PubMed
Landscapes of the main components, metabolic and microbial signatures, and their correlations during pile-fermentation of Tibetan tea
Food Chem. 2023 Jul 26;430:136932. doi: 10.1016/j.foodchem.2023.136932. Online ahead of print.ABSTRACTMicrobial fermentation, a key step in Tibetan tea production, plays a pivotal role in forming the tea's unique quality. In our study, we mapped out the landscapes of major components, metabolomic signatures, and microbial features of Tibetan tea using component content determination, untargeted metabolomic analysis, and ITS and 16S rRNA sequencing. The results reveal that theabrownin content demonstrated a consistent growth trend post-fermentation, increasing from 41.96 ± 1.64 mg/g to 68.75 ± 2.58 mg/g. However, the content of epigallocatechin gallate (EGCG) significantly dwindled from 80.02 ± 0.51 mg/g to 8.12 ± 0.07 mg/g. Additionally, 518 metabolites were pinpointed as pivotal to the metabolic variation induced by microbial fermentation. The microbiome analysis exhibited a considerable shift in the microbiota signature, with Aspergillus emerging as the dominant microorganism. To conclude, these findings offer novel perspectives for enhancing the quality of Tibetan tea and abbreviating fermentation time through the regulation of microbiota structure.PMID:37572385 | DOI:10.1016/j.foodchem.2023.136932
Alterations of the intestinal microbiome and metabolome in women with rheumatoid arthritis
Clin Exp Med. 2023 Aug 12. doi: 10.1007/s10238-023-01161-7. Online ahead of print.ABSTRACTRheumatoid arthritis (RA) is more common in women, and many reports of sex differences have been reported in various aspects of RA. However, there has been a lack of specific research on women's gut flora. To assess the association between the gut flora and RA patients, this study combined the microbiome with metabolomics. Fecal samples from RA patients and healthy controls were collected for 16S rRNA sequencing. Nontargeted liquid chromatography-mass spectrometry was used to detect metabolites in fecal samples. We comprehensively used various analytical methods to reveal changes in intestinal flora and metabolites in female patients. The gut flora of RA patients was significantly different from that of healthy women. The abundance of Bacteroides, Megamonas and Oscillospira was higher in RA patients, while the abundance of Prevotella, Gemmiger and Roseburia was lower than that of healthy women. Gemmiger, Bilophila and Odoribacter represented large differences in microflora between RA and healthy women and could be used as potential microorganisms in the diagnosis. Fatty acid biosynthesis was significantly different between RA patients and healthy women in terms of metabolic pathways. There were different degrees of correlation between the gut flora and metabolites. Lys-Phe-Lys and heptadecasphin-4-enine can be used as potential markers for RA diagnosis. There was an extremely significant positive correlation between Megamonas, Dialister and rheumatoid factors, which was found for the first time. These findings indicated that alterations of these gut microbiome and metabolome may contribute to the diagnosis and treatment of RA patients.PMID:37572155 | DOI:10.1007/s10238-023-01161-7
Cross-Species Metabolomic Analyses In The Brassicaceae Reveals Common Responses To Ultraviolet-B Exposure
Plant Cell Physiol. 2023 Aug 12:pcad085. doi: 10.1093/pcp/pcad085. Online ahead of print.ABSTRACTExposure to UV-B radiation, an intrinsic component of solar light, is detrimental to all living organisms as chromophore units of DNA, RNA, and proteins readily absorb high-energy photons. Indirect damage to the same molecules and lipids is mediated by elevated ROS levels, a side effect of exposure to UV-B stress. To protect themselves from UV-B radiation, plants produce phytochemical sunscreen, among which flavonoids have shown to be particularly effective. The core aglycone of flavonoid molecules is subjected to chemical decoration, such as glycosylation and acylation, further improving sunscreen properties. In particular, acylation, which adds a phenolic ring to flavonoid molecules, enhances the spectral absorption of UV-A and UV-B rays, providing this class of compounds exceptional shielding power. In this study, we comprehensively analyzed the responses to UV-B radiation in four Brassicaceae species, including Arabidopsis thaliana, Brassica napus, B. oleracea, and B. rapa. Our study revealed a complete reprogramming of the central metabolic pathway in response to UV-B radiation characterized by increased production of functional precursors of specialized metabolites with UV-B shielding properties, indicating a targeted effort of plant metabolism to provide increased protection. The analysis of specialized metabolites and transcripts revealed activation of the phenylpropanoid-acetate pathway leading to the production of specific classes of flavonoids and a cross-species increase of phenylacylated flavonoid glucosides with synapoyl-glycoside decorations. Interestingly, our analysis also revealed constitutive expression of acyltransferase genes of the class of serine carboxypeptidase-like (SCPL) protein and down-regulation in response to UV-B radiation, possibly independent from the ELONGATED HYPOCOTYL 5 (HY5) signaling pathway.PMID:37572104 | DOI:10.1093/pcp/pcad085
