Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward

Fri, 13/01/2023 - 12:00
Environ Sci Pollut Res Int. 2023 Jan 13. doi: 10.1007/s11356-023-25192-5. Online ahead of print.ABSTRACTMicroplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the increase in anthropogenic activities, MP accumulation is increasing enormously in aquatic, marine, and terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of contaminants leaching into the water, soil, and ultimately to human beings. Over the years, several microorganisms have been characterized by the potential to degrade different plastic polymers through enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and access their functional genetics for the exploration and characterization of plastic-degrading microbial consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics and sequencing tools allows rapid screening, mining, and prediction of genes that are capable of polymer degradation. This review comprehensively summarizes the growing threat of microplastics around the world and highlights the role of MGs and computational biology in building effective response strategies for MP remediation.PMID:36637649 | DOI:10.1007/s11356-023-25192-5

Identification of potential causal metabolites associated with atopic dermatitis

Fri, 13/01/2023 - 12:00
Hum Mol Genet. 2023 Jan 13:ddad005. doi: 10.1093/hmg/ddad005. Online ahead of print.ABSTRACTAtopic dermatitis is a chronically recurrent dermatologic disease affected by complex pathophysiology with limited therapeutic options. To identify promising biomarkers for atopic dermatitis, we conducted a Mendelian randomization (MR) study to systematically screen blood metabolome for potential causal mediators of atopic dermatitis and further predict target-mediated side effects. We selected 128 unique blood metabolites from 3 European-descent metabolome genome-wide association studies (GWASs) with a total of 147 827 participants. Atopic dermatitis dataset originated from a large-scale GWAS including 10 788 cases and 30 047 controls of European ancestry. MR analyses were performed to estimate the associations of blood metabolites with atopic dermatitis. We then applied a phenome-wide MR analysis to ascertain potential on-target side effects of metabolite intervention. Three metabolites were identified as potential causal mediators for atopic dermatitis, including docosahexaenoic acid (odds ratio [OR], 0.87; 95% CI, 0.81-0.94; P = 3.45 × 10-4), arachidonate (OR, 0.30; 95% CI, 0.17-0.53; P = 4.09 × 10-5), and 1-arachidonoylglycerophosphoethanolamine (1-arachidonoyl-GPE)(OR, 0.25; 95% CI, 0.12-0.53; P = 2.58 × 10-4). In the phenome-wide MR analysis, docosahexaenoic acid and arachidonate were also identified to have beneficial or detrimental effects on multiple diseases beyond atopic dermatitis, respectively. No adverse side effects were found for 1-arachidonoyl-GPE. In this systematic MR study, docosahexaenoic acid, arachidonate, and 1-arachidonoyl-GPE were identified as potential causal and beneficial mediators in the development of atopic dermatitis. Side-effect profiles were characterized to help inform drug target prioritization, and 1-arachidonoyl-GPE was a promising target for prevention and treatment of atopic dermatitis with no predicted adverse side effects.PMID:36637422 | DOI:10.1093/hmg/ddad005

PRMT3 regulates the progression of invasive micropapillary carcinoma of the breast

Fri, 13/01/2023 - 12:00
Cancer Sci. 2023 Jan 13. doi: 10.1111/cas.15724. Online ahead of print.ABSTRACTInvasive micropapillary carcinoma (IMPC) is a special histopathological subtype of breast cancer. Clinically, IMPC exhibits a higher incidence of lymphovascular invasion and lymph node metastasis compared with that of invasive ductal carcinoma (IDC) - the most common type. However, the metabolic characteristics and related mechanisms underlying malignant IMPC biological behaviors are unknown. We performed large-scale targeted metabolomics analysis on resected tumors obtained from chemotherapy-naïve IMPC (n=25) and IDC (n=26) patients to investigate metabolic alterations, and we integrated mass spectrometry analysis, RNA-sequencing and ChIP-sequencing data to elucidate the potential molecular mechanisms. The metabolomics revealed distinct metabolic profiles between IMPC and IDC. For IMPC patients, the metabolomic profile was characterized by significantly high levels of arginine methylation marks, and protein arginine methyltransferase 3 (PRMT3) was identified as a critical regulator that catalyzed the formation of these arginine methylation marks. Notably, overexpression of PRMT3 was an independent risk factor for poor IMPC prognosis. Furthermore, we demonstrated that PRMT3 was a key regulator of breast cancer cells proliferation and metastasis both in vitro and in vivo, and treatment with a preclinical PRMT3 inhibitor decreased the xenograft tumorigenic capacity. Mechanistically, PRMT3 regulated the endoplasmic reticulum (ER) stress signaling pathway by facilitating histone H4 arginine 3 asymmetric dimethylation (H4R3me2a), which may endow breast cancer cells with great proliferative and metastatic capacity. Our findings highlight PRMT3 importance in regulating the malignant biological behavior of IMPC and suggest that small-molecule inhibitors of PRMT3 activity may be promising breast cancer treatments.PMID:36637351 | DOI:10.1111/cas.15724

