Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Abnormalities in Clostridioides and related metabolites before ACTH treatment may be associated with its efficacy in patients with infantile epileptic spasm syndrome

Tue, 08/08/2023 - 12:00
CNS Neurosci Ther. 2023 Aug 8. doi: 10.1111/cns.14398. Online ahead of print.ABSTRACTOBJECTIVE: Adrenocorticotropic hormone (ACTH) is the first-line treatment of infantile epileptic spasm syndrome (IESS). Its reported effectiveness varies, and our current understanding regarding the role of gut microbiota composition in IESS treatment response is limited. This study assessed the microbiome-metabolome association to understand the role and mechanism of gut microbiota composition in IESS treatment outcomes.METHODS: Children with IESS undergoing ACTH treatment were enrolled. Pre-treatment stool and serum samples were collected for 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry, respectively. The children were divided into "responsive" and "non-responsive" groups, and gut microbiota and serum metabolome differences were analyzed.RESULTS: Of the 30 patients with IESS, 14 responded to ACTH and 16 did not. The "non-responsive" group had larger maleficent Clostridioides and Peptoclostridium_phage_p630P populations (linear discriminant analysis >2; false discovery rate q < 0.05). Ten metabolites were upregulated (e.g., xanthurenic acid) and 15 were downregulated (e.g., vanillylmandelic acid) (p < 0.05). Association analysis of the gut microbiome and serum metabolome revealed that Clostridioides and Peptoclostridium_phage_p630P2 were positively correlated with linoleic and xanthurenic acids, while Clostridioides was negatively correlated with vanillylmandelic acid (p < 0.05). A classifier using differential gut bacteria and metabolites achieved an area under the receiver operating characteristic curve of 0.906 to distinguish responders from non-responders.CONCLUSION: This study found significant differences in pre-treatment gut microbiota and serum metabolome between children with IESS who responded to ACTH and those who did not. Additional exploration may provide valuable information for treatment selection and potential interventions. Our results suggest that varying ACTH responses in patients with IESS may be associated with increased gut Clostridioides bacteria and kynurenine pathway alteration, but additional experiments are needed to verify this association.PMID:37553527 | DOI:10.1111/cns.14398

Oleic acid as potential immunostimulant in metabolism pathways of hybrid grouper fingerlings (Epinephelus fuscoguttatus × Epinephelus lanceolatus) infected with Vibrio vulnificus

Tue, 08/08/2023 - 12:00
Sci Rep. 2023 Aug 8;13(1):12830. doi: 10.1038/s41598-023-40096-7.ABSTRACTGrouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.PMID:37553472 | DOI:10.1038/s41598-023-40096-7

A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis

Tue, 08/08/2023 - 12:00
Cell Mol Immunol. 2023 Aug 9. doi: 10.1038/s41423-023-01070-5. Online ahead of print.ABSTRACTThe gut microbiome is recognized as a key modulator of sepsis development. However, the contribution of the gut mycobiome to sepsis development is still not fully understood. Here, we demonstrated that the level of Candida albicans was markedly decreased in patients with bacterial sepsis, and the supernatant of Candida albicans culture significantly decreased the bacterial load and improved sepsis symptoms in both cecum ligation and puncture (CLP)-challenged mice and Escherichia coli-challenged pigs. Integrative metabolomics and the genetic engineering of fungi revealed that Candida albicans-derived phenylpyruvate (PPA) enhanced the bactericidal activity of macrophages and reduced organ damage during sepsis. Mechanistically, PPA directly binds to sirtuin 2 (SIRT2) and increases reactive oxygen species (ROS) production for eventual bacterial clearance. Importantly, PPA enhanced the bacterial clearance capacity of macrophages in sepsis patients and was inversely correlated with the severity of sepsis in patients. Our findings highlight the crucial contribution of commensal fungi to bacterial disease modulation and expand our understanding of the host-mycobiome interaction during sepsis development.PMID:37553429 | DOI:10.1038/s41423-023-01070-5

The Action Mechanisms, Anti-Cancer and Antibiotic-Modulation Potential of <em>Vaccinium myrtillus</em> L. Extract