Effects of Menaquinone-7 on the Bone Health of Growing Rats under Calcium Restriction: New Insights from Microbiome-Metabolomics
Nutrients. 2023 Jul 31;15(15):3398. doi: 10.3390/nu15153398.ABSTRACTInsufficient calcium intake during growth is a global public health concern. The aim of this study was to investigate the effects of dietary menaquinone-7 (MK-7) on bone accrual in growing Sprague-Dawley rats under calcium restriction. Following 13 weeks of treatment, various bone quality parameters, including microarchitecture, were measured. Fecal and cecal samples were subjected to microbiome (16S rRNA gene sequencing) analyses, while metabolomics analysis of the cecum and humerus samples was analyzed based on UHPLC-Q/TOF-MS. We found that calcium deficiency diminished the richness of the microbiome and disrupted microbiome composition, accompanied by an elevation in the relative abundance of Parasutterella. Furthermore, calcium insufficiency escalated the level of isovaleric acid and modified the metabolic profiles. MK-7 supplementation significantly increased the cortical thickness, cortical bone area, and the calcium content of the femur. Apart from improving bone calcium deposition and diminishing bone resorption, the mechanisms underlying the beneficial effects of MK on bone quality also involve the modulation of the host's metabolic pathways and the composition of gut microbiota. The gut-bone axis holds promise as an efficacious target for ameliorating calcium deficiency in children's bone quality, and MK-7 is a promising dietary supplement from this perspective.PMID:37571336 | DOI:10.3390/nu15153398
Lipidome Profiling in Childhood Obesity Compared to Adults: A Pilot Study
Nutrients. 2023 Jul 27;15(15):3341. doi: 10.3390/nu15153341.ABSTRACTThe objective is to assess the circulating lipidome of children with obesity before and after lifestyle intervention and to compare the data to the circulating lipidome of adults with obesity before and after bariatric surgery. Ten pediatric (PE) and thirty adult (AD) patients with obesity were prospectively recruited at a referral single center. The PE cohort received lifestyle recommendations. The AD cohort underwent bariatric surgery. Clinical parameters and lipidome were analyzed in serum before and after six months of metabolic intervention. The abundance of phosphatidylinositols in the PE cohort and phosphatidylcholines in the AD significantly increased, while O-phosphatidylserines in the PE cohort and diacyl/triacylglycerols in the AD decreased. Fifteen lipid species were coincident in both groups after lifestyle intervention and bariatric surgery. Five species of phosphatidylinositols, sphingomyelins, and cholesteryl esters were upregulated. Eight species of diacylglycerols, glycerophosphoglycerols, glycerophosphoethanolamines, and phosphatidylcholines were downregulated. Most matching species were regulated in the same direction except for two phosphatidylinositols: PI(O-36:2) and PI(O-34:0). A specific set of lipid species regulated after bariatric surgery in adult individuals was also modulated in children undergoing lifestyle intervention, suggesting they may constitute a core circulating lipid profile signature indicative of early development of obesity and improvement after clinical interventions regardless of individual age.PMID:37571279 | DOI:10.3390/nu15153341
The Underlying Changes in Serum Metabolic Profiles and Efficacy Prediction in Patients with Extensive Ulcerative Colitis Undergoing Fecal Microbiota Transplantation
