Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Ergot alkaloids in sclerotia collected in Japan: synthetic profiles and induction of apoptosis by Clavine-type compounds

Thu, 12/01/2023 - 12:00
J Nat Med. 2023 Jan 12. doi: 10.1007/s11418-022-01673-8. Online ahead of print.ABSTRACTThe genus Claviceps (Clavicipitaceae) is famous for producing ergot alkaloids (EAs) in sclerotia. EAs can cause ergotism, resulting in convulsions and necrosis when ingested, making these compounds a serious concern for food safety. Agroclavine (2), a typical Clavine-type EA, is a causative agent of ergotism and is listed as a compound to be monitored by the European Food Safety Authority. Clavine-type EAs are known to cause cytotoxicity, but the mechanism has not been elucidated. We performed annexin V and PI double-staining followed by flow cytometric analysis to detect apoptosis in HepG2 and PANC-1 cells after exposure to Clavine-type EAs. Clavine-type EAs reduced cell viability and induced apoptosis in both cell lines. We then performed LC-MS analysis of EAs from 41 sclerotia samples of Claviceps collected in Japan. 24 out of 41 sclerotia extracts include peptide-type EAs (ergosine/inine: 4/4', ergotamine: 5, ergocornine/inine: 6/6', α-ergocryptine/inine: 8/8', and ergocristine/inine: 9/9') and 19 sclerotia extracts among 24 sclerotia detected peptide type EAs include Clavine-type EAs (pyroclavine: 1, agroclavine: 2, festuclavine: 3) by LC-MS. We then performed a metabolomic analysis of the EAs in the sclerotia using principal component analysis (PCA). The PCA score plots calculated for EAs suggested the existence of four groups with different EA production patterns. One of the groups was formed by the contribution of Clavine-type EAs. These results suggest that Clavine-type EAs are a family of compounds requiring attention in food safety and livestock production in Japan.PMID:36635416 | DOI:10.1007/s11418-022-01673-8

Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases

Thu, 12/01/2023 - 12:00
Nat Genet. 2023 Jan 12. doi: 10.1038/s41588-022-01270-1. Online ahead of print.ABSTRACTMetabolic processes can influence disease risk and provide therapeutic targets. By conducting genome-wide association studies of 1,091 blood metabolites and 309 metabolite ratios, we identified associations with 690 metabolites at 248 loci and associations with 143 metabolite ratios at 69 loci. Integrating metabolite-gene and gene expression information identified 94 effector genes for 109 metabolites and 48 metabolite ratios. Using Mendelian randomization (MR), we identified 22 metabolites and 20 metabolite ratios having estimated causal effect on 12 traits and diseases, including orotate for estimated bone mineral density, α-hydroxyisovalerate for body mass index and ergothioneine for inflammatory bowel disease and asthma. We further measured the orotate level in a separate cohort and demonstrated that, consistent with MR, orotate levels were positively associated with incident hip fractures. This study provides a valuable resource describing the genetic architecture of metabolites and delivers insights into their roles in common diseases, thereby offering opportunities for therapeutic targets.PMID:36635386 | DOI:10.1038/s41588-022-01270-1

An untargeted metabolomic approach to investigate antiviral defence mechanisms in memory leukocytes secreting anti-SARS-CoV-2 IgG in vitro

Thu, 12/01/2023 - 12:00
Sci Rep. 2023 Jan 12;13(1):629. doi: 10.1038/s41598-022-26156-4.ABSTRACTEvidence shows that individuals infected by SARS-CoV-2 experience an altered metabolic state in multiple organs. Metabolic activities are directly involved in modulating immune responses against infectious diseases, yet our understanding of how host metabolism relates to inflammatory responses remains limited. To better elucidate the underlying biochemistry of the leukocyte response, we focused our analysis on possible relationships between SARS-CoV-2 post-infection stages and distinct metabolic pathways. Indeed, we observed a significant altered metabolism of tryptophan and urea cycle pathways in cultures of peripheral blood mononuclear cells obtained 60-90 days after infection and showing in vitro IgG antibody memory for spike-S1 antigen (n = 17). This work, for the first time, identifies metabolic routes in cell metabolism possibly related to later stages of immune defence against SARS-CoV-2 infection, namely, when circulating antibodies may be absent but an antibody memory is present. The results suggest reprogramming of leukocyte metabolism after viral pathogenesis through activation of specific amino acid pathways possibly related to protective immunity against SARS-CoV-2.PMID:36635345 | DOI:10.1038/s41598-022-26156-4