A concentration-descending washing strategy with methanol for the enhancement of protein imaging in biological tissues by MALDI-MS

Fri, 13/01/2023 - 12:00
Analyst. 2023 Jan 13. doi: 10.1039/d2an01678h. Online ahead of print.ABSTRACTMatrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful approach that has been widely used for in situ detection of various endogenous compounds in tissues. However, there are still challenges with in situ analysis of proteins using MALDI-MSI due to the ion suppression effects of small molecules in tissue sections. Therefore, tissue-washing steps are crucial for protein MALDI tissue imaging to remove these interfering molecules. Here, we successfully developed a new method named the concentration-descending washing strategy (CDWS) with methanol (MeOH), i.e., washing of biological tissue with 100%, 95%, and 70% MeOH solutions, for the enhancement of endogenous in situ protein detection and imaging in tissues using MALDI-MS. The method of MeOH-based CDWS (MeOH-CDWS) led to the successful in situ detection of 272 ± 3, 185 ± 4, and 134 ± 2 protein ion signals from rat liver, rat brain, and germinating Chinese-yew seed tissue sections, respectively. By comparison, 161 ± 2, 121 ± 1, and 114 ± 2 protein ions were detected by three commonly used methods, i.e., Carnoy's wash, ethanol (EtOH)-based CAWS (i.e., concentration-ascending washing strategy, 70% EtOH followed by 90% EtOH/9% AcOH), and isopropanol (iPrOH)-based CAWS (70% iPrOH followed by 95% iPrOH), respectively, in rat liver tissue sections, indicating that 68.9 ± 3.1%, 124.8 ± 3.3%, and 138.6 ± 4.4% more protein ion signals could be detected by the use of MeOH-CDWS than the three abovementioned washing strategies. Our results show that the use of MeOH-CDWS improves the performance of MALDI-MSI for in situ protein detection such as the number and intensity of proteins. The use of MeOH-CDWS improves the fixation of proteins and thus reduces the loss of proteins, which significantly reduces protein delocalization in tissue and enhances the performance of MALDI tissue imaging of protein. Thus, the use of MeOH-CDWS improves the quality of protein images in tissue sections through MALDI-MSI and has the potential to be used as standard practice for MALDI tissue imaging of proteins.PMID:36637134 | DOI:10.1039/d2an01678h

IDH2 stabilizes HIF-1α-induced metabolic reprogramming and promotes chemoresistance in urothelial cancer

Fri, 13/01/2023 - 12:00
EMBO J. 2023 Jan 13:e110620. doi: 10.15252/embj.2022110620. Online ahead of print.ABSTRACTDrug resistance contributes to poor therapeutic response in urothelial carcinoma (UC). Metabolomic analysis suggested metabolic reprogramming in gemcitabine-resistant urothelial carcinoma cells, whereby increased aerobic glycolysis and metabolic stimulation of the pentose phosphate pathway (PPP) promoted pyrimidine biosynthesis to increase the production of the gemcitabine competitor deoxycytidine triphosphate (dCTP) that diminishes its therapeutic effect. Furthermore, we observed that gain-of-function of isocitrate dehydrogenase 2 (IDH2) induced reductive glutamine metabolism to stabilize Hif-1α expression and consequently stimulate aerobic glycolysis and PPP bypass in gemcitabine-resistant UC cells. Interestingly, IDH2-mediated metabolic reprogramming also caused cross resistance to CDDP, by elevating the antioxidant defense via increased NADPH and glutathione production. Downregulation or pharmacological suppression of IDH2 restored chemosensitivity. Since the expression of key metabolic enzymes, such as TIGAR, TKT, and CTPS1, were affected by IDH2-mediated metabolic reprogramming and related to poor prognosis in patients, IDH2 might become a new therapeutic target for restoring chemosensitivity in chemo-resistant urothelial carcinoma.PMID:36637036 | DOI:10.15252/embj.2022110620