Tue, 08/08/2023 - 12:00
Discov Med. 2023 Aug;35(177):590-611. doi: 10.24976/Discov.Med.202335177.59.ABSTRACTBACKGROUND: Herbal medicinal products containing Vaccinium myrtillus L. (bilberry) fruits and fruit extracts are widely available in the market. Although bilberry leaves and stems are considered as bio-waste, they contain much higher levels of phenolic compounds than fruits. The study aimed to investigate the antimicrobial and anticancer potential of aerial part extracts from Vaccinium myrtillus L. (V. myrtillus, VM) plants harvested at high altitudes in Armenian landscape and characterize the bioactive phytochemicals.MATERIAL AND METHODS: For evaluation of antioxidant properties, chemical-based tests (total phenolic and flavonoid content, and antiradical activity in 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) tests) and cellular antioxidant activity (CAA) assay were applied. Genotoxicity and anticancer properties of the extract alone and in combination with fluorouracil were explored in human cancer and normal cell lines. Antibacterial properties of V. myrtillus extract alone and in combination with antibiotics, as well as their effect on proton-flux rate through cell membrane were explored on bacterial strains. The characterization of active phytochemicals was done using Liquid Chromatography-Quadrupole-Orbitrap High-Resolution Mass Spectrometry (LC-Q-Orbitrap HRMS).RESULTS: The V. myrtillus aerial part extract demonstrated promising antioxidant properties in all tests. The selective cytotoxic activity was documented against various cancer cell lines (human colon adenocarcinoma (HT29), human breast cancer (MCF-7) and human cervical carcinoma (HeLa)), while it did not inhibit the growth of tested human normal primary renal mixed epithelial cells (HREC) even at 10-fold higher concentrations. The extract did not have genotoxic properties in comet assay making it a potential source for the development of anticancer preparations. The investigated extract did not directly inhibit the growth of Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) strains at up to 1 mg/mL concentration. However, V. myrtillus extract enhanced the kanamycin intake and increased its efficiency against E. coli strain. The phytochemical characterization of the extract showed the presence of different groups of phenolics.CONCLUSIONS: Based on obtained data, we suggest the aerial parts of the V. myrtillus plant as an alternative source of bioactive natural products for food supplements, nutraceuticals, functional foods and medicine.PMID:37553312 | DOI:10.24976/Discov.Med.202335177.59

Lanthanum Silicate Nanomaterials Enhance Sheath Blight Resistance in Rice: Mechanisms of Action and Soil Health Evaluation

Tue, 08/08/2023 - 12:00
ACS Nano. 2023 Aug 8. doi: 10.1021/acsnano.3c03701. Online ahead of print.ABSTRACTIn the current study, foliar spray with lanthanum (La) based nanomaterials (La10Si6O27 nanorods, La10Si6O27 nanoparticle, La(OH)3 nanorods, and La2O3 nanoparticle) suppressed the occurrence of sheath blight (Rhizoctonia solani) in rice. The beneficial effects were morphology-, composition-, and concentration-dependent. Foliar application of La10Si6O27 nanorods (100 mg/L) yielded the greatest disease suppression, significantly decreasing the disease severity by 62.4% compared with infected controls; this level of control was 2.7-fold greater than the commercially available pesticide (Thifluzamide). The order of efficacy was as follows: La10Si6O27 nanorods > La10Si6O27 nanoparticle > La(OH)3 nanorods > La2O3 nanoparticle. Mechanistically, (1) La10Si6O27 nanorods had greater bioavailability, slower dissolution, and simultaneous Si nutrient benefits; (2) transcriptomic and metabolomic analyses revealed that La10Si6O27 nanorods simultaneously strengthened rice systemic acquired resistance, physical barrier formation, and antioxidative systems. Additionally, La10Si6O27 nanorods improved rice yield by 35.4% and promoted the nutritional quality of the seeds as compared with the Thifluzamide treatment. A two-year La10Si6O27 nanorod exposure had no effect on soil health based on the evaluated chemical, physical, and biological soil properties. These findings demonstrate that La based nanomaterials can serve as an effective and sustainable strategy to safeguard crops and highlight the importance of nanomaterial composition and morphology in terms of optimizing benefit.PMID:37553292 | DOI:10.1021/acsnano.3c03701

Exploring the impact of CYP11A1's missense SNPs on the interaction between CYP11A1 and cholesterol: A comprehensive structural analysis and MD simulation study

