0.012 [0-0.064], P = 0.013), indicating increased intestinal permeability. Multivariate analysis revealed a significant model for responders (n = 19) versus failures (n = 12) at all time points based on their fecal (P < 0.0001) and plasma (P = 0.005) metabolomic profiles, whereas urine metabolomic profiles did not differ between groups (P = 1). Fecal N-acetyl glycoprotein GlycA correlated with Health Assessment Questionnaire Disability Index (coefficient = 0.50; P = 0.03) and fecal propionate correlated with American College of Rheumatology 20 response at week 26 (coefficient = 27, P = 0.02).CONCLUSION: Intestinal permeability and fecal and plasma metabolomic profiles of patients with PsA were associated with the primary clinical trial end point, failure versus responder.PMID:37736702 | DOI:10.1002/acr2.11604
Search for serum biomarkers in patients with bipolar disorder and major depressive disorder using metabolome analysis
Front Psychiatry. 2023 Sep 6;14:1251955. doi: 10.3389/fpsyt.2023.1251955. eCollection 2023.ABSTRACTOBJECTIVE: Bipolar disorder (BD) and major depressive disorder (MDD) are two common psychiatric disorders. Due to the overlapping clinical symptoms and the lack of objective diagnostic biomarkers, bipolar disorder (BD) is easily misdiagnosed as major depressive disorder (MDD), which in turn affects treatment decisions and prognosis. This study aimed to investigate biomarkers that could be used to differentiate BD from MDD.METHODS: Nuclear magnetic resonance (NMR) spectroscopy was performed to assess serum metabolic profiles in depressed patients with BD (n = 59), patients with MDD (n = 14), and healthy controls (n = 10). Data was analyzed using partial least squares discriminant analysis, orthogonal partial least squares discriminant analysis and t-tests. Different metabolites (VIP > 1 and p < 0.05) were identified and further analyzed using Metabo Analyst 5.0 to identify relevant metabolic pathways.RESULTS: The metabolic phenotypes of the BD and MDD groups were significantly different from those of the healthy controls, and there were different metabolite differences between them. In the BD group, the levels of 3-hydroxybutyric acid, n-acetyl glycoprotein, β-glucose, pantothenic acid, mannose, glycerol, and lipids were significantly higher than those in the healthy control group, and the levels of lactate and acetoacetate were significantly lower than those in the healthy control group. In the MDD group, the levels of 3-hydroxybutyric acid, n-acetyl glycoprotein, pyruvate, choline, acetoacetic acid, and lipids were significantly higher than those of healthy controls, and the levels of acetic acid and glycerol were significantly lower than those of healthy controls.CONCLUSION: Glycerolipid metabolism is significantly involved in BD and MDD. Pyruvate metabolism is significantly involved in MDD. Pyruvate, choline, and acetate may be potential biomarkers for MDD to distinguish from BD, and pantothenic acid may be a potential biomarker for BD to distinguish from MDD.PMID:37736060 | PMC:PMC10509760 | DOI:10.3389/fpsyt.2023.1251955
Metabolomics approach to growth-age discrimination in mountain-cultivated ginseng (Panax ginseng C. A. Meyer) using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry
J Sep Sci. 2023 Sep 22:e2300445. doi: 10.1002/jssc.202300445. Online ahead of print.ABSTRACTMountain-cultivated ginseng is typically harvested after 10 years, while ginseng aged over 15 years is considered wild ginseng. This study aims to differentiate mountain-cultivated ginseng by age, as the fraudulent practice of selling low-aged cultivated ginseng disguised as high-aged one is damaging the market. In this study, LC-MS analyzed 98 ginseng samples, and multivariate statistical analysis identified patterns between samples to select influential components. Machine learning models were developed to identify ginseng samples of different ages. The untargeted metabolomic analysis clearly divided samples aged 4-20 years into three age groups. Twenty-two potential age-dependent biomarkers were discovered to differentiate the three sample groups. Three machine learning models were used to predict new samples, and the optimal model was selected. Some biomarkers could determine age phases according to the differentiation of mountain-cultivated ginseng samples. These biomarkers were thoroughly analyzed for variation trends. The machine learning models established using the screened biomarkers successfully predicted the age group of new samples.PMID:37736007 | DOI:10.1002/jssc.202300445