The need for an integrated multi-OMICs approach in microbiome science in the food system

Fri, 13/01/2023 - 12:00
Compr Rev Food Sci Food Saf. 2023 Jan 12. doi: 10.1111/1541-4337.13103. Online ahead of print.ABSTRACTMicrobiome science as an interdisciplinary research field has evolved rapidly over the past two decades, becoming a popular topic not only in the scientific community and among the general public, but also in the food industry due to the growing demand for microbiome-based technologies that provide added-value solutions. Microbiome research has expanded in the context of food systems, strongly driven by methodological advances in different -omics fields that leverage our understanding of microbial diversity and function. However, managing and integrating different complex -omics layers are still challenging. Within the Coordinated Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), a project supported by the European Commission, the workshop "Metagenomics, Metaproteomics and Metabolomics: the need for data integration in microbiome research" gathered 70 participants from different microbiome research fields relevant to food systems, to discuss challenges in microbiome research and to promote a switch from microbiome-based descriptive studies to functional studies, elucidating the biology and interactive roles of microbiomes in food systems. A combination of technologies is proposed. This will reduce the biases resulting from each individual technology and result in a more comprehensive view of the biological system as a whole. Although combinations of different datasets are still rare, advanced bioinformatics tools and artificial intelligence approaches can contribute to understanding, prediction, and management of the microbiome, thereby providing the basis for the improvement of food quality and safety.PMID:36636774 | DOI:10.1111/1541-4337.13103

Serum Proteomics Combined with Metabolomics Analysis Explore the Molecular Biological Characteristics of Eruptive Syringoma

Fri, 13/01/2023 - 12:00
Clin Cosmet Investig Dermatol. 2023 Jan 5;16:17-26. doi: 10.2147/CCID.S393620. eCollection 2023.ABSTRACTBACKGROUND: Eruptive syringoma (ES) is a clinical variant of the appendageal tumor syringoma. Around 75% of ES arise in the head or neck, which makes them unsightly. ES is common in patients with amyloidosis, diabetes, and Down's syndrome, suggesting that it may be associated with potential systemic effects. ES is a rare tumor with the unclear pathogenesis and no effective treatment.METHODS: A PubMed search of ES was conducted. Plasma samples of patients with ES were acquired from the Department of Dermatology at Xi'an Jiaotong University's Second Affiliated Hospital. After removing highly abundant proteins, plasma samples were subjected to proteomics and metabolomics analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS).RESULTS: LC-MS/MS revealed 71 differentially expressed proteins and 18 differentially abundant metabolites. The functional analysis highlighted the importance of complement binding, coagulation, secretory granules and vesicle lumen. Further, the study revealed 15 hub genes associated with FGG, GC, APOE, FGA, FGB, C4A, C3, CRP, C4B, FLNA, TAGLN2, ANXA5, MYL6, MYL12B, and TLN1 organized into three clusters. The seed genes in each cluster were GC, FLNA, and MYL6. In addition, glycol metabolism was associated with variable abundance of serum metabolites, which explains the relatively high rate of ES among diabetics.CONCLUSION: This study suggests that immunological inflammation and tumor glycol metabolism may play significant role in the pathophysiology of ES.PMID:36636632 | PMC:PMC9830079 | DOI:10.2147/CCID.S393620

Protective Effects of <em>Clinacanthus nutans</em> (Burm.f.) Lindau Aqueous Extract on HBV Mouse Model by Modulating Gut Microbiota and Liver Metabolomics

