Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Fucoidan from <em>Laminaria japonica</em> Ameliorates Type 2 Diabetes Mellitus in Association with Modulation of Gut Microbiota and Metabolites in Streptozocin-Treated Mice

Sun, 08/01/2023 - 12:00
Foods. 2022 Dec 22;12(1):33. doi: 10.3390/foods12010033.ABSTRACTChronic diseases have been a leading cause of death worldwide, and polysaccharide supplementation is an effective therapeutic strategy for chronic diseases without adverse effects. In this study, the beneficial effect of Laminaria japonica fucoidan (LJF) on type 2 diabetes mellitus (T2DM) was evaluated in streptozocin-treated mice. LJF ameliorated the symptoms of T2DM in a dose-dependent manner, involving reduction in weight loss, water intake, triglyceride, blood glucose, cholesterol and free fatty acids, and increases in high-density lipoprotein cholesterol, catalase, glucagon-like peptide-1, and superoxide dismutase. In addition, LJF regulated the balance between insulin resistance and insulin sensitivity, reduced islet necrosis and β-cell damage, and inhibited fat accumulation in T2DM mice. The protective effect of LJF on T2DM can be associated with modulation of the gut microbiota and metabolites, e.g., increases in Lactobacillus and Allobaculum. Untargeted and targeted metabolomics analysis showed that the microbiota metabolite profile was changed with LJF-induced microbiota alterations, mainly involving amino acids, glutathione, and glyoxylate and dicarboxylate metabolism pathways. This study indicates that LJF can be used as a prebiotic agent for the prevention and treatment of diabetes and microbiota-related diseases.PMID:36613249 | DOI:10.3390/foods12010033

Metabolomics Characterize the Differential Metabolic Markers between Bama Xiang Pig and Debao Pig to Identify Pork

Sun, 08/01/2023 - 12:00
Foods. 2022 Dec 20;12(1):5. doi: 10.3390/foods12010005.ABSTRACTThe Bama Xiang pig (BM) is a unique pig species in Guangxi Province, China. Compared to other breeds of domestic pig, such as the Debao pig (DB), it is smaller in size, better in meat quality, resistant to rough feeding and strong in stress resistance. These unique advantages of Bama Xiang pigs make them of great edible value and scientific research value. However, the differences in muscle metabolites between Bama Xiang pigs (BM) and Debao pigs (DB) are largely unexplored. Here, we identified 214 differential metabolites between these two pig breeds by LC-MS. Forty-one such metabolites are enriched into metabolic pathways, and these metabolites correspond to 11 metabolic pathways with significant differences. In Bama pigs, the abundance of various metabolites such as creatine, citric acid, L-valine and hypoxanthine is significantly higher than in Debao pigs, while the abundance of other metabolites, such as carnosine, is significantly lower. Among these, we propose six differential metabolites: L-proline, citric acid, ribose 1-phosphate, L-valine, creatine, and L-arginine, as well as four potential differential metabolites (without the KEGG pathway), alanyl-histidine, inosine 2'-phosphate, oleoylcarnitine, and histidinyl hydroxyproline, as features for evaluating the meat quality of Bama pigs and for differentiating pork from Bama pigs and Debao pigs. This study provides a proof-of-concept example of distinguishing pork from different pig breeds at the metabolite level and sheds light on elucidating the biological processes underlying meat quality differences. Our pork metabolites data are also of great value to the genomics breeding community in meat quality improvement.PMID:36613221 | DOI:10.3390/foods12010005

Exhaled Air Metabolome Analysis for Pulmonary Arterial Hypertension Fingerprints Identification-The Preliminary Study

Sun, 08/01/2023 - 12:00
Int J Environ Res Public Health. 2022 Dec 28;20(1):503. doi: 10.3390/ijerph20010503.ABSTRACTPulmonary arterial hypertension (PAH) is a rare disease with a serious prognosis. The aim of this study was to identify biomarkers for PAH in the breath phase and to prepare an automatic classification method to determine the changing metabolome trends and molecular mapping. A group of 37 patients (F/M: 8/29 women, mean age 60.4 ± 10.9 years, BMI 27.6 ± 6.0 kg/m2) with diagnosed PAH were enrolled in the study. The breath phase of all the patients was collected on a highly porous septic material using a special patented holder PL230578, OHIM 002890789-0001. The collected air was then examined with gas chromatography coupled with mass spectrometry (GC/MS). The algorithms of Spectral Clustering, KMeans, DBSCAN, and hierarchical clustering methods were used to perform the cluster analysis. The identification of the changes in the ratio of the whole spectra of biomarkers allowed us to obtain a multidimensional pathway for PAH characteristics and showed the metabolome differences in the four subgroups divided by the cluster analysis. The use of GC/MS, supported with novel porous polymeric materials, for the breath phase analysis seems to be a useful tool in selecting bio-fingerprints in patients with PAH. The four metabolome classes which were obtained constitute novel data in the PAH population.PMID:36612835 | DOI:10.3390/ijerph20010503

Circulating Tumor Cells as Biomarkers for Renal Cell Carcinoma: Ready for Prime Time?