Exosomal lncRNA Mir100hg derived from cancer stem cells enhance glycolysis and promote metastasis of lung adenocarcinoma through mircroRNA-15a-5p/31-5p
Cell Commun Signal. 2023 Sep 21;21(1):248. doi: 10.1186/s12964-023-01281-3.ABSTRACTBACKGROUND: Exosomes are a new class of molecular entities in the metastatic microenvironment, which can mediate bidirectional communication between cells. While exosomes-mediated interactions between tumor cells and other cell populations in the tumor microenvironment have attracted most attention, little is known about the significance of exosomes in mediating the interaction between non-stemness cancer cells and cancer stem cells during cancer progression.METHODS: The structure, sequence and downstream target miRNAs of lncRNA Mir100hg were predicted by online web resources. The bioinformatics prediction results were validated with experimental verification: exosome tracing, electron microscopy, Luciferase assay, metabolomics sequencing and mouse tail vein model of pulmonary metastasis. A complex regulatory network of "cancer stem cells-exosomal lncRNA-non-stem cancer cells" was constructed.RESULTS: This study demonstrates firstly that lncRNA Mir100hg is upregulated in lung cancer stem cell LLC-SD (Lung cancer stem cells) and can be delivered to non-stemness cancer cells LLC (Lewis lung cancer cells) via exosomes. In LLC, Mir100hg targets miR-15a-5p and miR-31-5p which leads to the increase of the global glycolytic activity of lung cancer cells and consequently, the enhancement of their metastatic capability.CONCLUSION: We delineated a complex regulatory network that utilized by cancer stem cells to transfer their high metastatic activity to the low-metastatic non-stemness cancer cells through exosomal Mir100hg, thereby providing new mechanistic insights into the communication between two heterogeneous tumor cells. Video Abstract.PMID:37735657 | DOI:10.1186/s12964-023-01281-3
Spatiotemporal, optogenetic control of gene expression in organoids
Nat Methods. 2023 Sep 21. doi: 10.1038/s41592-023-01986-w. Online ahead of print.ABSTRACTOrganoids derived from stem cells have become an increasingly important tool for studying human development and modeling disease. However, methods are still needed to control and study spatiotemporal patterns of gene expression in organoids. Here we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes in programmable spatiotemporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. Spatial and single-cell transcriptomic analyses showed that this local induction was sufficient to generate stereotypically patterned organoids and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.PMID:37735569 | DOI:10.1038/s41592-023-01986-w
Flash entropy search to query all mass spectral libraries in real time
Nat Methods. 2023 Sep 21. doi: 10.1038/s41592-023-02012-9. Online ahead of print.ABSTRACTPublic repositories of metabolomics mass spectra encompass more than 1 billion entries. With open search, dot product or entropy similarity, comparisons of a single tandem mass spectrometry spectrum take more than 8 h. Flash entropy search speeds up calculations more than 10,000 times to query 1 billion spectra in less than 2 s, without loss in accuracy. It benefits from using multiple threads and GPU calculations. This algorithm can fully exploit large spectral libraries with little memory overhead for any mass spectrometry laboratory.PMID:37735567 | DOI:10.1038/s41592-023-02012-9
Human umbilical cord-derived mesenchymal stem cells ameliorate perioperative neurocognitive disorder by inhibiting inflammatory responses and activating BDNF/TrkB/CREB signaling pathway in aged mice