Fri, 13/01/2023 - 12:00
Evid Based Complement Alternat Med. 2023 Jan 3;2023:5625222. doi: 10.1155/2023/5625222. eCollection 2023.ABSTRACTBACKGROUND: Clinacanthus nutans (Burm.f.) Lindau (C. nutans) has been used in the therapy of hepatitis B (HB) and is effective; however, the mechanism of action has not been elucidated.OBJECTIVE: To investigate the protective effects of C. nutans aqueous extract on the hepatitis B virus (HBV) mouse model based on correlation analysis between gut microbiota and liver metabolomics.MATERIALS AND METHODS: We firstly constructed the animal model by high-pressure injection of pcDNA3.1(+)/HBV plasmid into the tail vein and treated it with C. nutans. The biomarkers and inflammatory cytokines of HB were detected by enzyme-linked immunosorbent assay and quantitative PCR; the Illumina-MiSeq platform was used for investigating gut microbiota; the LC-MS/MS method was utilized on screening liver tissue metabolites; multiomics joint analysis was performed using the R program.RESULTS: Compared with the modeling group, C. nutans significantly decreased the expression levels of HBsAg, IL-1β, TNF-α(P < 0.05) in the serum, and cccDNA (P < 0.05) in the liver tissues of mice. C. nutans dramatically reduced the ratio of Firmicutes and Bacteroidetes (P < 0.05) and significantly declined the proportion of Lactobacillaceae and Lactobacillus(P < 0.05), dramatically increasing the relative abundance of Bacteroidales_S24-7_group, Rikenellaceae, and Alistipes(P < 0.05); LC-MS/MS analysis results showed that C. nutans dramatically upregulate hippuric acid, L-histidine, trehalose, D-threitol, and stachyose and downregulate uridine 5'-diphosphate, cholic acid, trimethylamine N-oxide, CDP-ethanolamine, and phosphorylcholine (P < 0.05). The correlation analysis revealed that C. nutans affects the related metabolite levels of hippuric acid and cholic acid through the modulation of crucial bacteria (Alistipes) (P < 0.01), exerting specific anti-inflammatory effects.CONCLUSION: These results suggest that C. nutans exerts protective effects in HBV model mice, showing the therapeutic potential for anti-HBV infection.PMID:36636608 | PMC:PMC9831714 | DOI:10.1155/2023/5625222

Landscape and clinical impact of metabolic alterations in non-squamous non-small cell lung cancer

Fri, 13/01/2023 - 12:00
Transl Lung Cancer Res. 2022 Dec;11(12):2464-2476. doi: 10.21037/tlcr-22-377.ABSTRACTBACKGROUND: Metabolomics studies to date have described widespread metabolic reprogramming events during the development of non-squamous non-small cell lung cancer (NSCLC). Extending far beyond the Warburg effect, not only is carbohydrate metabolism affected, but also metabolism of amino acids, cofactors, lipids, and nucleotides.METHODS: We evaluated the clinical impact of metabolic reprogramming. We performed comparative analysis of publicly available data on non-squamous NSCLC, to identify concensus altered metabolic pathways. We investigated whether alterations of metabolic genes controlling those consensus metabolic pathways impacted clinical outcome. Using the clinically annotated lung adenocarcinoma (LUAD) cohort from The Cancer Genome Atlas, we surveyed the distribution and frequency of function-altering mutations in metabolic genes and their impact on overall survival (OS).RESULTS: We identified 42 metabolic genes of clinical significance, the majority of which (37 of 42) clustered across three metabolic superpathways (carbohydrates, amino acids, and nucleotides) and most functions (40 of 42) were associated with shorter OS. Multivariate analyses showed that dysfunction of carbohydrate metabolism had the most profound impact on OS [hazard ratio (HR) =5.208; 95% confidence interval (CI): 3.272 to 8.291], false discovery rate (FDR)-P≤0.0001, followed by amino acid metabolism (HR =3.346; 95% CI: 2.129 to 5.258), FDR-P≤0.0001 and nucleotide metabolism (HR =2.578; 95% CI: 1.598 to 4.159), FDR-P=0.0001. The deleterious effect of metabolic reprogramming on non-squamous NSCLC was observed independently of disease stage and across treatments groups.CONCLUSIONS: By providing a detailed landscape of metabolic alterations in non-squamous NSCLC, our findings offer new insights in the biology of the disease and metabolic adaptation mechanisms of clinical significance.PMID:36636422 | PMC:PMC9830272 | DOI:10.21037/tlcr-22-377

Integrated analysis of transcriptome and metabolome revealed biological basis of sows from estrus to lactation