Effect of β2-agonist treatment on insulin-stimulated peripheral glucose disposal in healthy men in a randomised placebo-controlled trial

Thu, 12/01/2023 - 12:00
Nat Commun. 2023 Jan 12;14(1):173. doi: 10.1038/s41467-023-35798-5.ABSTRACTβ2-agonist treatment improves skeletal muscle glucose uptake and whole-body glucose homeostasis in rodents, likely via mTORC2-mediated signalling. However, human data on this topic is virtually absent. We here investigate the effects of two-weeks treatment with the β2-agonist clenbuterol (40 µg/day) on glucose control as well as energy- and substrate metabolism in healthy young men (age: 18-30 years, BMI: 20-25 kg/m2) in a randomised, placebo-controlled, double-blinded, cross-over study (ClinicalTrials.gov-identifier: NCT03800290). Randomisation occurred by controlled randomisation and the final allocation sequence was seven (period 1: clenbuterol, period 2: placebo) to four (period 1: placebo, period 2: clenbuterol). The primary and secondary outcome were peripheral insulin-stimulated glucose disposal and skeletal muscle GLUT4 translocation, respectively. Primary analyses were performed on eleven participants. No serious adverse events were reported. The study was performed at Maastricht University, Maastricht, The Netherlands, between August 2019 and April 2021. Clenbuterol treatment improved peripheral insulin-stimulated glucose disposal by 13% (46.6 ± 3.5 versus 41.2 ± 2.7 µmol/kg/min, p = 0.032), whereas skeletal muscle GLUT4 translocation assessed in overnight fasted muscle biopsies remained unaffected. These results highlight the potential of β2-agonist treatment in improving skeletal muscle glucose uptake and underscore the therapeutic value of this pathway for the treatment of type 2 diabetes. However, given the well-known (cardiovascular) side-effects of systemic β2-agonist treatment, further exploration on the underlying mechanisms is needed to identify viable therapeutic targets.PMID:36635304 | DOI:10.1038/s41467-023-35798-5

Metabolite modification in oxidative stress responses: A case study of two defense hormones

Thu, 12/01/2023 - 12:00
Free Radic Biol Med. 2023 Jan 9:S0891-5849(23)00008-4. doi: 10.1016/j.freeradbiomed.2023.01.007. Online ahead of print.ABSTRACTStudies of the Arabidopsis cat2 mutant lacking the major leaf isoform of catalase have allowed the potential impact of intracellular H2O2 on plant function to be studied. Here, we report a robust analysis of modified gene expression associated with key families involved in metabolite modification in cat2. Though a combined transcriptomic and metabolomic analysis focused on the salicylic acid (SA) and jasmonic acid (JA) pathways, we report key features of the metabolic signatures linked to oxidative stress-induced signaling via these defence hormones and discuss the enzymes that are likely to be involved in determining these features. We provide evidence that specific UDP-glycosyl transferases contribute to the glucosylation of SA that accumulates as a result of oxidative stress in cat2. Glycosides of dihydroxybenzoic acids that accumulate alongside SA in cat2 are identified and, based on the expression of candidate genes, likely routes for their production are discussed. We also report that enhanced intracellular H2O2 triggers induction of genes encoding different enzymes that can metabolize JA. Integrated analysis of metabolite and transcript profiles suggests that a gene network involving specific hydrolases, hydroxylases, and sulfotransferases functions to limit accumulation of the most active jasmonates during oxidative stress.PMID:36634883 | DOI:10.1016/j.freeradbiomed.2023.01.007

Identification of bioactive components behind the antimicrobial activity of cow urine by Peptide and metabolite profiling