Stem Cell Res Ther. 2023 Sep 21;14(1):263. doi: 10.1186/s13287-023-03499-x.ABSTRACTBACKGROUND: Perioperative neurocognitive disorder (PND) is a key complication affecting older individuals after anesthesia and surgery. Failure to translate multiple pharmacological therapies for PND from preclinical studies to clinical settings has necessitated the exploration of novel therapeutic strategies. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) treatment has emerged as a promising therapeutic strategy for treating neurodegenerative diseases and has the potential to translate basic science into clinical practice. In this study, we investigated the effects and underlying mechanism of hUC-MSCs on PND in aged mice.METHODS: hUC-MSCs were isolated from an infant umbilical cord and identified using flow cytometry and differentiation assays. We established PND model by undergoing aseptic laparotomy under isoflurane anesthesia maintaining spontaneous ventilation in eighteen-month-old male C57BL/6 mice. hUC-MSCs were slowly injected into mice by coccygeal vein before anesthesia. Cognitive function, systemic and neuroinflammatory responses, neuroplasticity, endogenous neurogenesis, and brain-derived neurotrophic factor (BDNF) were assessed. To determine the brain mechanisms underlying by which hUC-MSCs mediate their neuroprotective effects in PND, K252a, an antagonist of BDNF receptor, was administered intraperitoneally before surgery. Hippocampal BDNF/TrkB/CREB signaling pathway and metabolomic signatures were evaluated.RESULTS: hUC-MSC treatment ameliorated the learning and memory impairment in aged mice with PND. The downstream effects were the suppression of systemic and hippocampal inflammation and restoration of neurogenesis and neuroplasticity dysregulation. Interestingly, the level of mature BDNF, but not that of proBDNF, was increased in the hippocampus after hUC-MSC treatment. Further analysis revealed that the improved cognitive recovery and the restoration of neurogenesis and neuroplasticity dysregulation elicited by exposure to hUC-MSCs were, at least partially, mediated by the activation of the BDNF/TrkB/CREB signaling pathway. Untargeted metabolomic further identified lipid metabolism dysfunction as potential downstream of the BDNF/TrkB/CREB signaling pathway in hUC-MSC-mediated neuroprotection for PND.CONCLUSIONS: Our study highlights the beneficial effects of hUC-MSC treatment on PND and provides a justification to consider the potential use of hUC-MSCs in the perioperative period.PMID:37735415 | DOI:10.1186/s13287-023-03499-x
Alteration of Meibum Lipidomics Profiling in Patients With Chronic Ocular Graft-Versus-Host Disease
Invest Ophthalmol Vis Sci. 2023 Sep 1;64(12):35. doi: 10.1167/iovs.64.12.35.ABSTRACTPURPOSE: To investigate the characteristics of the lipid profiling in meibum of patients with chronic ocular graft-versus-host disease (coGVHD) and to detect the potential influence of anti-inflammatory therapy on these differential lipids.METHODS: This cross-sectional study included 25 coGVHD patients and 13 non-coGVHD after allogeneic hematopoietic stem cell transplantation. Among those with coGVHD, 14 had prior topical treatment (coGVHD(T)), and 11 did not (coGVHD(WT)). All participants completed ocular surface disease index questionnaire and received slit lamp examination, Schirmer's test without anesthesia, ocular surface interferometer, and meibography. Binocular meibum was collected and pooled for lipidomic analysis by liquid chromatography-mass spectrometry.RESULTS: One hundred and twenty differential lipid species were found among the three groups (96 of coGVHD(WT) vs. non-coGVHD, 78 of coGVHD(WT) vs. coGVHD(T), and three of non-coGVHD vs. coGVHD(T)). Compared with non-coGVHD group, coGVHD(WT) group had a significant abnormality of meibum composition, showing a significant decrease in glycerolipids, and an increase in glycerophospholipids and sphingolipids. Similar changes were also observed when coGVHD(WT) versus coGVHD(T). CoGVHD severity was negatively associated with mono-unsaturated triglycerides (TG), (β = -214.7; 95% CI, -363.9 to -65.5; P = 0.006) and poly-unsaturated TG (β = -4019.9; 95% CI, -7758.1 to -281.6; P = 0.036). Intensity of immunosuppression was negatively associated with mono-unsaturated TG (β = -162.4; 95% CI, -268.6 to -56.2; P = 0.004) and positively associated with phosphatidylcholine (β = 332.0; 95% CI, 19.2-644.8; P = 0.038).CONCLUSIONS: Altered meibum in coGVHD is characterized by a decrease of glycerolipids and an increase of glycerophospholipids and may be significantly reversed by topical anti-inflammatory therapy.PMID:37733365 | DOI:10.1167/iovs.64.12.35