Fri, 13/01/2023 - 12:00
iScience. 2022 Dec 17;26(1):105825. doi: 10.1016/j.isci.2022.105825. eCollection 2023 Jan 20.ABSTRACTCharacterization of molecular mechanisms underlying pregnancy development of sows is important for the genetic improvement of pig breeding traits, and also provides resources for biomedical research on human pregnancy diseases. However, the transcriptome and metabolome across multiple developmental stages of sow pregnancy were still lacking. In this study, we obtained 84 distinct RNA sequencing and 42 metabolome datasets of pig blood across six development stages from estrus to lactation. We confirmed the initial sequence and exonic structural features, stage-specific molecules, expression or accumulation pattern of molecules, the regulatory mechanism of transcriptome and metabolome, and important pregnancy-related metabolites both in pigs and humans. In conclusion, we proposed the key differences among the stages of sows from estrus to lactation in RNAs and metabolites and put forward key markers. These data results were expected to provide essential resources for pig breeding and biomedical research on human pregnancy disease.PMID:36636351 | PMC:PMC9830223 | DOI:10.1016/j.isci.2022.105825

Integrated multi-omics analyses reveal effects of empagliflozin on intestinal homeostasis in high-fat-diet mice

Fri, 13/01/2023 - 12:00
iScience. 2022 Dec 17;26(1):105816. doi: 10.1016/j.isci.2022.105816. eCollection 2023 Jan 20.ABSTRACTObesity has become a global epidemic, associated with several chronic complications. The intestinal microbiome is a critical regulator of metabolic homeostasis and obesity. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has putative anti-obesity effects. In this study, we used multi-omics analysis to determine whether empagliflozin regulates metabolism in an obese host through the intestinal microbiota. Compared with obese mice, the empagliflozin-treated mice had a higher species diversity of gut microbiota, characterized by a reduction in the Firmicutes/Bacteroides ratio. Metabolomic analysis unambiguously identified 1,065 small molecules with empagliflozin affecting metabolites mainly enriched in amino acid metabolism, such as tryptophan metabolism. RNA sequencing results showed that immunoglobulin A and peroxisome proliferator-activated receptor signaling pathways in the intestinal immune network were activated after empagliflozin treatment. This integrative analysis highlighted that empagliflozin maintains intestinal homeostasis by modulating gut microbiota diversity and tryptophan metabolism. This will inform the development of therapies for obesity based on host-microbe interactions.PMID:36636340 | PMC:PMC9830204 | DOI:10.1016/j.isci.2022.105816

Alzheimer's disease-associated U1 snRNP splicing dysfunction causes neuronal hyperexcitability and cognitive impairment

Fri, 13/01/2023 - 12:00
Nat Aging. 2022 Oct;2(10):923-940. doi: 10.1038/s43587-022-00290-0. Epub 2022 Oct 12.ABSTRACTRecent proteome and transcriptome profiling of Alzheimer's disease (AD) brains reveals RNA splicing dysfunction and U1 small nuclear ribonucleoprotein (snRNP) pathology containing U1-70K and its N-terminal 40-KDa fragment (N40K). Here we present a causative role of U1 snRNP dysfunction to neurodegeneration in primary neurons and transgenic mice (N40K-Tg), in which N40K expression exerts a dominant-negative effect to downregulate full-length U1-70K. N40K-Tg recapitulates N40K insolubility, erroneous splicing events, neuronal degeneration and cognitive impairment. Specifically, N40K-Tg shows the reduction of GABAergic synapse components (e.g., the GABA receptor subunit of GABRA2), and concomitant postsynaptic hyperexcitability that is rescued by a GABA receptor agonist. Crossing of N40K-Tg and the 5xFAD amyloidosis model indicates that the RNA splicing defect synergizes with the amyloid cascade to remodel the brain transcriptome and proteome, deregulate synaptic proteins, and accelerate cognitive decline. Thus, our results support the contribution of U1 snRNP-mediated splicing dysfunction to AD pathogenesis.PMID:36636325 | PMC:PMC9833817 | DOI:10.1038/s43587-022-00290-0

Lipoprotein Insulin Resistance Index: A Simple, Accurate Method for Assessing Insulin Resistance in South Asians