Sun, 08/01/2023 - 12:00
Cancers (Basel). 2022 Dec 31;15(1):287. doi: 10.3390/cancers15010287.ABSTRACTRenal cell carcinoma (RCC) is among the 15 most common cancers worldwide, with rising incidence. In most cases, this is a silent disease until it reaches advance stages, demanding new effective biomarkers in all domains, from detection to post-therapy monitoring. Circulating tumor cells (CTC) have the potential to provide minimally invasive information to guide assessment of the disease's aggressiveness and therapeutic strategy, representing a special pool of neoplastic cells which bear metastatic potential. In some tumor models, CTCs' enumeration has been associated with prognosis, but there is a largely unexplored potential for clinical applicability encompassing screening, diagnosis, early detection of metastases, prognosis, response to therapy and monitoring. Nonetheless, lack of standardization and high cost hinder the translation into clinical practice. Thus, new methods for collection and analysis (genomic, proteomic, transcriptomic, epigenomic and metabolomic) are needed to ascertain the role of CTC as a RCC biomarker. Herein, we provide a critical overview of the most recently published data on the role and clinical potential of CTCs in RCC, addressing their biology and the molecular characterization of this remarkable set of tumor cells. Furthermore, we highlight the existing and emerging techniques for CTC enrichment and detection, exploring clinical applications in RCC. Notwithstanding the notable progress in recent years, the use of CTCs in a routine clinical scenario of RCC patients requires further research and technological development, enabling multimodal analysis to take advantage of the wealth of information they provide.PMID:36612281 | DOI:10.3390/cancers15010287

Multi-Omics Analyses Identify Signatures in Patients with Liver Cirrhosis and Hepatocellular Carcinoma

Sun, 08/01/2023 - 12:00
Cancers (Basel). 2022 Dec 29;15(1):210. doi: 10.3390/cancers15010210.ABSTRACTGut bacterial/viral dysbiosis, changes in circulating metabolites, and plasma cytokines/chemokines have been previously associated with various liver diseases. Here, we analyzed the associations between fecal microbial composition, circulating metabolites, and plasma cytokines/chemokines in patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC). We recruited 10 HCC patients, 18 LC patients, and 17 healthy individuals. Their stool samples were used for gene sequencing of bacterial 16S rRNA and viral genomes, while plasma samples were utilized for the determination of endotoxin, zonulin, metabolite, and cytokine/chemokine levels. Dysbiosis was observed among gut bacteria and viruses, with significant changes in abundance at the genus and species levels, respectively. However, no differences were found between cohorts in the alpha and beta diversity. Plasma lipopolysaccharides and zonulin, but not trimethylamine N-oxide, were progressively increased in LC and HCC subjects. Profiling plasma metabolites and selected cytokines/chemokines revealed differential changes in the LC and HCC cohorts. Following joint correlation and correlation network analyses, regardless of etiology, common network signatures shared by LC and HCC patients were characterized by the gut virus Stenotrophomonas virus DLP5 and the uncultured Caudovirales phage, plasma metabolites pyruvic acid and acetic acid, and plasma cytokines/chemokines eotaxin and PDGF-AB/BB, respectively. Additionally, LC- and HCC-specific correlation networks were also identified. This study provides novel insights into altered gut microbial/viral composition that may contribute to pre-HCC disorders, metabolic reprogramming, or inflammatory microenvironments for hepatocarcinogenesis.PMID:36612207 | DOI:10.3390/cancers15010210