Tue, 08/08/2023 - 12:00
Comput Biol Chem. 2023 Aug 2;106:107937. doi: 10.1016/j.compbiolchem.2023.107937. Online ahead of print.ABSTRACTThe process of steroidogenesis plays a vital role in human physiology as it governs the biosynthesis of mineralocorticoids, glucocorticoids, and androgens. These three classes of steroid hormones are primarily produced in the adrenal and gonadal glands through steroidogenesis pathways. Initiated by the side chain cleavage of cholesterol (CLR), this process leads to the conversion of cholesterol into pregnenolone and isocaproic aldehyde. The enzyme CYP11A1, encoded by the CYP11A1 gene, plays a key role in catalyzing the side chain cleavage of CLR. Several single nucleotide polymorphisms (SNPs) have been identified in the CYP11A1 gene, which may predispose carriers to disorders associated with abnormal steroidogenesis. Specifically, missense SNPs in the CYP11A1 gene have the potential to negatively impact the interaction between CYP11A1 and CLR, thus affecting the overall metabolome of steroid hormones. In this computational study, we focused on a specific set of missense SNPs reported in the CYP11A1 gene, aiming to identify variants that directly impact the interaction between CYP11A1 and CLR. The three-dimensional structure of the CYP11A1-CLR complex was obtained from the RCSB Protein Data Bank, while missense SNPs in the CYP11A1 gene were retrieved from Ensembl. To predict the most deleterious variants, we utilized the ConSurf server, SIFT, and PolyPhen. Furthermore, we assessed the impact of induced amino acid (AA) substitutions on the CYP11A1-CLR interaction using the PRODIGY server, PyMol, and Ligplot programs. Additionally, molecular dynamics (MD) simulations were conducted to analyze the effects of deleterious variants on the structural dynamics of the CYP11A1-CLR complex. Among the 8096 retrieved variants, we identified ten missense SNPs (E91K, W147G, R151W, R151Q, S391C, V392M, Q395K, Q416E, R460W, and R460Q) as deleterious for the interaction between CYP11A1 and CLR. MD simulations of the CYP11A1-CLR complexes carrying these deleterious AA substitutions revealed that Q416E, W147G, R460Q, and R460W had the most pronounced impacts on the structural dynamics of the complex. Consequently, these missense SNPs were considered the most deleterious ones. Further functional tests are recommended to assess the impact of these four missense SNPs on the enzymatic activity of CYP11A1. Moreover, Genome-Wide Association Studies (GWAS) should be conducted to determine the significance of their association with abnormal steroidogenesis diseases in various patient groups.PMID:37552904 | DOI:10.1016/j.compbiolchem.2023.107937

Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review

Tue, 08/08/2023 - 12:00
Phytomedicine. 2023 Jul 18;119:154979. doi: 10.1016/j.phymed.2023.154979. Online ahead of print.ABSTRACTBACKGROUND: Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols.OBJECTIVES: This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota.METHODS: We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota.CONCLUSION: The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.PMID:37552899 | DOI:10.1016/j.phymed.2023.154979

Immobilized Enzymes on Magnetic Beads for Separate Mass Spectrometric Investigation of Human Phase II Metabolite Classes

Tue, 08/08/2023 - 12:00
Anal Chem. 2023 Aug 8. doi: 10.1021/acs.analchem.3c02988. Online ahead of print.ABSTRACTThe human body has evolved to remove xenobiotics through a multistep clearance process. Non-endogenous metabolites are converted through a series of phase I and different phase II enzymes into compounds with higher hydrophilicity. These compounds are important for diverse research fields such as toxicology, nutrition, biomarker discovery, doping control, and microbiome metabolism. One of the challenges in these research fields has been the investigation of the two major phase II modifications, sulfation and glucuronidation, and the corresponding unconjugated aglycon independently. We have now developed a new methodology utilizing an immobilized arylsulfatase and an immobilized β-glucuronidase to magnetic beads for treatment of human urine samples. The enzyme activities remained the same compared to the enzyme in solution. The separate mass spectrometric investigation of each metabolite class in a single sample was successfully applied to obtain the dietary glucuronidation and sulfation profile of 116 compounds. Our new chemical biology strategy provides a new tool for the investigation of metabolites in biological samples with the potential for broad-scale application in metabolomics, nutrition, and microbiome studies.PMID:37552796 | DOI:10.1021/acs.analchem.3c02988

Integrated brain and plasma dual-channel metabolomics to explore the treatment effects of Alpinia oxyphyllaFructus on Alzheimer's disease

Tue, 08/08/2023 - 12:00
PLoS One. 2023 Aug 8;18(8):e0285401. doi: 10.1371/journal.pone.0285401. eCollection 2023.ABSTRACTAlpinia oxyphylla Fructus, called Yizhi in Chinese, is the dried fruit of Alpinia oxyphylla Miquel. It has been used in traditional Chinese medicine to treat dementia and memory defects of Alzheimer's disease for many years. However, the underlying mechanism is still unclear. In this study, we used a rat Alzheimer's disease model on intrahippocampal injection of aggregated Aβ1-42 to study the effects of Alpinia oxyphylla Fructus. A brain and plasma dual-channel metabolomics approach combined with multivariate statistical analysis was further performed to determine the effects of Alpinia oxyphylla Fructus on Alzheimer's disease animals. As a result, in the Morris water maze test, Alpinia oxyphylla Fructus had a clear ability to ameliorate the impaired learning and memory of Alzheimer's disease rats. 11 differential biomarkers were detected in AD rats' brains. The compounds mainly included amino acids and phospholipids; after Alpinia oxyphylla Fructus administration, 9 regulated biomarkers were detected compared with the AD model group. In the plasma of AD rats, 29 differential biomarkers, primarily amino acids, phospholipids and fatty acids, were identified; After administration, 23 regulated biomarkers were detected. The metabolic pathways of regulated metabolites suggest that Alpinia oxyphylla Fructus ameliorates memory and learning deficits in AD rats principally by regulating amino acid metabolism, lipids metabolism, and energy metabolism. In conclusion, our results confirm and enhance our current understanding of the therapeutic effects of Alpinia oxyphylla Fructus on Alzheimer's disease. Meanwhile, our work provides new insight into the potential intervention mechanism of Alpinia oxyphylla Fructus for Alzheimer's disease treatment.PMID:37552694 | DOI:10.1371/journal.pone.0285401