Fri, 13/01/2023 - 12:00
J Endocr Soc. 2022 Dec 10;7(3):bvac189. doi: 10.1210/jendso/bvac189. eCollection 2023 Jan 6.ABSTRACTCONTEXT: Identification of insulin resistance (IR) in South Asians, who are at a higher risk for type 2 diabetes, is important. Lack of standardization of insulin assays limits the clinical use of insulin-based surrogate indices. The lipoprotein insulin resistance index (LP-IR), a metabolomic marker, reflects the lipoprotein abnormalities observed in IR. The reliability of the LP-IR index in South Asians is unknown.OBJECTIVE: We evaluated the predictive accuracy of LP-IR compared with other IR surrogate indices in South Asians.METHODS: In a cross-sectional study (n = 55), we used calibration model analysis to assess the ability of the LP-IR score and other simple surrogate indices (Homeostatic Model Assessment of Insulin Resistance, Quantitative insulin sensitivity check index, Adipose insulin resistance index, and Matsuda Index) to predict insulin sensitivity (SI) derived from the reference frequently sampled intravenous glucose tolerance test. LP-IR index was derived from lipoprotein particle concentrations and sizes measured by nuclear magnetic resonance spectroscopy. Predictive accuracy was determined by root mean squared error (RMSE) of prediction and leave-one-out cross-validation type RMSE of prediction (CVPE). The optimal cut-off of the LP-IR index was determined by the area under the receiver operating characteristic curve (AUROC) and the Youden index.RESULTS: The simple surrogate indices showed moderate correlations with SI (r = 0.53-0.69, P < .0001). CVPE and RMSE were not different in any of the surrogate indices when compared with LP-IR. The AUROC was 0.77 (95% CI 0.64-0.89). The optimal cut-off for IR in South Asians was LP-IR >48 (sensitivity: 75%, specificity: 70%).CONCLUSION: The LP-IR index is a simple, accurate, and clinically useful test to assess IR in South Asians.PMID:36636252 | PMC:PMC9830979 | DOI:10.1210/jendso/bvac189

Prostaglandin-E<sub>2</sub> levels over the course of glyceryl trinitrate provoked migraine attacks

Fri, 13/01/2023 - 12:00
Neurobiol Pain. 2022 Dec 28;13:100112. doi: 10.1016/j.ynpai.2022.100112. eCollection 2023 Jan-Jul.ABSTRACTAdministration of glyceryl trinitrate (GTN), a donor of nitric oxide, can induce migraine-like attacks in subjects with migraine. Provocation with GTN typically follows a biphasic pattern; it induces immediate headache in subjects with migraine, as well as in healthy controls, whereafter only subjects with migraine may develop a migraine-like headache several hours later. Interestingly, intravenous infusion with prostaglandin-E2 (PGE2) can also provoke a migraine-like headache, but seems to have a more rapid onset compared to GTN. The aim of the study was to shed light on the mechanistic aspect PGE2 has in migraine attack development. Therefore, PGE2 plasma levels were measured towards the (pre)ictal state of an attack, which we provoked with GTN. Blood samples from women with migraine (n = 37) and age-matched female controls (n = 25) were obtained before and ∼ 140 min and ∼ 320 min after GTN infusion. PGE2 levels were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Data was analyzed using a generalized linear mixed-effect model. Immediate headache after GTN infusion occurred in 85 % of migraine participants and in 75 % of controls. A delayed onset migraine-like attack was observed in 82 % of migraine subjects and in none of the controls. PGE2 levels were not different between the interictal and preictal state (P = 0.527) nor between interictal and ictal state (defined as having migraine-like headache) (P = 0.141). Hence, no evidence was found that a rise in PGE2 is an essential step in the initiation of GTN-induced migraine-like attacks.PMID:36636095 | PMC:PMC9829921 | DOI:10.1016/j.ynpai.2022.100112

Integrated metabolic and transcriptomic profiles reveal the germination-associated dynamic changes for the seeds of Cassia obtusifolia L