Nutrients. 2023 Jul 27;15(15):3340. doi: 10.3390/nu15153340.ABSTRACT(1) Background: Fecal microbiota transplantation (FMT) is an effective treatment for ulcerative colitis (UC). Metabolomic techniques would assist physicians in clinical decision-making. (2) Methods: Patients with active UC undergoing FMT were enrolled in the study and monitored for 3 months. We explored short-term changes in the serum metabolic signatures of groups and the association between baseline serum metabolomic profiles and patient outcomes. (3) Results: Forty-four eligible patients were included in the analysis. Of them, 50.0% and 29.5% achieved clinical response and clinical remission, respectively, 3 months post-FMT. The top two significantly altered pathways in the response group were vitamin B6 metabolism and aminoacyl-tRNA biosynthesis. Both the remission and response groups exhibited an altered and enriched pathway for the biosynthesis of primary bile acid. We found a clear separation between the remission and non-remission groups at baseline, characterized by the higher levels of glycerophosphocholines, glycerophospholipids, and glycerophosphoethanolamines in the remission group. A random forest (RF) classifier was constructed with 20 metabolic markers selected by the Boruta method to predict clinical remission 3 months post-FMT, with an area under the curve of 0.963. (4) Conclusions: FMT effectively induced a response in patients with active UC, with metabolites partially improving post-FMT in the responsive group. A promising role of serum metabolites in the non-invasive prediction of FMT efficacy for UC demonstrated the value of metabolome-informed FMT in managing UC.PMID:37571277 | DOI:10.3390/nu15153340
Linoleic Acid Induced Changes in SZ95 Sebocytes-Comparison with Palmitic Acid and Arachidonic Acid
Nutrients. 2023 Jul 26;15(15):3315. doi: 10.3390/nu15153315.ABSTRACTLinoleic acid (LA) is an essential omega-6 polyunsaturated fatty acid (PUFA) derived from the diet. Sebocytes, whose primary role is to moisturise the skin, process free fatty acids (FFAs) to produce the lipid-rich sebum. Importantly, like other sebum components such as palmitic acid (PA), LA and its derivative arachidonic acid (AA) are known to modulate sebocyte functions. Given the different roles of PA, LA and AA in skin biology, the aim of this study was to assess the specificity of sebocytes for LA and to dissect the different roles of LA and AA in regulating sebocyte functions. Using RNA sequencing, we confirmed that gene expression changes in LA-treated sebocytes were largely distinct from those induced by PA. LA, but not AA, regulated the expression of genes related to cholesterol biosynthesis, androgen and nuclear receptor signalling, keratinisation, lipid homeostasis and differentiation. In contrast, a set of mostly down-regulated genes involved in lipid metabolism and immune functions overlapped in LA- and AA-treated sebocytes. Lipidomic analyses revealed that the changes in the lipid profile of LA-treated sebocytes were more pronounced than those of AA-treated sebocytes, suggesting that LA may serve not only as a precursor of AA but also as a potent regulator of sebaceous lipogenesis, which may not only influence the gene expression profile but also have further specific biological relevance. In conclusion, we have shown that sebocytes are able to respond selectively to different lipid stimuli and that LA-induced effects can be both AA-dependent and independent. Our findings allow for the consideration of LA application in the therapy of sebaceous gland-associated inflammatory skin diseases such as acne, where lipid modulation and selective targeting of AA metabolism are potential treatment options.PMID:37571253 | DOI:10.3390/nu15153315
PlantMetSuite: A User-Friendly Web-Based Tool for Metabolomics Analysis and Visualisation
Plants (Basel). 2023 Aug 6;12(15):2880. doi: 10.3390/plants12152880.ABSTRACTThe advancement of mass spectrometry technologies has revolutionised plant metabolomics research by enabling the acquisition of raw metabolomics data. However, the identification, analysis, and visualisation of these data require specialised tools. Existing solutions lack a dedicated plant-specific metabolite database and pose usability challenges. To address these limitations, we developed PlantMetSuite, a web-based tool for comprehensive metabolomics analysis and visualisation. PlantMetSuite encompasses interactive bioinformatics tools and databases specifically tailored to plant metabolomics data, facilitating upstream-to-downstream analysis in metabolomics and supporting integrative multi-omics investigations. PlantMetSuite can be accessed directly through a user's browser without the need for installation or programming skills. The tool is freely available and will undergo regular updates and expansions to incorporate additional libraries and newly published metabolomics analysis methods. The tool's significance lies in empowering researchers with an accessible and customisable platform for unlocking plant metabolomics insights.PMID:37571033 | DOI:10.3390/plants12152880
Primary Metabolite Screening Shows Significant Differences between Embryogenic and Non-Embryogenic Callus of Tamarillo (<em>Solanum betaceum</em> Cav.)