Blood Plasma Metabolome Profiling at Different Stages of Renal Cell Carcinoma

Sun, 08/01/2023 - 12:00
Cancers (Basel). 2022 Dec 26;15(1):140. doi: 10.3390/cancers15010140.ABSTRACTEarly diagnostics significantly improves the survival of patients with renal cell carcinoma (RCC), which is the prevailing type of adult kidney cancer. However, the absence of clinically obvious symptoms and effective screening strategies at the early stages result to disease progression and survival rate reducing. The study was focused on revealing of potential low molecular biomarkers for early-stage RCC. The untargeted direct injection mass spectrometry-based metabolite profiling of blood plasma samples from 51 non-cancer volunteers (control) and 78 patients with different RCC subtypes and stages (early stages of clear cell RCC (ccRCC), papillary RCC (pRCC), chromophobe RCC (chrRCC) and advanced stages of ccRCC) was performed. Comparative analysis of the blood plasma metabolites between the control and cancer groups provided the detection of metabolites associated with different tumor stages. The designed model based on the revealed metabolites demonstrated high diagnostic power and accuracy. Overall, using the metabolomics approach the study revealed the metabolites demonstrating a high value for design of plasma-based test to improve early ccRCC diagnosis.PMID:36612136 | DOI:10.3390/cancers15010140

Metabolomic Changes as Key Factors of Green Plant Regeneration Efficiency of Triticale In Vitro Anther Culture

Sun, 08/01/2023 - 12:00
Cells. 2022 Dec 30;12(1):163. doi: 10.3390/cells12010163.ABSTRACTGreen plant regeneration efficiency (GPRE) via in vitro anther culture results from biochemical pathways and cycle dysfunctions that may affect DNA and histone methylation, with gene expression influencing whole cell functioning. The reprogramming from gametophytic to sporophytic fate is part of the phenomenon. While DNA methylation and sequence changes related to the GPRE have been described, little attention was paid to the biochemical aspects of the phenomenon. Furthermore, only a few theoretical models that describe the complex relationships between biochemical aspects of GPRE and the role of Cu(II) ions in the induction medium and as cofactors of enzymatic reactions have been developed. Still, none of these models are devoted directly to the biochemical level. Fourier transform infrared (FTIR) spectroscopy was used in the current study to analyze triticale regenerants derived under various in vitro tissue culture conditions, including different Cu(II) and Ag(I) ion concentrations in the induction medium and anther culture times. The FTIR spectra of S-adenosyl-L-methionine (SAM), glutathione, and pectins in parallel with the Cu(II) ions, as well as the evaluated GPRE values, were put into the structural equation model (SEM). The data demonstrate the relationships between SAM, glutathione, pectins, and Cu(II) in the induction medium and how they affect GPRE. The SEM reflects the cell functioning under in vitro conditions and varying Cu(II) concentrations. In the presented model, the players are the Krebs and Yang cycles, the transsulfuration pathway controlled by Cu(II) ions acting as cofactors of enzymatic reactions, and the pectins of the primary cell wall.PMID:36611956 | DOI:10.3390/cells12010163

The SMARCD Family of SWI/SNF Accessory Proteins Is Involved in the Transcriptional Regulation of Androgen Receptor-Driven Genes and Plays a Role in Various Essential Processes of Prostate Cancer

Sun, 08/01/2023 - 12:00
Cells. 2022 Dec 28;12(1):124. doi: 10.3390/cells12010124.ABSTRACTPrevious studies have demonstrated an involvement of chromatin-remodelling SWI/SNF complexes in the development of prostate cancer, suggesting both tumor suppressor and oncogenic activities. SMARCD1/BAF60A, SMARCD2/BAF60B, and SMARCD3/BAF60C are mutually exclusive accessory subunits that confer functional specificity and are components of all known SWI/SNF subtypes. To assess the role of SWI/SNF in prostate tumorigenesis, we studied the functions and functional relations of the SMARCD family members. Performing RNA-seq in LnCAP cells grown in the presence or absence of dihydrotestosterone, we found that the SMARCD proteins are involved in the regulation of numerous hormone-dependent AR-driven genes. Moreover, we demonstrated that all SMARCD proteins can regulate AR-downstream targets in androgen-depleted cells, suggesting an involvement in the progression to castration-resistance. However, our approach also revealed a regulatory role for SMARCD proteins through antagonization of AR-signalling. We further demonstrated that the SMARCD proteins are involved in several important cellular processes such as the maintenance of cellular morphology and cytokinesis. Taken together, our findings suggest that the SMARCD proteins play an important, yet paradoxical, role in prostate carcinogenesis. Our approach also unmasked the complex interplay of paralogue SWI/SNF proteins that must be considered for the development of safe and efficient therapies targeting SWI/SNF.PMID:36611918 | DOI:10.3390/cells12010124

Inulin and Chinese Gallotannin Affect Meat Quality and Lipid Metabolism on Hu Sheep