Quantitative trait loci mapping of polyphenol metabolites from a 'Latham' x 'Glen Moy' red raspberry (Rubus idaeus L) cross

Tue, 08/08/2023 - 12:00
Metabolomics. 2023 Aug 8;19(8):71. doi: 10.1007/s11306-023-02033-7.ABSTRACTOBJECTIVE: The objective of this study was to investigate the genetic control of polyphenol accumulation in red raspberry (Rubus idaeus L).METHODS: The levels of total anthocyanins and 37 individual polyphenol metabolites were measured over three years in a raspberry biparental mapping population. Quantitative trait loci (QTLs) for these traits were mapped onto a high-density SNP linkage map.RESULTS: At least one QTL was detected for each trait, with good consistency among the years. On four linkage groups (LG), there were major QTLs affecting several metabolites. On LG1, a QTL had large effects on anthocyanins and flavonols containing a rutinoside or rhamnose group. On LG4, a QTL had large effects on several flavonols and on LG5 and LG6 QTLs had large effects on ellagic acid derivatives. Smaller QTLs were found on LG2 and LG3.CONCLUSION: The identification of robust QTLs for key polyphenols in raspberry provides great potential for marker-assisted breeding for improved levels of potentially health beneficial components.PMID:37552331 | DOI:10.1007/s11306-023-02033-7

T-cell dysfunction by pseudohypoxia and autocrine purinergic signaling in chronic lymphocytic leukemia

Tue, 08/08/2023 - 12:00
Blood Adv. 2023 Aug 8:bloodadvances.2023010305. doi: 10.1182/bloodadvances.2023010305. Online ahead of print.ABSTRACTAcquired T-cell dysfunction is common in chronic B-cell malignancies. Given the strong connection between T-cell metabolism and function, we investigated metabolic alterations as the basis for T-cell dysfunction induced by malignant cells. Using B-cell malignant cell lines and human PBMCs, we first established a model which recapitulates major aspects of cancer-induced T-cell dysfunction. Cell lines derived from chronic lymphocytic leukemia (PGA-1, CII, Mec-1), but not from other B-cell malignancies, altered T-cell metabolome by generating a pseudohypoxic state. T cells were retained in aerobic glycolysis and were not able to switch to OXPHOS. Moreover, T cells produced immunosuppressive adenosine that negatively affected function by dampening activation, which could be restored by blocking of adenosine receptors. Subsequently, we uncovered a similar hypoxic-like signature in autologous T cells from primary CLL samples. Pseudohypoxia was reversible upon depletion of CLL cells ex vivo and, importantly, after in vivo reduction of the leukemic burden with combination therapy (Venetoclax and Obinutuzumab), restoring T-cell function. In conclusion, we uncover a pseudohypoxic program connected with T cell dysfunction in CLL. Modulation of hypoxia and the purinergic pathway might contribute to therapeutic restoration of T-cell function.PMID:37552122 | DOI:10.1182/bloodadvances.2023010305

Lysophospholipids are Associated with Outcomes after Mild Traumatic Brain Injury in Humans