Fri, 13/01/2023 - 12:00
Phytochem Anal. 2023 Jan 12. doi: 10.1002/pca.3200. Online ahead of print.ABSTRACTINTRODUCTION: The seeds of Cassia obtusifolia L. (Cassiae [C.] semen) have been widely used as both food and traditional Chinese medicine in China.OBJECTIVES: We aimed to analyze the metabolic mechanisms underlying C. semen germination.MATERIALS AND METHODS: Different samples of C. semen at various germination stages were collected. These samples were subjected to 1 H-NMR and UHPLC/Q-Orbitrap-MS-based untargeted metabolomics analysis together with transcriptomics analysis.RESULTS: A total of 50 differential metabolites (mainly amino acids and sugars) and 20 key genes involved in multiple pathways were identified in two comparisons of different groups (36 h vs 12 h and 84 h vs 36 h). The metabolite-gene network for seed germination was depicted. In the germination of C. semen, fructose and mannose metabolism was activated in the testa rupture period, indicating more energy was needed (36 h). In the embryonic axis elongation period (84 h), the pentose and glucuronate interconversions pathway and the phenylpropanoid biosynthesis pathway were activated, which suggested some nutrient sources (nitrogen and sugar) were in demand. Furthermore, oxygen, energy, and nutrition should be supplied throughout the whole germination process. These global views open up an integrated perspective for understanding the complex biological regulatory mechanisms during the germination process of C. semen.PMID:36636016 | DOI:10.1002/pca.3200

Evaluation of analytical performance of homocysteine LC-MS/MS assay and design of internal quality control strategy

Fri, 13/01/2023 - 12:00
Clin Chem Lab Med. 2023 Jan 13. doi: 10.1515/cclm-2022-0805. Online ahead of print.ABSTRACTOBJECTIVES: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become a common technique in clinical laboratories in recent years. Because most methods are laboratory-developed tests (LDTs), their reproducibility and quality control (QC) have been controversial. In this study, Westgard Sigma Rules were used to evaluate the analytical performance and establish an individualised internal QC (IQC) strategy for these LDTs.METHODS: Taking the LC-MS/MS LDT method for homocysteine (Hcy) as an example, the 'desirable specifications' from the Biological Variation Database were used as quality goals. Based on the external quality assessment (EQA) samples, bias was calculated and the coefficient of variation (CV) was also calculated by IQC measurements for six consecutive months. The analytical performance was evaluated by calculated sigma metrics and an IQC strategy was designed using the Westgard Sigma Rules with run size.RESULTS: Over 116 days within 6 months, a total of 850 data points were collected for each of IQC 1 and IQC 2. The monthly coefficient of variation CV% was 2.57-4.01%, which was non-significant (p-value: 0.75). The absolute bias% for IQC1 and IQC2 was 1.23 and 1.87%, respectively. The allowable total error (TEa) was selected as 15.5%, Sigma metrics were 4.02 and 4.30, and the analytical performance was 'Good'. The 13s/22s/R4s/41s multi rules (n=4, r=1) with a run size of 200 samples were suggested for the Hcy IQC scheme. The quality goal index (QGI) values were over 1.2, indicating that trueness needed to be improved.CONCLUSIONS: The analytical performance of the Hcy LC-MS/MS LDT conformed to the Six Sigma rating level, achieving 'good' (four Sigma). Clinical practice indicated that calibration bias was the primary factor affecting trueness.PMID:36635945 | DOI:10.1515/cclm-2022-0805

Proximity proteomics reveals role of Abelson interactor 1 in the regulation of TAK1/RIPK1 signaling

Fri, 13/01/2023 - 12:00
Mol Oncol. 2023 Jan 12. doi: 10.1002/1878-0261.13374. Online ahead of print.ABSTRACTDysregulation of the adaptor protein Abelson interactor 1 (ABI1) is linked to malignant transformation. To interrogate the role of ABI1 in cancer development, we mapped the ABI1 interactome using proximity-dependent labeling (PDL) with biotin followed by mass spectrometry. Using a novel PDL data filtering strategy, considering both peptide spectral matches and peak areas of detected peptides, we identified 212 ABI1 proximal interactors. These included WAVE2 complex components such as CYFIP1, NCKAP1 or WASF1, confirming the known role of ABI1 in the regulation of actin-polymerization-dependent processes. We also identified proteins associated with the TAK1-IKK pathway, including TAK1, TAB2 and RIPK1, denoting a newly identified function of ABI1 in TAK1-NF-κB inflammatory signaling. Functional assays using TNFα-stimulated, ABI1-overexpressing or ABI1-deficient cells showed effects on TAK1-NF-kB pathway-dependent signaling to RIPK1, with ABI1-knockout cells being less susceptible to TNFα-induced, RIPK1-mediated, TAK1-dependent apoptosis. In sum, our PDL-based strategy enabled mapping of the ABI1 proximal interactome, thus revealing a previously unknown role of this adaptor protein in TAK1/RIPK1-based regulation of cell death and survival.PMID:36635880 | DOI:10.1002/1878-0261.13374