Sun, 08/01/2023 - 12:00
Animals (Basel). 2022 Dec 31;13(1):160. doi: 10.3390/ani13010160.ABSTRACTThe aim of this study was to investigate the impacts of inulin and Chinese gallotannin on the meat fatty acids and urinary metabolites in sheep. Twenty-four healthy (25.80 ± 3.85 kg) weaned Hu lambs of approximately 4.5 months old were equally divided into four groups: control group (basal diet), treatment group I (basal diet + 0.1% inulin), treatment group II (basal diet + 0.1% inulin + 2% Chinese gallotannin), and treatment group III (basal diet + 0.1% inulin + 2% Chinese gallotannin + 4% PEG). The contents of myristic acid (C14:0) and palmitic acid (C16:0) were found to be lower in treatment group II than in the control group (p &lt; 0.05). Moreover, the palmitoleic acid (C16:1) content in treatment group II was notably higher than that in the control group (p &lt; 0.05), while the elaidic acid (C18:1n9t) content in treatment group II was higher than that in other groups (p &lt; 0.05). Besides, the linoleic acid (C18:2n6c) content was higher in the treatment II and control groups than in the treatment I and III groups. Furthermore, compared with the control group, both 4-pyridoxic acid and creatinine in treatment groups I and II were upregulated (p &lt; 0.05), while other metabolites, such as nicotinuric acid, l-threonine, palmitic acid, and oleic acid, were drastically downregulated (p &lt; 0.05). These differential metabolites were found to be mainly involved in nicotinate and nicotinamide metabolism (ko00760), vitamin B6 metabolism (ko00750), and the fatty acid biosynthesis pathway (ko00061). It is concluded that the combination of inulin and Chinese gallotannin in the diet could improve the energy and lipid metabolism of sheep, which may improve both mutton quality and production performance.PMID:36611769 | DOI:10.3390/ani13010160

Performance and Metabolic, Inflammatory, and Oxidative Stress-Related Parameters in Early Lactating Dairy Cows with High and Low Hepatic FGF21 Expression

Sun, 08/01/2023 - 12:00
Animals (Basel). 2022 Dec 29;13(1):131. doi: 10.3390/ani13010131.ABSTRACTInduction of FGF21 expression in the liver and a significant increase in plasma FGF21 concentration have been demonstrated in cows during early lactation, but knowledge about the function of FGF21 in dairy cows remains limited. In order to improve the understanding of the physiological role of FGF21 in dairy cows, the present study aimed to investigate differences in metabolic pathways between dairy cows with high and low hepatic expression of FGF21 at week 1 of lactation (n = 8/group) by liver transcriptomics, targeted plasma metabolomics, and analysis of inflammatory and oxidative stress-related parameters. Dry matter intake, energy balance, milk yield, and energy-corrected milk yield at days 8-14 postpartum did not differ between cows with high and low hepatic FGF21 expression. However, cows with high FGF21 expression showed an upregulation of genes involved in endoplasmic reticulum stress, inflammation, and nuclear factor E2-related factor 2 (Nrf2)-dependent cytoprotection compared to cows with low FGF21 expression at week 1 postpartum (p &lt; 0.05). Concentrations of important antioxidants (tocopherols, β-carotene, and glutathione) in the liver and plasma, trolox equivalent antioxidant capacity in plasma, concentrations of oxidative stress-related compounds (thiobarbituric acid-reactive substances and protein carbonyls), and levels of most acute phase proteins at week 1 postpartum did not differ between cows with high or low FGF21 expression. Moreover, among a total of &gt;200 metabolites assayed in the plasma, concentrations of only 7 metabolites were different between cows with high or low FGF21 expression (p &lt; 0.05). Overall, the results showed that cows with high and low FGF21 hepatic expression had only moderate differences in metabolism, but FGF21 might be important in the adaptation of dairy cows to stress conditions during early lactation.PMID:36611740 | DOI:10.3390/ani13010131

miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients

Sun, 08/01/2023 - 12:00
Diagnostics (Basel). 2022 Dec 30;13(1):133. doi: 10.3390/diagnostics13010133.ABSTRACTCOVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying immunological mechanisms, and their possible use as biomarkers to discriminate against patients with severe COVID-19. Functional analysis showed that most enriched pathways were significantly associated with processes related to cell proliferation and immune responses (innate and adaptive). Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential use as predictive prognosis biomarkers.PMID:36611425 | DOI:10.3390/diagnostics13010133