Tue, 08/08/2023 - 12:00
J Neurotrauma. 2023 Aug 8. doi: 10.1089/neu.2023.0046. Online ahead of print.ABSTRACTMild traumatic brain injury (mTBI) accounts for 70% to 90% of all TBI cases. Lipid metabolites have important roles in plasma membrane biogenesis, function, and cell signaling. As TBI can compromise plasma membrane integrity and alter brain cell function, we sought to identify circulating phospholipids alterations after mTBI, and determine if these changes were associated with clinical outcomes. Patients with mTBI (GCS≥13 and loss of consciousness <30 min) were recruited. A total of 84 mTBI subjects were enrolled after admission to a level I trauma center, with the majority having evidence of traumatic intracranial hemorrhage on brain computed tomography (CT). Plasma samples collected within 24 hours of injury with 32 mTBI subjects returning at 3 months after injury for a second plasma sample to be collected. Thirty-five healthy volunteers were enrolled as controls and had a one-time blood draw. Lipid metabolomics was performed on plasma samples from each subject. Fold change of selected lipid metabolites was determined. Multivariable regression models were created to test associations between lipid metabolites and discharge and 6-month Glasgow Outcomes Scale-Extended (GOSE) outcomes [dichotomized between 'good' (GOSE≥7) and 'bad' (GOSE≤6) functional outcomes]. Plasma levels of 31 lipid metabolites were significantly associated with discharge GOSE using univariate models; three of these metabolites were significantly increased, while 14 were significantly decreased in subjects with good outcomes compared to subjects with poor outcomes. In multivariable logistic regression models, higher circulating levels of the lysophospholipids (LPL) 1-linoleoyl-GPC (18:2), 1-linoleoyl-GPE (18:2), and 1-linolenoyl-GPC (18:3) were associated with both good discharge GOSE [OR 12.2 (95%CI 3.35, 58.3), P=5.23x10-4; OR 9.43 (95%CI 2.87, 39.6), P=7.26x10-4; and OR 5.26 (95%CI 1.99, 16.7), P=2.04x10-3, respectively] and 6-month [OR 4.67 (95%CI 1.49, 17.7), P=0.013; OR 2.93 (95%CI 1.11, 8.87), P=0.039; and OR 2.57 (95%CI 1.08, 7.11), P=0.046, respectively]. Compared with healthy volunteers, circulating levels of these three LPLs were decreased early after injury and had normalized by 3-months after injury. Logistic regression models to predict functional outcomes were created by adding each of the above 3 LPLs to a baseline model that included age and sex. Including 1-linoleoyl-GPC (18:2) (8.20% improvement, P=0.009), 1-linoleoyl-GPE (18:2) (8.85% improvement, P=0.021), or 1-linolenoyl-GPC (18:3) (7.68% improvement, P=0.012), significantly improved the area under the curve (AUC) for predicting discharge outcomes compared to the baseline model. Models including 1-linoleoyl-GPC (18:2) significantly improved AUC for predicting 6-month outcomes (9.35% improvement, P=0.034). Models including principal components derived from 25 LPLs significantly improved AUC for prediction of 6-months outcomes (16.0% improvement, P=0.020). Our results demonstrate that higher plasma levels of LPLs (1-linoleoyl-GPC, 1-linoleoyl-GPE, and 1-linolenoyl-GPC) after mTBI are associated with better functional outcomes at discharge and 6 months after injury. This class of phospholipids may represent a potential therapeutic target.PMID:37551969 | DOI:10.1089/neu.2023.0046

Linking Hypothermia and Altered Metabolism with TrkB Activation

Tue, 08/08/2023 - 12:00
ACS Chem Neurosci. 2023 Aug 8. doi: 10.1021/acschemneuro.3c00350. Online ahead of print.ABSTRACTMany mechanisms have been proposed to explain acute antidepressant drug-induced activation of TrkB neurotrophin receptors, but several questions remain. In a series of pharmacological experiments, we observed that TrkB activation induced by antidepressants and several other drugs correlated with sedation, and most importantly, coinciding hypothermia. Untargeted metabolomics of pharmacologically dissimilar TrkB activating treatments revealed effects on shared bioenergetic targets involved in adenosine triphosphate (ATP) breakdown and synthesis, demonstrating a common perturbation in metabolic activity. Both activation of TrkB signaling and hypothermia were recapitulated by administration of inhibitors of glucose and lipid metabolism, supporting a close relationship between metabolic inhibition and neurotrophic signaling. Drug-induced TrkB phosphorylation was independent of electroencephalography slow-wave activity and remained unaltered in knock-in mice with the brain-derived neurotrophic factor (BDNF) Val66Met allele, which have impaired activity-dependent BDNF release, alluding to an activation mechanism independent from BDNF and neuronal activity. Instead, we demonstrated that the active maintenance of body temperature prevents activation of TrkB and other targets associated with antidepressants, including p70S6 kinase downstream of the mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3β (GSK3β). Increased TrkB, GSK3β, and p70S6K phosphorylation was also observed during recovery sleep following sleep deprivation, when a physiological temperature drop is known to occur. Our results suggest that the changes in bioenergetics and thermoregulation are causally connected to TrkB activation and may act as physiological regulators of signaling processes involved in neuronal plasticity.PMID:37551888 | DOI:10.1021/acschemneuro.3c00350

Lung proteomics combined with metabolomics reveals molecular characteristics of inflammation-related lung tumorigenesis induced by B(a)P and LPS