Plants (Basel). 2023 Aug 4;12(15):2869. doi: 10.3390/plants12152869.ABSTRACTTamarillo is a solanaceous tree that has been extensively studied in terms of in vitro clonal propagation, namely somatic embryogenesis. In this work, a protocol of indirect somatic embryogenesis was applied to obtain embryogenic and non-embryogenic callus from leaf segments. Nuclear magnetic resonance spectroscopy was used to analyze the primary metabolome of these distinct calli to elucidate possible differentiation mechanisms from the common genetic background callus. Standard multivariate analysis methods were then applied, and were complemented by univariate statistical methods to identify differentially expressed primary metabolites and related metabolic pathways. The results showed carbohydrate and lipid metabolism to be the most relevant in all the calli assayed, with most discriminant metabolites being fructose, glucose and to a lesser extent choline. The glycolytic rate was higher in embryogenic calli, which shows, overall, a higher rate of sugar catabolism and a different profile of phospholipids with a choline/ethanolamine analysis. In general, our results show that a distinct primary metabolome between embryogenic and non-embryogenic calli occurs and that intracellular levels of fructose and sucrose and the glucose to sucrose ratio seem to be good candidates as biochemical biomarkers of embryogenic competence.PMID:37571022 | DOI:10.3390/plants12152869
Comparative Analysis of Physicochemical Properties and Storability of a New Citrus Variety, Yellowball, and Its Parent
Plants (Basel). 2023 Aug 3;12(15):2863. doi: 10.3390/plants12152863.ABSTRACTAlthough numerous citrus varieties have recently been developed to enhance their quality, information on their quality characteristics is limited. We assessed the quality characteristics of Yellowball, a novel citrus variety, by evaluating its appearance, storability, sensory properties, functionality, and metabolite profiles and then comparing these characteristics with those of its parent varieties, Haruka and Kiyomi. The metabolite profiles between the citrus varieties differed significantly, resulting in distinct physicochemical and functional qualities. The storability of Yellowball was significantly increased compared with that of its parent varieties owing to its strong antifungal activity and unique peel morphology, including the stoma and albedo layers. While we did not investigate the volatile compounds, overall functional activities, and detailed characteristics of each metabolite, our data provide valuable insights into the relationship between citrus metabolites, peel morphology, physicochemical properties, and storability, and demonstrate the potential of Yellowball as a promising variety in the citrus industry.PMID:37571017 | DOI:10.3390/plants12152863
Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants
Plants (Basel). 2023 Jul 31;12(15):2830. doi: 10.3390/plants12152830.ABSTRACTPlant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.PMID:37570983 | DOI:10.3390/plants12152830
Transcriptomics and Metabolomics Reveal the Critical Genes of Carotenoid Biosynthesis and Color Formation of Goji (<em>Lycium barbarum</em> L.) Fruit Ripening
Plants (Basel). 2023 Jul 27;12(15):2791. doi: 10.3390/plants12152791.ABSTRACTCarotenoids in goji (Lycium barbarum L.) have excellent health benefits, but the underlying mechanism of carotenoid synthesis and color formation in goji fruit ripening is still unclear. The present study uses transcriptomics and metabolomics to investigate carotenoid biosynthesis and color formation differences in N1 (red fruit) and N1Y (yellow fruit) at three stages of ripening. Twenty-seven carotenoids were identified in N1 and N1Y fruits during the M1, M2, and M3 periods, with the M2 and M3 periods being critical for the difference in carotenoid and color between N1 and N1Y fruit. Weighted gene co-expression network analysis (WGCNA), gene trend analysis, and correlation analysis suggest that PSY1 and ZDS16 may be important players in the synthesis of carotenoids during goji fruit ripening. Meanwhile, 63 transcription factors (TFs) were identified related to goji fruit carotenoid biosynthesis. Among them, four TFs (CMB1-1, WRKY22-1, WRKY22-3, and RAP2-13-like) may have potential regulatory relationships with PSY1 and ZDS16. This work sheds light on the molecular network of carotenoid synthesis and explains the differences in carotenoid accumulation in different colored goji fruits.PMID:37570945 | DOI:10.3390/plants12152791