Thu, 12/01/2023 - 12:00
Anim Biosci. 2023 Jan 11. doi: 10.5713/ab.22.0249. Online ahead of print.ABSTRACTOBJECTIVE: Cow urine possesses several bioactive properties but the responsible components behind these bioactivities are still far from identified. In our study, we tried to identify the possible components behind the antimicrobial activity of cow urine by exploring the peptidome and metabolome.METHODS: We extracted peptides from the urine of Sahiwal cows belonging to three different physiological states viz heifer, lactation, and pregnant, each group consisting of 10 different animals. The peptides were extracted using the Solid Phase Extraction technique followed by further extraction using ethyl acetate. The antimicrobial activity of the aqueous extract was evaluated against different pathogenic strains like S. aureus, E. coli, and S. agalactiae. The safety of urinary aqueous extract was evaluated by haemolysis and cytotoxicity assay on BuMEC cell line. The urinary peptides were further fractionated using HPLC to identify the fraction(s) containing the antimicrobial activity. The HPLC fractions and ethyl acetate extract were analysed using nLC-MS/MS for the identification of the peptides and metabolites.RESULTS: A total of three fractions were identified with antimicrobial activity, nLC-MS/MS analysis of fractions resulted in the identification of 511 sequences. While 46 compounds were identified in the metabolite profiling of organic extract. The urinary aqueous extract showed significant activity against E.coli as compared to S.aureus and S.agalactiae and was relatively safe against mammalian cells.CONCLUSIONS: The antimicrobial activity of cow urine is a consequence of the feeding habit. The metabolites of plant origin with several bioactivities are eliminated through urine and are responsible for its antimicrobial nature. Secondly, and the plethora of peptides generated from the activity of endogenous proteases on protein shed from different parts of tissues also find their way to urine. Some of these sequences possess antimicrobial activity due to their amino acid composition.PMID:36634651 | DOI:10.5713/ab.22.0249

<sup>13</sup>C NMR metabolomics: J-resolved STOCSY meets INADEQUATE

Thu, 12/01/2023 - 12:00
J Magn Reson. 2022 Dec 31;347:107365. doi: 10.1016/j.jmr.2022.107365. Online ahead of print.ABSTRACTRobust annotation of metabolites is a challenging task in metabolomics. Among available applications, 13C NMR experiment INADEQUATE determines direct 13C-13C connectivity unambiguously, offering indispensable information on molecular structure. Despite its great utility, it is not always practical to collect INADEQUATE data on every sample in a large metabolomics study because of its relatively long experiment time. Here, we propose an alternative approach that maintains the quality of information but saves experiment time. In this approach, individual samples in a study are first screened by 13C homonuclear J-resolved experiment (JRES). Next, JRES data are processed by statistical total correlation spectroscopy (STOCSY) to extract peaks that behave similarly among samples. Finally, INADEQUATE is collected on one internal pooled sample to select STOCSY peaks that originate from the same compound. We tested this concept using the 13C-labeled endometabolome of a model marine diatom strain incubated under various settings, intending to cover a range of metabolites produced under different external conditions. This scheme was able to extract known diatom metabolites proline, 2,3-dihydroxypropane-1-sulfonate (DHPS), β-1,3-glucan, choline, and glutamate. This pipeline also detected unknown compounds with structural information, which is valuable in metabolomics where a priori knowledge of metabolites is not always available. The ability of this scheme was seen even in sugar regions, which are usually challenging in 1H NMR due to severe peak overlap. JRES and INADEQUATE were highly complementary; INADEQUATE provided directly-bonded 13C networks, whereas JRES linked INADEQUATE networks within the same compound but broken by nitrogen or sulfur atoms, highlighting the advantage of this integrated approach.PMID:36634594 | DOI:10.1016/j.jmr.2022.107365

Expression landscapes in non-small cell lung cancer shaped by the thyroid transcription factor 1