Tue, 08/08/2023 - 12:00
Environ Toxicol. 2023 Aug 8. doi: 10.1002/tox.23926. Online ahead of print.ABSTRACTInflammatory microenvironment may take a promoting role in lung tumorigenesis. However, the molecular characteristics underlying inflammation-related lung cancer remains unknown. In this work, the inflammation-related lung tumorigenesis mouse model was established by treated with B(a)P (1 mg/mouse, once a week for 4 weeks), followed by LPS (2.5 μg/mouse, once every 3 weeks for five times), the mice were sacrificed 30 weeks after exposure. TMT-labeled quantitative proteomics and untargeted metabolomics were used to interrogate differentially expressed proteins and metabolites in different mouse cancer tissues, followed by integrated crosstalk between proteomics and metabolomics through Spearman's correlation analysis. The result showed that compared with the control group, 103 proteins and 37 metabolites in B(a)P/LPS group were identified as significantly altered. By searching KEGG pathway database, proteomics pathways such as Leishmaniasis, Asthma and Intestinal immune network for IgA production, metabolomics pathways such as Vascular smooth muscle contraction, Linoleic acid metabolism and cGMP-PKG signaling pathway were enriched. A total of 22 pathways were enriched after conjoint analysis of the proteomic and metabolomics, and purine metabolism pathway, the unique metabolism-related pathway, which included significantly altered protein (adenylate cyclase 4, ADCY4) and metabolites (L-Glutamine, guanosine monophosphate (GMP), adenosine and guanosine) was found. Results suggested purine metabolism may contribute to the inflammation-related lung tumorigenesis, which may provide novel clues for the therapeutic strategies of inflammation-related lung cancer.PMID:37551664 | DOI:10.1002/tox.23926

<em>Lactobacillus gasseri</em> LA39 promotes hepatic primary bile acid biosynthesis and intestinal secondary bile acid biotransformation

Tue, 08/08/2023 - 12:00
J Zhejiang Univ Sci B. 2023 Aug 15;24(8):734-748. doi: 10.1631/jzus.B2200439.ABSTRACTA growing body of evidence has linked the gut microbiota to liver metabolism. The manipulation of intestinal microflora has been considered as a promising avenue to promote liver health. However, the effects of Lactobacillus gasseri LA39, a potential probiotic, on liver metabolism remain unclear. Accumulating studies have investigated the proteomic profile for mining the host biological events affected by microbes, and used the germ-free (GF) mouse model to evaluate host-microbe interaction. Here, we explored the effects of L. gasseri LA39 gavage on the protein expression profiles of the liver of GF mice. Our results showed that a total of 128 proteins were upregulated, whereas a total of 123 proteins were downregulated by treatment with L. gasseri LA39. Further bioinformatics analyses suggested that the primary bile acid (BA) biosynthesis pathway in the liver was activated by L. gasseri LA39. Three differentially expressed proteins (cytochrome P450 family 27 subfamily A member 1 (CYP27A1), cytochrome P450 family 7 subfamily B member 1 (CYP7B1), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1)) involved in the primary BA biosynthesis pathway were further validated by western blot assay. In addition, targeted metabolomic analyses demonstrated that serum and fecal β‍-muricholic acid (a primary BA), dehydrolithocholic acid (a secondary BA), and glycolithocholic acid-3-sulfate (a secondary BA) were significantly increased by L. gasseri LA39. Thus, our data revealed that L. gasseri LA39 activates the hepatic primary BA biosynthesis and promotes the intestinal secondary BA biotransformation. Based on these findings, we suggest that L. gasseri LA39 confers an important function in the gut‒liver axis through regulating BA metabolism.PMID:37551559 | DOI:10.1631/jzus.B2200439

Dihydroartemisinin inhibits plasmid transfer in drug-resistant <em>Escherichia coli</em> via limiting energy supply

Tue, 08/08/2023 - 12:00
Zool Res. 2023 Sep 18;44(5):894-904. doi: 10.24272/j.issn.2095-8137.2023.084.ABSTRACTConjugative transfer of antibiotic resistance genes (ARGs) by plasmids is an important route for ARG dissemination. An increasing number of antibiotic and nonantibiotic compounds have been reported to aid the spread of ARGs, highlighting potential challenges for controlling this type of horizontal transfer. Development of conjugation inhibitors that block or delay the transfer of ARG-bearing plasmids is a promising strategy to control the propagation of antibiotic resistance. Although such inhibitors are rare, they typically exhibit relatively high toxicity and low efficacy in vivo and their mechanisms of action are inadequately understood. Here, we studied the effects of dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, on conjugation. DHA inhibited the conjugation of the IncI2 and IncX4 plasmids carrying the mobile colistin resistance gene ( mcr-1) by more than 160-fold in vitro in Escherichia coli, and more than two-fold (IncI2 plasmid) in vivo in a mouse model. It also suppressed the transfer of the IncX3 plasmid carrying the carbapenem resistance gene bla NDM-5 by more than two-fold in vitro. Detection of intracellular adenosine triphosphate (ATP) and proton motive force (PMF), in combination with transcriptomic and metabolomic analyses, revealed that DHA impaired the function of the electron transport chain (ETC) by inhibiting the tricarboxylic acid (TCA) cycle pathway, thereby disrupting PMF and limiting the availability of intracellular ATP for plasmid conjugative transfer. Furthermore, expression levels of genes related to conjugation and pilus generation were significantly down-regulated during DHA exposure, indicating that the transfer apparatus for conjugation may be inhibited. Our findings provide new insights into the control of antibiotic resistance and the potential use of DHA.PMID:37551137 | DOI:10.24272/j.issn.2095-8137.2023.084