Miniaturization and Automation Protocol of a Urinary Organic Acid Liquid-Liquid Extraction Method on GC-MS
Molecules. 2023 Aug 7;28(15):5927. doi: 10.3390/molecules28155927.ABSTRACTThe aim of this study was to improve the extraction method for urinary organic acids by miniaturizing and automating the process. Currently, manual extraction methods are commonly used, which can be time-consuming and lead to variations in test results. To address these issues, we reassessed and miniaturized the in-house extraction method, reducing the number of steps and the sample-to-solvent volumes required. The evaluated miniaturized method was translated into an automated extraction procedure on a MicroLab (ML) Star (Hamilton Technologies) liquid handler. This was then validated using samples obtained from the ERNDIM External Quality Assurance program. The organic acid extraction method was successfully miniaturized and automated using the Autosampler robot. The linear range for most of the thirteen standard analytes fell between 0 to 300 mg/L in spiked synthetic urine, with low (50 mg/L), medium (100 mg/L), and high (500 mg/L) levels. The correlation coefficient (r) for most analytes was >0.99, indicating a strong relationship between the measured values. Furthermore, the automated extraction method demonstrated acceptable precision, as most organic acids had coefficients of variation (CVs) below 20%. In conclusion, the automated extraction method provided comparable or even superior results compared to the current in-house method. It has the potential to reduce solvent volumes used during extraction, increase sample throughput, and minimize variability and random errors in routine diagnostic settings.PMID:37570898 | DOI:10.3390/molecules28155927
Tectorigenin: A Review of Its Sources, Pharmacology, Toxicity, and Pharmacokinetics
Molecules. 2023 Aug 5;28(15):5904. doi: 10.3390/molecules28155904.ABSTRACTTectorigenin is a well-known natural flavonoid aglycone and an active component that exists in numerous plants. Growing evidence suggests that tectorigenin has multiple pharmacological effects, such as anticancer, antidiabetic, hepatoprotective, anti-inflammatory, antioxidative, antimicrobial, cardioprotective, and neuroprotective. These pharmacological properties provide the basis for the treatment of many kinds of illnesses, including several types of cancer, diabetes, hepatic fibrosis, osteoarthritis, Alzheimer's disease, etc. The purpose of this paper is to provide a comprehensive summary and review of the sources, extraction and synthesis, pharmacological effects, toxicity, pharmacokinetics, and delivery strategy aspects of tectorigenin. Tectorigenin may exert certain cytotoxicity, which is related to the administration time and concentration. Pharmacokinetic studies have demonstrated that the main metabolic pathways in rats for tectorigenin are glucuronidation, sulfation, demethylation and methoxylation, but that it exhibits poor bioavailability. From our perspective, further research on tectorigenin should cover: exploring the pharmacological targets and mechanisms of action; finding an appropriate concentration to balance pharmacological effects and toxicity; attempting diversified delivery strategies to improve the bioavailability; and structural modification to obtain tectorigenin derivatives with higher pharmacological activity.PMID:37570873 | DOI:10.3390/molecules28155904
Identification of Salivary Metabolic Signatures Associated with Primary Sjögren's Disease