Thu, 12/01/2023 - 12:00
Lung Cancer. 2022 Dec 27;176:121-131. doi: 10.1016/j.lungcan.2022.12.015. Online ahead of print.ABSTRACTTTF-1-expressing non-small cell lung cancer (NSCLC) is one of the most prevalent lung cancer types worldwide. However, theparadoxical activity of TTF-1 in both lung carcinogenesis and tumor suppression is believed to be context-dependentwhich calls for a deeper understanding about the pathological expression of TTF-1. In addition, the expression circuitry of TTF-1-target genes in NSCLC has not been well examined which necessitates to revisit the involvement of TTF-1- in a multitude of oncologic pathways. We used RNA-seq and clinical data of patients from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), including ChIP-seq data from different NSCLC cell lines, and mapped the proteome of NSCLC tumor. Our analysis showed significant variability in TTF-1 expression among NSCLC,and further clarified that this variability is orchestrated at the transcriptional level. We also found that high TTF-1 expression could negatively influence the survival outcomes of stage 1 LUAD which may be attributed to growth factor receptor-driven activation of mitogenic and angiogenic pathways. Mechanistically, TTF-1 may also control the genes associated with pathways involved in acquired TKI drug resistance or response to immune checkpoint inhibitors. Lastly, proteome-based biomarker discovery in stage 1 LUAD showed that TTF-1 positivity is potentially associated with the upregulation of several oncogenes which includes interferon proteins, MUC1, STAT3, and EIF2AK2. Collectively, this study highlights the potential involvement of TTF-1 in cell proliferation, immune evasion, and angiogenesis in early-stage NSCLC.PMID:36634573 | DOI:10.1016/j.lungcan.2022.12.015

The gut microbiota and metabolome are associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients

Thu, 12/01/2023 - 12:00
EBioMedicine. 2023 Jan 10;88:104430. doi: 10.1016/j.ebiom.2022.104430. Online ahead of print.ABSTRACTBACKGROUND: Patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy exhibit attenuated humoral immune responses to vaccination against SARS-CoV-2. The gut microbiota and its functional metabolic output, which are perturbed in IBD, play an important role in shaping host immune responses. We explored whether the gut microbiota and metabolome could explain variation in anti-SARS-CoV-2 vaccination responses in immunosuppressed IBD patients.METHODS: Faecal and serum samples were prospectively collected from infliximab-treated patients with IBD in the CLARITY-IBD study undergoing vaccination against SARS-CoV-2. Antibody responses were measured following two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccine. Patients were classified as having responses above or below the geometric mean of the wider CLARITY-IBD cohort. 16S rRNA gene amplicon sequencing, nuclear magnetic resonance (NMR) spectroscopy and bile acid profiling with ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) were performed on faecal samples. Univariate, multivariable and correlation analyses were performed to determine gut microbial and metabolomic predictors of response to vaccination.FINDINGS: Forty-three infliximab-treated patients with IBD were recruited (30 Crohn's disease, 12 ulcerative colitis, 1 IBD-unclassified; 26 with concomitant thiopurine therapy). Eight patients had evidence of prior SARS-CoV-2 infection. Seventeen patients (39.5%) had a serological response below the geometric mean. Gut microbiota diversity was lower in below average responders (p = 0.037). Bilophila abundance was associated with better serological response, while Streptococcus was associated with poorer response. The faecal metabolome was distinct between above and below average responders (OPLS-DA R2X 0.25, R2Y 0.26, Q2 0.15; CV-ANOVA p = 0.038). Trimethylamine, isobutyrate and omega-muricholic acid were associated with better response, while succinate, phenylalanine, taurolithocholate and taurodeoxycholate were associated with poorer response.INTERPRETATION: Our data suggest that there is an association between the gut microbiota and variable serological response to vaccination against SARS-CoV-2 in immunocompromised patients. Microbial metabolites including trimethylamine may be important in mitigating anti-TNF-induced attenuation of the immune response.FUNDING: JLA is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-502), funded by Imperial College London and The Joyce and Norman Freed Charitable Trust. BHM is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-002). The Division of Digestive Diseases at Imperial College London receives financial and infrastructure support from the NIHR Imperial Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. Metabolomics studies were performed at the MRC-NIHR National Phenome Centre at Imperial College London; this work was supported by the Medical Research Council (MRC), the National Institute of Health Research (NIHR) (grant number MC_PC_12025) and infrastructure support was provided by the NIHR Imperial Biomedical Research Centre (BRC). The NIHR Exeter Clinical Research Facility is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.PMID:36634565 | DOI:10.1016/j.ebiom.2022.104430