Endotoxin in Sepsis: Methods for LPS Detection and the Use of Omics Techniques

Sun, 08/01/2023 - 12:00
Diagnostics (Basel). 2022 Dec 27;13(1):79. doi: 10.3390/diagnostics13010079.ABSTRACTLipopolysaccharide (LPS) or endotoxin, the major cell wall component of Gram-negative bacteria, plays a pivotal role in the pathogenesis of sepsis. It is able to activate the host defense system through interaction with Toll-like receptor 4, thus triggering pro-inflammatory mechanisms. A large amount of LPS induces inappropriate activation of the immune system, triggering an exaggerated inflammatory response and consequent extensive organ injury, providing the basis of sepsis damage. In this review, we will briefly describe endotoxin's molecular structure and its main pathogenetic action during sepsis. In addition, we will summarize the main different available methods for endotoxin detection with a special focus on the wider spectrum offered by omics technologies (genomics, transcriptomics, proteomics, and metabolomics) and promising applications of these in the identification of specific biomarkers for sepsis.PMID:36611371 | DOI:10.3390/diagnostics13010079

Selenium nanomaterials improve the quality of lettuce (Lactuca sativa L.) by modulating root growth, nutrient availability, and photosynthesis

Sat, 07/01/2023 - 12:00
NanoImpact. 2023 Jan 4:100449. doi: 10.1016/j.impact.2022.100449. Online ahead of print.ABSTRACTMacro- or micro-nutrients are essential for crop yield and nutritional quality. In this work, selenium engineering nanomaterials (Se ENMs, 0.5 mg‧kg-1) significantly increased the yield and nutritional quality of lettuce, which was better than that of selenite (Na2SeO3). Under the treatment of Se ENMs, macro-nutrients including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were increased by 15.8%, 98.5%, 42.8%, 146.9%, and 62.5%, respectively, and micro-nutrients including manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) were also increased by 87.4%, 78.0%, 61.1%, and 56.1%, respectively. As a result, the improved nutritional status of lettuce leaves increased photosynthesis (59.2%) and yield (37.6%). Root diameters and root tips of lettuce were increased by 23.9% and 18.6%, respectively, upon exposure to Se ENMs, which may be responsible for facilitating the absorption of macro and micro nutrients from the soil. These effects were significantly better than SeO32- treated group. Metabolome results indicated that Se ENMs could improve the shikimic acid, phenylalanine, and tyrosine pathway, resulting in an enhancement of the beneficial compounds, including quercetin, rutin, and coumarin, by 2.9, 2.7, and 2.4-fold, respectively. Besides, pyruvic acid and TCA cycle were also improved by Se ENMs. These results provide new insight into the positive effect of Se ENMs on crop yield and nutritional quality, which demonstrate that the Se ENMs-enabled agriculture practices have a promising prospect as a sustainable crop strategy.PMID:36610662 | DOI:10.1016/j.impact.2022.100449

Gut microbiota-SCFAs-brain axis associated with the antidepressant activity of berberine in CUMS rats

Sat, 07/01/2023 - 12:00
J Affect Disord. 2023 Jan 4:S0165-0327(22)01527-0. doi: 10.1016/j.jad.2022.12.166. Online ahead of print.ABSTRACTBACKGROUND: The anti-depressant effect of berberine (BBR) has been widely reported. However, the underlying mechanism remains unclear. The microbiota-gut-brain (MGB) axis plays a key role in the pathogenesis of depression. Therefore, we aimed to explore the anti-depressant mechanisms of BBR involving the association of the gut microbiota, neurotransmitters, BDNF, and SCFAs in chronic unpredictable mild stress (CUMS)-induced depressive rats.METHODS: The antidepressant effects of BBR were detected by open-field test, 1 % sucrose preference test and body weight test in CUMS-induced depressive rats. 16S rDNA sequencing was performed to identify the change of gut microbiota. The concentrations of fecal SCFAs were analyzed by GC-MS targeted metabolomics. At the same time, neurotransmitters and BDNF expression were measured by enzyme linked immunosorbent assay (ELISA).RESULTS: BBR improved depression-like behaviors in CUMS rats by increasing the expression of serotonin (5-HT), norepinephrine (NE), dopamine (DA), and BDNF in the hippocampus. BBR regulates Firmicutes, Bacteroidetes, and Lachnospiraceae in depressive rats, resulting in the alteration of the synthesis and metabolism of SCFAs, including acetic, propanoic, and isovaleric acids.LIMITATIONS: Direct evidence that BBR improves depressive behaviors via gut microbiota-SCFAs-brain axis is lacking, and only male rats were investigated in the present study.CONCLUSION: The anti-depressant mechanism of BBR is related to the regulation of the MGB axis via modulating the gut microbiota-SCFAs-monoamine neurotransmitters/BDNF.PMID:36610597 | DOI:10.1016/j.jad.2022.12.166