Molecules. 2023 Aug 5;28(15):5891. doi: 10.3390/molecules28155891.ABSTRACTSjögren's disease (SjD) is the second most prevalent autoimmune disorder that involves chronic inflammation of exocrine glands. Correct diagnosis of primary SjD (pSjD) can span over many years since disease symptoms manifest only in advanced stages of salivary and lachrymal glandular destruction, and consensus diagnostic methods have critical sensitivity and selectivity limitations. Using nuclear magnetic resonance (NMR) spectroscopy, we determined the composition of metabolites in unstimulated saliva samples from 30 pSjD subjects and 30 participants who do not have Sjögren's disease (non-Sjögren's control group, NS-C). Thirty-four metabolites were quantified in each sample, and analysis was conducted on both non-normalized (concentration) and normalized metabolomics data from all study participants (ages 23-78) and on an age-restricted subset of the data (ages 30-70) while applying false discovery rate correction in determining data significance. The normalized data of saliva samples from all study participants, and of the age-restricted subset, indicated significant increases in the levels of glucose, glycerol, taurine, and lactate, as well as significant decreases in the levels of 5-aminopentanoate, acetate, butyrate and propionate, in subjects with pSjD compared to subjects in the NS-C group. Additionally, a significant increase in choline was found only in the age-restricted subset, and a significant decrease in fucose was found only in the whole study population in normalized data of saliva samples from the pSjD group compared to the NS-C group. Metabolite concentration data of saliva samples from all study participants, but not from the age-restricted subset, indicated significant increases in the levels of glucose, glycerol, taurine, and lactate in subjects with pSjD compared to controls. The study showed that NMR metabolomics can be implemented in defining salivary metabolic signatures that are associated with disease status, and can contribute to differential analysis between subjects with pSjD and those who are not affected with this disease, in the clinic.PMID:37570863 | DOI:10.3390/molecules28155891
Isolation and Identification of β-Glucosidases-Producing Non-<em>Saccharomyces</em> Yeast Strains and Its Influence on the Aroma of Fermented Mango Juice
Molecules. 2023 Aug 5;28(15):5890. doi: 10.3390/molecules28155890.ABSTRACTThe cultivation and enrichment of different soils in a vineyard yielded 95 yeast species. Among them, seven strains capable of producing β-glucosidases were identified using the aescin colorimetric method. One non-Saccharomyces yeast strain was isolated from a plate containing lysine and identified using internal transcription (ITS) as Candida cf. sorbosivorans (C. cf. sorbosivorans), which was named Candida cf. sorbosivorans X1. Additionally, the enzymatic characteristics of the β-glucosidases produced by this strain were investigated. The β-glucosidases generated by C. cf. sorbosivorans X1 displayed high enzymatic activity and enzyme-activity retention in a pH range of 3.0 to 5.4 and at temperatures of 30 °C to 35 °C. Using non-targeted metabolomics methods, we investigated the alterations in metabolites during the fermentation of mango juice. The strain C. cf. sorbosivorans X1 demonstrated activity against phenols and terpenes. In the fermented mango juice (X1FMJ), we identified 41 differential metabolites. These included 14 esters, 4 hydrocarbons, 3 aldehydes, 5 ketones, 4 terpenoids, 4 alcohols, 1 aromatic hydrocarbon, 2 amines, 1 acid, and 3 heterocyclic compounds. The metabolic pathways of these differential metabolites were analyzed, revealing four key pathways: tyrosine metabolism, phenylpropanoid biosynthesis, monoterpene biosynthesis, and α-linolenic acid metabolism, which promoted the formation of aroma compounds in the fermented mango juice.PMID:37570860 | DOI:10.3390/molecules28155890
Untargeted Metabolomics Approach Using UHPLC-HRMS to Unravel the Impact of Fermentation on Color and Phenolic Composition of Rosé Wines