GC-MS and LC-MS/MS metabolomics revealed dynamic changes of volatile and non-volatile compounds during withering process of black tea

Thu, 12/01/2023 - 12:00
Food Chem. 2023 Jan 3;410:135396. doi: 10.1016/j.foodchem.2023.135396. Online ahead of print.ABSTRACTHigh-performance liquid chromatography (HPLC), headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and ultra-high performance liquid chromatography-Q-Exactive HF-X mass spectrometer (UHPLC-Q-Exactive HF/MS) were carried out to reveal dynamic changes of volatile and non-volatile compounds during the withering process of black tea. A total of 118 volatile organic compounds (VOCs) and 648 metabolites were identified in fresh and withered tea-leaves, respectively. Among them, 47 VOCs (OAV > 1.0) for the aroma formation, and 46 characteristic metabolites (VIP > 1.50, p < 0.01) selected through orthonormal partial least squares-discriminant analysis, indicated the withering contribution during black tea processing. Overall, the withering promoted alcohols, aldehydes, phenols, heterocyclic oxygen, hydrocarbons and halogenated hydrocarbons through relevant hydrolyzation, decomposition, terpene synthesis, and O-methylation. The hydrolyzation, O-methylation, condensation and N-acylation of kaempferol glycosides, quercetin glycosides, ester catechins, and gallic acid generated the accumulation of methoxyl flavonoids and flavonoid glucosides, dihydrokaempferol, syringic acid, theaflavins, and N-acylated amino acids, respectively.PMID:36634561 | DOI:10.1016/j.foodchem.2023.135396

Personalized redox medicine in inflammatory bowel diseases: an emerging role for HIF-1α and NRF2 as therapeutic targets

Thu, 12/01/2023 - 12:00
Redox Biol. 2023 Jan 6;60:102603. doi: 10.1016/j.redox.2023.102603. Online ahead of print.ABSTRACTInflammatory bowel diseases (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), are intimately associated with inflammation and overproduction of reactive oxygen species (ROS). Temporal and inter-individual variabilities in disease activity and response to therapy pose significant challenges to diagnosis and patient care. Discovery and validation of truly integrative biomarkers would benefit from embracing redox metabolomics approaches with prioritization of central regulatory hubs. We here make a case for applying a personalized redox medicine approach that aims to selectively inhibit pathological overproduction and/or altered expression of specific enzymatic sources of ROS without compromising physiological function. To this end, improved 'clinical-omics integration' may help to better understand which particular redox signaling pathways are disrupted in what patient. Pharmacological interventions capable of activating endogenous antioxidant defense systems may represent viable therapeutic options to restore local/systemic redox status, with HIF-1α and NRF2 holding particular promise in this context. Achieving the implementation of clinically meaningful mechanism-based biomarkers requires development of easy-to-use, robust and cost-effective tools for secure diagnosis and monitoring of treatment efficacy. Ultimately, matching redox-directed pharmacological interventions to individual patient phenotypes using predictive biomarkers may offer new opportunities to break the therapeutic ceiling in IBD.PMID:36634466 | DOI:10.1016/j.redox.2023.102603