Development of a Machine Learning Algorithm for Drug Screening Analysis on High-Resolution UPLC-MSE/QTOF Mass Spectrometry

Sat, 07/01/2023 - 12:00
J Appl Lab Med. 2023 Jan 4;8(1):53-66. doi: 10.1093/jalm/jfac100.ABSTRACTBACKGROUND: Ultra-performance liquid chromatography (UPLC)-MSE/quadrupole time-of-flight (QTOF) high-resolution mass spectrometry employs untargeted, data-independent acquisition in a dual mode that simultaneously collects precursor ions and product ions at low and ramped collision energies, respectively. However, algorithmic analysis of large-scale multivariate data of comprehensive drug screening as well as the positivity criteria of drug identification have not been systematically investigated. It is also unclear whether ion ratio (IR), the intensity ratio of a defined product ion divided by the precursor ion, is a stable parameter that can be incorporated into the MSE/QTOF data analysis algorithm.METHODS: IR of 91 drugs were experimentally determined and variation of IR was investigated across 5 concentrations measured on 3 different days. A data-driven machine learning approach was employed to develop multivariate linear regression (MLR) models incorporating mass error, retention time, number of detected fragment ions and IR, accuracy of isotope abundance, and peak response using drug-supplemented urine samples. Performance of the models was evaluated in an independent data set of unknown clinical urine samples in comparison with the results of manual analysis.RESULTS: IR of most compounds acquired by MSE/QTOF were low and concentration-dependent (i.e., IR increased at higher concentrations). We developed an MLR model with composite score outputs incorporating 7 parameters to predict positive drug identification. The model achieved a mean accuracy of 89.38% in the validation set and 87.92% agreement in the test set.CONCLUSIONS: The MLR model incorporating all contributing parameters can serve as a decision-support tool to facilitate objective drug identification using UPLC-MSE/QTOF.PMID:36610415 | DOI:10.1093/jalm/jfac100

Bile acid metabolism involved into the therapeutic action of Xiaojianzhong Tang via gut microbiota to treat chronic atrophic gastritis in rats

Sat, 07/01/2023 - 12:00
Phytomedicine. 2022 Nov 18;109:154557. doi: 10.1016/j.phymed.2022.154557. Online ahead of print.ABSTRACTBACKGROUND: As a classical traditional Chinese medicine (TCM), Xiaojianzhong Tang (XJZ) is effective in treating chronic atrophic gastritis (CAG). However, the pharmacological mechanism of XJZ has not been fully explained.PURPOSE: The purpose of this study was to investigate the mechanism of XJZ against CAG rats via gut microbiome using a multi-omics approach.METHODS: The rat cecal contents were analyzed through the integration of an untargeted metabolomic approach based on ultra-high performance liquid chromatography coupled with the quadrupole-time of flight mass spectrometry (UHPLC-QTOF-MS) and 16S rRNA gene sequencing. Finally, the interaction of differential metabolites with bile acid (BA)-related targets was verified by molecular docking.RESULTS: A new strategy was adopted to screen out the differential metabolites based on the comprehensive evaluation of VIP, |log2(FC)|, -ln(p-value) and ǀp(corr)ǀ. As results, XJZ showed favor regulations on the screened metabolites, cholic acid, deoxycholic acid, glycoursodeoxycholic acid, taurochenodesoxycholic acid, docosahexaenoic acid and L-isoleucine. The 16S rRNA gene sequencing analysis showed that XJZ could regulate gut microbiota disturbances in CAG rats, especially bile acid (BA) metabolism-related bacteria (Butyricimonas, Desulfovibrio, Bacteroides, Parabacteroides, Acetobacter and Alistipes). Molecular docking further showed that the differential metabolites regulated by XJZ had a good docking effect on BA-related targets.CONCLUSION: The current work indicated that XJZ's therapeutic action was strongly linked to BA-related microorganisms and metabolic processes. These findings provided new insights into the effects of XJZ for the treatment of CAG.PMID:36610165 | DOI:10.1016/j.phymed.2022.154557

Chinese herbal medicine alleviates the pathogenesis of polycystic ovary syndrome by improving oxidative stress and glucose metabolism via mitochondrial Sirtuin 3 signaling