Urine myo-inositol as a novel prognostic biomarker for diabetic kidney disease: a targeted metabolomics study using nuclear magnetic resonance

Tue, 08/08/2023 - 12:00
Kidney Res Clin Pract. 2023 Jul;42(4):445-459. doi: 10.23876/j.krcp.22.152. Epub 2023 Jul 25.ABSTRACTBACKGROUND: As a leading cause of chronic kidney disease, clinical demand for noninvasive biomarkers of diabetic kidney disease (DKD) beyond proteinuria is increasing. Metabolomics is a popular method to identify mechanisms and biomarkers. We investigated urinary targeted metabolomics in DKD patients.METHODS: We conducted a targeted metabolomics study of 26 urinary metabolites in consecutive patients with DKD stage 1 to 5 (n = 208) and healthy controls (n = 26). The relationships between estimated glomerular filtration rate (eGFR) or urine protein-creatinine ratio (UPCR) and metabolites were evaluated. Multivariate Cox analysis was used to estimate relationships between urinary metabolites and the target outcome, end-stage renal disease (ESRD). C statistics and time-dependent receiver operating characteristics (ROC) were used to assess diagnostic validity.RESULTS: During a median 4.5 years of follow-up, 103 patients (44.0%) progressed to ESRD and 65 (27.8%) died. The median fold changes of nine metabolites belonged to monosaccharide and tricarboxylic acid (TCA) cycle metabolites tended to increase with DKD stage. Myo-inositol, choline, and citrates were correlated with eGFR and choline, while mannose and myo-inositol were correlated with UPCR. Elevated urinary monosaccharide and TCA cycle metabolites showed associations with increased morality and ESRD progression. The predictive power of ESRD progression was high, in the order of choline, myo-inositol, and citrate. Although urinary metabolites alone were less predictive than serum creatinine or UPCR, myo-inositol had additive effect with serum creatinine and UPCR. In time-dependent ROC, myo-inositol was more predictive than UPCR of 1-year ESRD progression prediction.CONCLUSION: Myo-inositol can be used as an additive biomarker of ESRD progression in DKD.PMID:37551126 | DOI:10.23876/j.krcp.22.152

Cerebrospinal fluid lipidomic fingerprint of obstructive sleep apnoea in Alzheimer's disease

Mon, 07/08/2023 - 12:00
Alzheimers Res Ther. 2023 Aug 7;15(1):134. doi: 10.1186/s13195-023-01278-7.ABSTRACTBACKGROUND: Obstructive sleep apnoea (OSA) has a high prevalence in patients with Alzheimer's disease (AD). Both conditions have been shown to be associated with lipid dysregulation. However, the relationship between OSA severity and alterations in lipid metabolism in the brains of patients with AD has yet to be fully elucidated. In this context, we examined the cerebrospinal fluid (CSF) lipidome of patients with suspected OSA to identify potential diagnostic biomarkers and to provide insights into the pathophysiological mechanisms underlying the effect of OSA on AD.METHODS: The study included 91 consecutive AD patients who underwent overnight polysomnography (PSG) to diagnose severe OSA (apnoea-hypopnea index ≥ 30/h). The next morning, CSF samples were collected and analysed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform.RESULTS: The CSF levels of 11 lipid species were significantly different between AD patients with (N = 38) and without (N = 58) severe OSA. Five lipids (including oxidized triglyceride OxTG(57:2) and four unknown lipids) were significantly correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Our analyses revealed a 4-lipid signature (including oxidized ceramide OxCer(40:6) and three unknown lipids) that provided an accuracy of 0.80 (95% CI: 0.71-0.89) in the detection of severe OSA. These lipids increased the discriminative power of the STOP-Bang questionnaire in terms of the area under the curve (AUC) from 0.61 (0.50-0.74) to 0.85 (0.71-0.93).CONCLUSIONS: Our results reveal a CSF lipidomic fingerprint that allows the identification of AD patients with severe OSA. Our findings suggest that an increase in central nervous system lipoxidation may be the principal mechanism underlying the association between OSA and AD.PMID:37550750 | PMC:PMC10408111 | DOI:10.1186/s13195-023-01278-7