Secretome from myoblasts statically loaded at low intensity promotes tenocyte proliferation via the IGF-1 receptor pathway
FASEB J. 2023 Oct;37(10):e23203. doi: 10.1096/fj.202301097R.ABSTRACTExercise is widely recognized as beneficial for tendon healing. Recently, it has been described that muscle-derived molecules secreted in response to static exercise influence tendon healing. In this study, the optimal static loading intensity for tendon healing and the composition of secretome released by myoblasts in response to different intensities of static strain were investigated. In an in vitro coculture model, myoblasts were mechanically loaded using a Flexcell Tension System. Tenocytes were seeded on transwell inserts that allowed communication between the tenocytes and myoblasts without direct contact. Proliferation and migration assays, together with RNA sequencing, were used to determine potential cellular signaling pathways. The secretome from myoblasts exposed to 2% static loading increased the proliferation and migration of the cocultured tenocytes. RNA-seq analysis revealed that this loading condition upregulated the expression of numerous genes encoding secretory proteins, including insulin-like growth factor-1 (IGF-1). Confirmation of IGF-1 expression and secretion was carried out using qPCR and enzyme-linked immunosorbt assay (ELISA), revealing a statistically significant upregulation in response to 2% static loading in comparison to both control conditions and higher loading intensities of 5% and 10%. Addition of an inhibitor of the IGF-1 receptor (PQ401) to the tenocytes significantly reduced myoblast secretome-induced tenocyte proliferation. In conclusion, IGF-1 may be an important molecule in the statically loaded myoblast secretome, which is responsible for influencing tenocytes during exercise-induced healing.PMID:37732638 | DOI:10.1096/fj.202301097R
The Synergism of Human <em>Lactobacillaceae</em> and Inulin Decrease Hyperglycemia via Regulating the Composition of Gut Microbiota and Metabolic Profiles in db/db Mice
J Microbiol Biotechnol. 2023 Aug 21;33(12):1-14. doi: 10.4014/jmb.2304.04039. Online ahead of print.ABSTRACTThis study aimed to evaluate the effects of Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from human feces coordinating with inulin on the composition of gut microbiota and metabolic profiles in db/db mice. These supplements were administered to db/db mice for 12 weeks. The results showed that the Lactobacillaceae coordinating with inulin group (LI) exhibited lower fasting blood glucose levels than the model control group (MC). Additionally, LI was found to enhance colon tissue and increase the levels of short-chain fatty acids. 16S rRNA sequencing revealed that the abundance of Corynebacterium and Proteus, which were significantly increased diabetes. in the MC group compared with NC group, were significantly decreased by the treatment of LI that also restored the key genera of the Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ruminococcus_gnavus_group,Desulfovibrio, and Lachnospiraceae_UCG-006. Untargeted metabolomics analysis showed thatlotaustralin, 5-hydroxyindoleacetic acid, and 13(S)-HpODE were increased while L-phenylalanine, and L-tryptophan were decreased in the MC group compared with the NC group. However, the intervention of LI reversed the levels of these metabolites in the intestine. Correlation analysis revealed that Lachnoclostridium and Ruminococcus_gnavus_group were negatively correlated with 5-hydroxyindoleacetic acid and 13 (S)-HpODE, but positively correlated with L-tryptophan. 13(S)-HpODE was involved in the "linoleic acid metabolism". L-tryptophan and 5-hydroxyindoleacetic acid were involved in "tryptophan metabolism" and "serotonergic synapse". These findings suggest that LI may alleviate type 2 diabetes symptoms by modulating the abundance of Ruminococcus_gnavus_group and Lachnoclostridium to regulate the pathways of "linoleic acid metabolism", "serotonergic synapse", and" tryptophan metabolism". Our results provide new insights into prevention and treatment of type 2 diabetes.PMID:37734909 | DOI:10.4014/jmb.2304.04039