Sat, 07/01/2023 - 12:00
Phytomedicine. 2022 Nov 18;109:154556. doi: 10.1016/j.phymed.2022.154556. Online ahead of print.ABSTRACTBACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders among women, and the curative effects of its current management are not satisfactory. A formula of Chinese herbal medicine (CHM), called Bu-Shen-Tian-Jing Formula (BSTJF), has clinically shown beneficial effects in treating PCOS.PURPOSE: This study aimed to investigate the mechanism underlying BSTJF for treatment of PCOS.METHODS: Whole blood samples were collected from women with PCOS treated and not treated with BSTJF (n = 5 per group). Whole transcriptome sequencing of leukocytes and untargeted metabonomic analysis of the plasma were performed. Three groups of 18 female Sprague-Dawley rats were randomly selected: control, PCOS, and BSTJF. A PCOS rat model was established using testosterone propionate. The estrous cycle; glucose tolerance; ovarian morphology; serum markers of oxidative stress; and expression of Sirtuin 3 (SIRT3), phospho-p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase (PI3K), and phospho-protein kinase B in the ovary were measured. Palmitate was initially applied to KGN cells, followed by freeze-dried BSTJF powder. The glucose uptake, reactive oxygen species (ROS) production, and protein levels of SIRT3, PI3K, and glucose transporter type 4 (GLUT4) were detected in KGN cells.RESULTS: The transcriptomic and metabolomic profiles showed alterations in 572 genes and 73 metabolites in women with PCOS treated with BSTJF. The enriched pathways in women with PCOS treated with BSTJF were mainly involved in inflammation, insulin resistance, glucose and lipid metabolism, and neuro and associated signaling pathways. In PCOS rat models, BSTJF improved the estrous cycle, glucose tolerance, and ovarian morphology; relieved oxidative stress; increased ovarian SIRT3 expression; inhibited p38 MAPK activation; and promoted the activation of PI3K/AKT signaling in the ovary. In the in-vitro study with KGN cells, BSTJF rescued the palmitate-induced impaired glucose uptake and SIRT3 expression, reduced mitochondrial ROS production mediated by SIRT3, and restored the impaired insulin-induced PI3K/AKT signaling pathway.CONCLUSION: BSTJF effectively alleviated the pathogenesis of PCOS by improving oxidative stress and glucose metabolism via mitochondrial SIRT3 and the following insulin signaling pathway. This study innovatively revealed the action mechanism of CHM in treating PCOS.PMID:36610149 | DOI:10.1016/j.phymed.2022.154556

Intragastric administration of Pien Tze Huang enhanced wound healing in diabetes by inhibiting inflammation and improving energy generation

Sat, 07/01/2023 - 12:00
Phytomedicine. 2022 Nov 25;109:154578. doi: 10.1016/j.phymed.2022.154578. Online ahead of print.ABSTRACTBACKGROUND AND PURPOSE: As a complex and challenging complication for the patients with diabetes mellitus, diabetic ulcers are difficult to heal and current strategies cannot fulfill the patients' requirements. Pien Tze Huang (PZH) is a standardized medicine approved for various wounds treatments, and this study systematically investigated the effect and mechanism of intragastric administration of PZH (I-PZH) on diabetic wound healing.METHODS AND RESULTS: The effect of I-PZH on the healing of full-thickness wounds in rats with diabetes mellitus which was induced by high fat diet followed by streptozotocin injection was evaluated, and RNA sequencing (RNA-seq) and targeted central carbon metabolism metabolomics were combined to explore the underlying mechanism. I-PZH promoted wound healing, facilitated extracellular matrix synthesis, and maintained body weight of rats, but did not affect fasting blood glucose levels. Additionally, I-PZH significantly decreased 8-OHdG, cleaved caspase 3 and MMP9 levels, and increased TGF-β1 expression. RNA-seq analysis showed that I-PZH inhibited inflammation and that the vital common targets were TLR2, IL-17A and IL-1β; specifically affected "energy derivation by oxidation of organic compounds" with UQCRC1, NDUFS3 and SDHA as vital specific targets. Further experiments confirmed that I-PZH reduced TLR2, IL-17A and IL-1β, increased UQCRC1, SDHA, NDUFS3, promoted ATP synthesis and restored activity of mitochondrial respiratory chain complexes I and III in diabetic wounds. Metabolomics by HPLC-MS/MS analysis showed that I-PZH reversed multiple energy metabolism-related metabolites such as glucuronic acid, GMP, d-gluconic acid, cis-aconitic acid, ribose 5-phosphate and pantothenate.CONCLUSION: This study highlights the important role of inflammation and energy generation in diabetic wound healing, reveals wound repair mechanism of PZH and promotes its clinical application in diabetic wound treatment.PMID:36610146 | DOI:10.1016/j.phymed.2022.154578

Identification of the target protein and molecular mechanism of honokiol in anti-inflammatory action