Molecules. 2023 Jul 29;28(15):5748. doi: 10.3390/molecules28155748.ABSTRACTColor is a major quality trait of rosé wines due to their packaging in clear glass bottles. This color is due to the presence of phenolic pigments extracted from grapes to wines and products of reactions taking place during the wine-making process. This study focuses on changes occurring during the alcoholic fermentation of Syrah, Grenache and Cinsault musts, which were conducted at laboratory (250 mL) and pilot (100 L) scales. The color and phenolic composition of the musts and wines were analyzed using UV-visible spectrophotometry, and metabolomics fingerprints were acquired by ultra-high performance liquid chromatography-high-resolution mass spectrometry. Untargeted metabolomics data highlighted markers of fermentation stage (must or wine) and markers related to the grape variety (e.g., anthocyanins in Syrah, hydroxycinnamates and tryptophan derivatives in Grenache, norisoprenoids released during fermentation in Cinsault). Cinsault wines contained higher molecular weight compounds possibly resulting from the oxidation of phenolics, which may contribute to their high absorbance values.PMID:37570718 | DOI:10.3390/molecules28155748
Identification of the Microbial Transformation Products of Secoisolariciresinol Using an Untargeted Metabolomics Approach and Evaluation of the Osteogenic Activities of the Metabolites
Molecules. 2023 Jul 29;28(15):5742. doi: 10.3390/molecules28155742.ABSTRACTSecoisolariciresinol (SECO) is one of the major lignans occurring in various grains, seeds, fruits, and vegetables. The gut microbiota plays an important role in the biotransformation of dietary lignans into enterolignans, which might exhibit more potent bioactivities than the precursor lignans. This study aimed to identify, synthesize, and evaluate the microbial metabolites of SECO and to develop efficient lead compounds from the metabolites for the treatment of osteoporosis. SECO was fermented with human gut microbiota in anaerobic or micro-aerobic environments at different time points. Samples derived from microbial transformation were analyzed using an untargeted metabolomics approach for metabolite identification. Nine metabolites were identified and synthesized. Their effects on cell viability, osteoblastic differentiation, and gene expression were examined. The results showed that five of the microbial metabolites exerted potential osteogenic effects similar to those of SECO or better. The results suggested that the enterolignans might account for the osteoporotic effects of SECO in vivo. Thus, the presence of the gut microbiota could offer a good way to form diverse enterolignans with bone-protective effects. The current study improves our understanding of the microbial transformation products of SECO and provides new approaches for new candidate identification in the treatment of osteoporosis.PMID:37570714 | DOI:10.3390/molecules28155742
Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms
Molecules. 2023 Jul 28;28(15):5724. doi: 10.3390/molecules28155724.ABSTRACTPhysiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.PMID:37570694 | DOI:10.3390/molecules28155724
Phytochemical Analysis and <em>In Vitro</em> Antileukemic Activity of Alkaloid-Enriched Extracts from <em>Vinca sardoa</em> (Stearn) Pignatti
Molecules. 2023 Jul 25;28(15):5639. doi: 10.3390/molecules28155639.ABSTRACTVinca sardoa (Stearn) Pignatti, known as Sardinian periwinkle, is widely diffused in Sardinia (Italy). This species contains indole alkaloids, which are known to have a great variety of biological activities. This study investigated the antileukemic activity against a B lymphoblast cell line (SUP-B15) of V. sardoa alkaloid-rich extracts obtained from plants grown in Italy, in Iglesias (Sardinia) and Rome (Latium). All the extracts showed a good capacity to induce reductions in cell proliferation of up to 50% at the tested concentrations (1-15 µg/mL). Moreover, none of the extracts showed cytotoxicity on normal cells at all the studied concentrations.PMID:37570609 | DOI:10.3390/molecules28155639