CYP2D6 activity is correlated with changes in plasma concentrations of taurocholic acid during pregnancy and postpartum in CYP2D6 extensive metabolizers

Mon, 07/08/2023 - 12:00
Drug Metab Dispos. 2023 Aug 7:DMD-AR-2023-001358. doi: 10.1124/dmd.123.001358. Online ahead of print.ABSTRACTCytochrome P450 2D6 (CYP2D6) is involved in the metabolism of > 20% of marketed drugs. CYP2D6 expression and activity exhibit high interindividual variability and is induced during pregnancy. The farnesoid X receptor (FXR) is a transcriptional regulator of CYP2D6 that is activated by bile acids. In pregnancy, elevated plasma bile acid concentrations are associated with maternal and fetal risks. However, modest changes in bile acid concentrations may occur during healthy pregnancy thereby altering FXR signaling. A previous study demonstrated that hepatic tissue concentrations of bile acids positively correlated with the hepatic mRNA expression of CYP2D6. This study sought to characterize the plasma bile acid metabolome in healthy women (n=47) during mid-pregnancy (25-28 weeks gestation) and {greater than or equal to} 3 months postpartum, and to determine if plasma bile acids correlate with CYP2D6 activity. It is hypothesized that during pregnancy plasma bile acids would favor less hydrophobic bile acids (cholic acid vs. chenodeoxycholic acid), and that plasma concentrations of cholic acid and its conjugates would positively correlate with the urinary ratio of dextrorphan / dextromethorphan. At 25-28 weeks gestation, taurine conjugated bile acids comprised 23% of the quantified serum bile acids compared to 7% {greater than or equal to} 3 months postpartum. Taurocholic acid positively associated with the urinary ratio of dextrorphan / dextromethorphan, a biomarker of CYP2D6 activity. Collectively, these results confirm that the bile acid plasma metabolome differs between pregnancy and postpartum and provide evidence that taurocholic acid may impact CYP2D6 activity during pregnancy. Significance Statement Bile acid homeostasis is altered in pregnancy and plasma concentrations of taurocholic acid positively correlate with CYP2D6 activity. Differences between plasma and/or tissue concentrations of FXR ligands, such as bile acids, may contribute to the high interindividual variability in CYP2D6 expression and activity.PMID:37550070 | DOI:10.1124/dmd.123.001358

Auricularia auricula polysaccharides attenuate obesity in mice through gut commensal Papillibacter cinnamivorans

Mon, 07/08/2023 - 12:00
J Adv Res. 2023 Aug 5:S2090-1232(23)00207-2. doi: 10.1016/j.jare.2023.08.003. Online ahead of print.ABSTRACTINTRODUCTION: Auricularia auricula is a well-known traditional edible and medical fungus with high nutritional and pharmacological values, as well as metabolic and immunoregulatory properties. Nondigestible fermentable polysaccharides are identified as primary bioactive constituents of Auricularia auricula extracts. However, the exact mechanisms underlying the effects of Auricularia auricula polysaccharides (AAP) on obesity and related metabolic endpoints, including the role of the gut microbiota, remain insufficiently understood.METHODS: The effects of AAP on obesity were assessed within high-fat diet (HFD)-based mice through obesity trait analysis and metabolomic profiling. To determine the mechanistic role of the gut microbiota in observed anti-obesogenic effects AAP, faecal microbiota transplantation (FMT) and pseudo-germ-free mice model treated with antibiotics were also applied, together with 16S rRNA genomic-derived taxonomic profiling.RESULTS: High-fat diet (HFD) murine exposure to AAP thwarted weight gains, reduced fat depositing and enhanced glucose tolerance, together with upregulating thermogenesis proteomic biomarkers within adipose tissue. Serum metabolome indicated these effects were associated with changes in fatty acid metabolism. Intestine-dwelling microbial population assessments discovered that AAP selectively enhanced Papillibacter cinnamivorans, a commensal bacterium with reduced presence in HFD mice. Notably, HFD mice treated with oral formulations of P. cinnamivorans attenuated obesity, which was linked to decreased intestinal lipid transportation and hepatic thermogenesis. Mechanistically, it was demonstrated that P. cinnamivorans regulated intestinal lipids metabolism and liver thermogenesis by reducing the proinflammatory response and gut permeability in a JAK-STAT signaling-related manner.CONCLUSION: Datasets from the present study show that AAP thwarted dietary-driven obesity and metabolism-based disorders by regulating intestinal lipid transportation, a mechanism that is dependent on the gut commensal P. cinnamivorans. These results indicated AAP and P. cinnamivorans as newly identified pre- and probiotics that could serve as novel therapeutics against obesity.PMID:37549868 | DOI:10.1016/j.jare.2023.08.003

Pages