Lipidomics Moves to Center Stage of Biomedicine

Thu, 12/01/2023 - 12:00
Function (Oxf). 2023 Jan 3;4(1):zqac071. doi: 10.1093/function/zqac071. eCollection 2023.NO ABSTRACTPMID:36632473 | PMC:PMC9830535 | DOI:10.1093/function/zqac071

Preterm birth is associated with xenobiotics and predicted by the vaginal metabolome

Thu, 12/01/2023 - 12:00
Nat Microbiol. 2023 Jan 12. doi: 10.1038/s41564-022-01293-8. Online ahead of print.ABSTRACTSpontaneous preterm birth (sPTB) is a leading cause of maternal and neonatal morbidity and mortality, yet its prevention and early risk stratification are limited. Previous investigations have suggested that vaginal microbes and metabolites may be implicated in sPTB. Here we performed untargeted metabolomics on 232 second-trimester vaginal samples, 80 from pregnancies ending preterm. We find multiple associations between vaginal metabolites and subsequent preterm birth, and propose that several of these metabolites, including diethanolamine and ethyl glucoside, are exogenous. We observe associations between the metabolome and microbiome profiles previously obtained using 16S ribosomal RNA amplicon sequencing, including correlations between bacteria considered suboptimal, such as Gardnerella vaginalis, and metabolites enriched in term pregnancies, such as tyramine. We investigate these associations using metabolic models. We use machine learning models to predict sPTB risk from metabolite levels, weeks to months before birth, with good accuracy (area under receiver operating characteristic curve of 0.78). These models, which we validate using two external cohorts, are more accurate than microbiome-based and maternal covariates-based models (area under receiver operating characteristic curve of 0.55-0.59). Our results demonstrate the potential of vaginal metabolites as early biomarkers of sPTB and highlight exogenous exposures as potential risk factors for prematurity.PMID:36635575 | DOI:10.1038/s41564-022-01293-8

Acute metabolic alterations in the hippocampus are associated with decreased acetylation after blast induced TBI

Thu, 12/01/2023 - 12:00
Metabolomics. 2023 Jan 12;19(1):5. doi: 10.1007/s11306-022-01970-z.ABSTRACTINTRODUCTION: Blast induced Traumatic brain injury (BI-TBI) is common among military personnels as well as war affected civilians. In the war zone, people can also encounter repeated exposure of blast wave, which may affect their cognition and metabolic alterations.OBJECTIVE: In this study we assess the metabolic and histological changes in the hippocampus of rats at 24 h post injury.METHOD: Rats were divided into four groups: (i) Sham; (ii) Mild TBI (mi); (iii) Moderate TBI (mo); and (iv) Repetitive mild TBI (rm TBI) and then subjected to different intensities of blast exposure. Hippocampal tissues were collected after 24 h of injury for proton nuclear magnetic resonance spectroscopy (1H NMR spectroscopy) and immunohistochemical (IHC) analysis.RESULTS: The metabolic alterations were found in the hippocampal tissue samples and these alterations showed significant change in glutamate, N-Acetylaspartic acid (NAA), acetate, creatine, phosphoethanolamine (PE), ethanolamine and PC/choline concentrations in rmTBI rats only. IHC studies revealed that AH3 (Acetyl histone) positive cells were decreased in rm TBI tissue samples in comparison to other TBI groups and sham rats. This might reflect an epigenetic alteration due to repeated blast exposure at 24 h post injury. Additionally, astrogliosis was observed in miTBI and moTBI hippocampal tissue while no change was observed in rmTBI tissues.CONCLUSION: The present study reports altered acetylation in the presence of altered metabolism in hippocampal tissue of blast induced rmTBI at 24 h post injury. Mechanistic understanding of these intertwined processes may help in the development of better therapeutic pathways and agents for blast induced TBI in near future.PMID:36635559 | DOI:10.1007/s11306-022-01970-z

Pages