Antihormonal-Treatment Status Affects <sup>68</sup>Ga-PSMA-HBED-CC PET Biodistribution in Patients with Prostate Cancer
J Nucl Med. 2023 Sep 21:jnumed.123.265980. doi: 10.2967/jnumed.123.265980. Online ahead of print.ABSTRACTAndrogen deprivation therapy (ADT) is known to influence the prostate-specific membrane antigen (PSMA) expression of prostate cancer, potentially complicating the interpretation of PSMA ligand PET findings and affecting PSMA radioligand therapy. However, the impact of ADT on PSMA ligand biodistribution in nontumorous organs is not well understood. Methods: Men (n = 112) with histologically proven prostate cancer who underwent 68Ga-PSMA-HBED-CC (68Ga-PSMA-11) PET/CT between November 2015 and July 2021 at the Medical University Vienna with known ADT status were retrospectively recruited. Fifty-six patients were on gonadotropin-releasing hormone-interfering ADT at the time of imaging (ADT group), whereas 56 patients with no history of ADT served as a control group. Physiologically PSMA-expressing organs (salivary glands, kidneys, liver, and spleen) were delineated, and their uptake was compared according to their data distributions. Multivariate regression analysis assessed the relationship between renal, hepatic, splenic, and salivary gland uptake and the explanatory variables metabolic tumor volume, glomerular filtration rate, and ADT status. Results: ADT was associated with lower levels of PSMA uptake in the kidneys (SUVmean: Δ[ADT - control] = -7.89; 95% CI, -10.73 to -5.04; P < 0.001), liver (SUVpeak: Δ[ADT - control] = -2.3; 95% CI, -5.72 to -0.93; P = 0.003), spleen (SUVpeak: Δ[ADT - control] = -1.27; 95% CI, -3.61 to -0.16; P = 0.033), and salivary glands (SUVmean: Δ[ADT - control] = -1.04; 95% CI, -2.48 to -0.13; P = 0.027). In a multivariate analysis, ADT was found to be associated with lower renal (SUVmean: β = -7.95; 95% CI, -11.06 to -4.84; P < 0.0001), hepatic (SUVpeak: β = -7.85; 95% CI, -11.78 to -3.91; P < 0.0001), splenic (SUVpeak: β = -5.83; 95% CI, -9.95 to -1.7; P = 0.006), and salivary gland (SUVmean: β = -1.47; 95% CI, -2.76 to -0.17; P = 0.027) uptake. A higher glomerular filtration rate was associated with a higher renal SUVmean (β = 0.16; 95% CI, 0.05 to 0.26; P = 0.0034). Conclusion: These findings suggest that ADT systemically modulates PSMA expression, which may have implications for treatment-optimizing and side-effect-minimizing strategies for PSMA radioligand therapies, particularly those using more potent 225Ac-labeled PSMA conjugates.PMID:37734840 | DOI:10.2967/jnumed.123.265980
Serum Proteomic Biomarkers Diagnostic of Knee Osteoarthritis
Osteoarthritis Cartilage. 2023 Sep 19:S1063-4584(23)00920-2. doi: 10.1016/j.joca.2023.09.007. Online ahead of print.ABSTRACTOBJECTIVE: To better understand the pathogenesis of knee osteoarthritis (OA) through identification of serum diagnostics.DESIGN: We conducted multiple reaction monitoring mass spectrometry analysis of 107 peptides in baseline sera of two cohorts: the Foundation for NIH (n=596 Kellgren-Lawrence (KL) grade 1-3 knee OA participants); and the Johnston County Osteoarthritis Project (n=127 multi-joint controls free of radiographic OA of the hands, hips, knees (bilateral KL=0), and spine). Data were split into (70%) training and (30%) testing sets. Diagnostic peptide and clinical data predictors were selected by random forest (RF); selection was based on association (p<0.05) with OA status in multivariable logistic regression models. Model performance was based on area under the curve (AUC) of receiver operating characteristic and precision-recall (PR) curves.RESULTS: RF selected 23 peptides (19 proteins) and BMI as diagnostic of OA. BMI weakly diagnosed OA (ROC-AUC 0.57, PR-AUC 0.812) and