Sat, 07/01/2023 - 12:00
Phytomedicine. 2022 Dec 19;109:154617. doi: 10.1016/j.phymed.2022.154617. Online ahead of print.ABSTRACTBACKGROUND: Searching the targets of natural products is very important for drug discovery and elucidating the mechanism of drug action and disease. Honokiol (HK), as the major active component of Magnolia officinalis Rehder & E.H.Wilson, has been widely used in medicine and cosmetics. Among its bioactivities, its anti-inflammatory activity is particularly impressive. However, the target protein of HK in anti-inflammatory action and its regulatory mechanism are unclear.PURPOSE: Here, we identified the target protein and molecular mechanism of the anti- inflammatory action of HK.METHODS: First, an LPS-induced septic shock model and DSS-induced ulcerative colitis model were used to assess the anti-inflammatory efficacy of HK. Second, the drug affinity responsive target stability, proteomics analysis, thermal shift assays and cellular thermal shift assays were used to identify and validate the target of HK. Finally, western blot, ELISA, LDH immunofluorescence staining, shRNA and LC/MS for L-leucine analysis were performed to determine the mechanism of the anti-inflammatory action of HK.RESULTS: This study revealed that HK significantly alleviated LPS-induced septic shock and DSS-induced ulcerative colitis in vivo, suggesting that HK has significant anti-inflammatory activity. HK treatment dramatically reduced IL-1β release and caspase-1 activation at different time points, showing that HK could inhibit both NLRP3 inflammasome priming and activation processes in cells. HK also suppressed adaptor apoptosis speck-like protein oligomerization. Mechanistically, SLC3A2 was identified as a direct target of HK in THP-1 cells. HK downregulated SLC3A2 expression by promoting its degradation via proteasome-mediated proteolysis. Further study demonstrated that HK triggered SLC3A2 to suppress NLRP3 inflammasome activation by significantly reducing the content of L-leucine transported into cells and lysosomes to block the mTORC1 pathway.CONCLUSIONS: Our work identified HK as a promising anti-inflammatory drug candidate through the SLC3A2/L-leucine/mTORC1/NLRP3 pathways.PMID:36610140 | DOI:10.1016/j.phymed.2022.154617

Formosanin C inhibits non-small-cell lung cancer progression by blocking MCT4/CD147-mediated lactate export

Sat, 07/01/2023 - 12:00
Phytomedicine. 2022 Dec 19;109:154618. doi: 10.1016/j.phymed.2022.154618. Online ahead of print.ABSTRACTBACKGROUND: Tumor cells reprogram their metabolic network to maintain their uncontrolled proliferation, metastasis, and resistance to cancer therapy. Treatments targeting abnormal cellular metabolism may have promising therapeutic effects. Formosanin C (FC), a diosgenin derived from the rhizoma of Paris polyphylla var. yunnanensis, has shown potent anti-cancer activities against various cancer types. However, the effect of FC on cancer metabolism remains to be elucidated.PURPOSE: In this research, we aimed to elucidate FC's effect and potential mechanisms on metabolism in lung cancer.METHODS: Colony formation, transwell cell migration, and apoptosis were detected in multiple NSCLC cell lines to assess the cytotoxicity of FC. 1H NMR metabolomics approach was applied to screen the differential metabolites in H1299 cells and the culture medium. Western blotting, flow cytometry, and other molecular biological techniques were performed to verify the latent mechanism involved in metabolites. An allograft tumor model was employed to investigate the anti-tumor effects of FC in vivo.RESULTS: FC significantly inhibited monoclonal formation and migration and induced cell cycle arrest and apoptosis in NSCLC cells. FC altered the abundances of 12 metabolites in lung cancer cells and 3 metabolites in the medium. These differential metabolites are primarily involved in glycolysis, citric acid cycle, and glutathione pathways. Notably, there was a remarkable increase in intracellular lactate and a reduction in extracellular lactate after FC treatment. Mechanically, FC downregulated the expression of MCT4 and CD147, blocking the export of lactate. Furthermore, FC also evoked mitochondrial dysfunction coupled with excessive oxidative stress, decreased mitochondrial membrane potential, ATP production reduction, glutathione depletion, and Ca2+ overload. Moreover, FC suppressed tumor progression in vivo with reduced protein levels of the MCT4 and CD147 in tumor tissues.CONCLUSION: FC inhibits lung cancer growth by the novel mechanism in which MCT4/CD147-mediated inhibition of lactate transport and disruption of mitochondrial functions are involved.PMID:36610137 | DOI:10.1016/j.phymed.2022.154618

Pages