only symptomatic OA cases. ACTG was the strongest univariable predictor (ROC-AUC 0.705, PR-AUC 0.897). The final model (8 serum peptides) was highly diagnostic (ROC-AUC 0.833, 95% CI 0.751, 0.905; PR-AUC 0.929, 95% CI 0.876, 0.973) in the testing set and equally diagnostic of non-symptomatic and symptomatic cases (AUCs 0.830-0.835), and not significantly improved with addition of BMI. The STRING database predicted multiple high confidence interactions of the 19 diagnostic OA proteins.CONCLUSIONS: No more than 8 serum protein biomarkers were required to discriminate knee OA from non-OA. These biomarkers lend strong support to the involvement and cross-talk of complement and coagulation pathways in the development of OA.DATA AND MATERIALS AVAILABILITY: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. All proteomic data for this study are available at ftp://massive.ucsd.edu/ or massive.ucsd.edu.PMID:37734705 | DOI:10.1016/j.joca.2023.09.007
Are we ready to translate metabolomics into clinical practice for ACLF prediction and diagnosis?
J Hepatol. 2023 Sep 19:S0168-8278(23)05105-X. doi: 10.1016/j.jhep.2023.09.012. Online ahead of print.NO ABSTRACTPMID:37734684 | DOI:10.1016/j.jhep.2023.09.012
Corrigendum to "Longitudinal associations between metabolites and immediate, short- and medium-term exposure to ambient air pollution: Results from the KORA cohort study" [Sci. Total Environ. 900 (2023) 165780]
Sci Total Environ. 2023 Sep 19;905:167050. doi: 10.1016/j.scitotenv.2023.167050. Online ahead of print.NO ABSTRACTPMID:37734230 | DOI:10.1016/j.scitotenv.2023.167050
The value of prospective metabolomic susceptibility endotypes: broad applicability for infectious diseases
EBioMedicine. 2023 Sep 19;96:104791. doi: 10.1016/j.ebiom.2023.104791. Online ahead of print.ABSTRACTBACKGROUND: As new infectious diseases (ID) emerge and others continue to mutate, there remains an imminent threat, especially for vulnerable individuals. Yet no generalizable framework exists to identify the at-risk group prior to infection. Metabolomics has the advantage of capturing the existing physiologic state, unobserved via current clinical measures. Furthermore, metabolomics profiling during acute disease can be influenced by confounding factors such as indications, medical treatments, and lifestyles.METHODS: We employed metabolomic profiling to cluster infection-free individuals and assessed their relationship with COVID severity and influenza incidence/recurrence.FINDINGS: We identified a metabolomic susceptibility endotype that was strongly associated with both severe COVID (ORICUadmission = 6.7, p-value = 1.2 × 10-08, ORmortality = 4.7, p-value = 1.6 × 10-04) and influenza (ORincidence = 2.9; p-values = 2.2 × 10-4, βrecurrence = 1.03; p-value = 5.1 × 10-3). We observed similar severity associations when recapitulating this susceptibility endotype using metabolomics from individuals during and after acute COVID infection. We demonstrate the value of using metabolomic endotyping to identify a metabolically susceptible group for two-and potentially more-IDs that are driven by increases in specific amino acids, including microbial-related metabolites such as tryptophan, bile acids, histidine, polyamine, phenylalanine, and tyrosine metabolism, as well as carbohydrates involved in glycolysis.INTERPRETATIONS: These metabolites may be identified prior to infection to enable protective measures for these individuals.FUNDING: The Longitudinal EMR and Omics COVID-19 Cohort (LEOCC) and metabolomic profiling were supported by the National Heart, Lung, and Blood Institute and the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health.PMID:37734204 | DOI:10.1016/j.ebiom.2023.104791
Metabolomics study on the main volatile components of Thai colored rice cultivars from different agricultural locations
Food Chem. 2023 Sep 11;434:137424. doi: 10.1016/j.foodchem.2023.137424. Online ahead of print.ABSTRACTThis study investigated the main volatile components in ten Thai colored rice varieties cultivated in two agricultural locations of Thailand (Central and Northern region) using a static headspace GC-MS metabolomics approach. The results indicated that volatolomics could successfully differentiate between the geographical origins of the same rice variety grown in regions within the same country. The volatile profiles of the colored rice obtained from the two locations were clearly different, with three volatile compounds isolated as key aroma producers in each area. Primary volatile compounds upregulated in colored rice varieties grown in Northern Thailand included undecanoic acid, 10-methyl-methyl ester; methyl 8-methyl-nonanoate; and pyrimidine, 4-methyl. Hexadecanoic acid, methyl ester; methyl 9-cis,11-trans-octadecadienoate; and 10-octadecenoic acid methyl ester were upregulated in the rice samples grown in Central Thailand. The environmental factors that could affect colored rice aroma at the agricultural sites included temperature, downward surface shortwave radiation, and vapor pressure deficit.PMID:37734150 | DOI:10.1016/j.foodchem.2023.137424
The impact of heat exposures on biomarkers of AKI and plasma metabolome among agricultural and non-agricultural workers
Environ Int. 2023 Sep 14;180:108206. doi: 10.1016/j.envint.2023.108206. Online ahead of print.ABSTRACTBACKGROUND: Agricultural workers are consistently exposed to elevated heat exposures and vulnerable to acute kidney injury. The underlying pathophysiology and detailed molecular mechanisms of AKI among agricultural workers, and the disproportionate burden of HRI and heat stress exposure are not well understood, especially at the level of cellular metabolism.OBJECTIVE: The aim of this study was to examine the impact of heat exposures on renal biomarkers and on the human metabolome via untargeted high-resolution metabolomics among agricultural and non-agricultural workers.METHODS: Blood and urine samples were collected pre- and post-work shift from 63 agricultural workers and 27 non- agricultural workers. We evaluated pre- and post-work shift renal biomarkers and completed untargeted metabolomics using high-resolution mass spectrometry with liquid chromatography. Metabolome-wide association studies (MWAS) models identified the metabolic features differentially expressed between agricultural workers and non-agricultural workers.RESULTS: Median values of pre-shift creatinine and osteopontin (p < 0.05) were higher for agricultural workers than non-agricultural workers. Metabolic pathway enrichment analyses revealed 27 diverse pathways differed between agricultural workers and non-agricultural workers (p < 0.05) including TCA cycle and urea cycle, carbohydrate metabolism, histidine metabolism and evidence for altered microbiome shikimate pathway.CONCLUSION: This is the first investigation on the metabolic pathways that are affected among agricultural workers who are exposed to heat compared to non-heat exposed workers. This study shows extensive responses of central metabolic systems to heat exposures that impact human health.PMID:37734144 | DOI:10.1016/j.envint.2023.108206
Manipulating mitochondrial electron flow enhances tumor immunogenicity
Science. 2023 Sep 22;381(6664):1316-1323. doi: 10.1126/science.abq1053. Epub 2023 Sep 21.ABSTRACTAlthough tumor growth requires the mitochondrial electron transport chain (ETC), the relative contribution of complex I (CI) and complex II (CII), the gatekeepers for initiating electron flow, remains unclear. In this work, we report that the loss of CII, but not that of CI, reduces melanoma tumor growth by increasing antigen presentation and T cell-mediated killing. This is driven by succinate-mediated transcriptional and epigenetic activation of major histocompatibility complex-antigen processing and presentation (MHC-APP) genes independent of interferon signaling. Furthermore, knockout of methylation-controlled J protein (MCJ), to promote electron entry preferentially through CI, provides proof of concept of ETC rewiring to achieve antitumor responses without side effects associated with an overall reduction in mitochondrial respiration in noncancer cells. Our results may hold therapeutic potential for tumors that have reduced MHC-APP expression, a common mechanism of cancer immunoevasion.PMID:37733872 | DOI:10.1126/science.abq1053