Hybrid volatilomics in cancer diagnosis by HS-GC-FID fingerprinting

Thu, 12/01/2023 - 12:00
J Breath Res. 2023 Jan 12. doi: 10.1088/1752-7163/acb284. Online ahead of print.ABSTRACTAssessing volatile organic compounds (VOCs) as cancer signatures is one of the most promising techniques toward developing non-invasive, simple, and affordable diagnosis. Here, we have evaluated the feasibility of employing static headspace extraction (HS) followed by gas chromatography with flame ionization detector (GC-FID) as a screening tool to discriminate between cancer patients (head and neck - HNC, n=15; and gastrointestinal cancer - GIC, n=19) and healthy controls (n=37) on the basis of a non-target (fingerprinting) analysis of oral fluid and urine. We evaluated the discrimination considering a single bodily fluid and adopting the hybrid approach, in which the oral fluid and urinary VOCs profiles were combined through data fusion. We used supervised orthogonal partial least squares discriminant analysis (OPLS-DA) for classification, and we assessed the prediction power of the models by analyzing the values of goodness of prediction (Q2Y), area under the curve (AUC), sensitivity, and specificity. The individual models HNC urine, HNC oral fluid, and GIC oral fluid successfully discriminated between healthy controls and positive samples (Q2Y = 0.560, 0.525, and 0.559; AUC = 0.814, 0.850, and 0.926; sensitivity = 84.8, 70.2, and 78.6%; and specificity = 82.3; 81.5; 87.5%, respectively), whereas GIC urine was not adequate (Q2Y = 0.292, AUC = 0.694, sensitivity = 66.1%, and specificity = 77.0%). Compared to the respective individual models, Q2Y for the hybrid models increased (0.623 for hybrid HNC and 0.562 for hybrid GIC). However, sensitivity was higher for HNC urine and GIC oral fluid than for hybrid HNC (75.6%) and hybrid GIC (69.8%), respectively. These results suggested that HS-GC-FID fingerprinting is suitable and holds great potential for cancer screening. Additionally, the hybrid approach tends to increase the predictive power if the individual models present suitable quality parameter values. Otherwise, it is more advantageous to use a single body fluid for analysis.PMID:36634358 | DOI:10.1088/1752-7163/acb284

Stereochemistry Determines Immune Cellular Responses to Polylactide Implants

Thu, 12/01/2023 - 12:00
ACS Biomater Sci Eng. 2023 Jan 12. doi: 10.1021/acsbiomaterials.2c01279. Online ahead of print.ABSTRACTRepeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro. A bioenergetic model was applied to study immune cellular responses to PLA containing >99% l-lactide (PLLA), >99% d-lactide (PDLA), and a 50/50 melt-blend of PLLA and PDLA (stereocomplex PLA). Stereocomplex PLA breakdown products increased IL-1β, TNF-α, and IL-6 protein levels but not MCP-1. Expression of these proinflammatory cytokines is mechanistically driven by increases in glycolysis in primary macrophages. In contrast, PLLA and PDLA degradation products selectively increase MCP-1 protein expression. Although both oxidative phosphorylation and glycolysis are increased with PDLA, only oxidative phosphorylation is increased with PLLA. For each biomaterial, glycolytic inhibition reduces proinflammatory cytokines and markedly increases anti-inflammatory (IL-10) protein levels; differential metabolic changes in fibroblasts were observed. These findings provide mechanistic explanations for the diverse immune responses to PLA of different stereochemistries and underscore the pivotal role of immunometabolism in the biocompatibility of biomaterials applied in medicine.PMID:36634351 | DOI:10.1021/acsbiomaterials.2c01279

Interaction between Host and Microbes in the Semen of Patients with Idiopathic Nonobstructive Azoospermia

Thu, 12/01/2023 - 12:00
Microbiol Spectr. 2023 Jan 12:e0436522. doi: 10.1128/spectrum.04365-22. Online ahead of print.ABSTRACTMen with nonobstructive azoospermia (NOA) face the dual problems of low sperm count and low sperm quality. Most men with NOA without a clear cause are classified as having idiopathic NOA (iNOA). Previous studies found that microbes exist in semen, and the semen microbes of NOA men are different from those of normal men. However, the relevant mechanism is not clear. In this study, we answered the three questions of "who is there," "what is it doing," and "who is doing it" by combining 16s rRNA, nontargeted metabolome detection and metabolite traceability analysis. We found that the composition and interaction of seminal plasma microbes in the iNOA group changed. Metabolite traceability analysis and metabolic pathway analysis revealed that microbial abnormalities in the NOA group were closely related to the decrease of microbial degradation of toluene and the increase of metabolism of fructose or mannose. In addition, the metabolic relationship between microbes and the host in male semen in iNOA revealed that such microbes can produce harmful metabolites that affect sperm quality, the microbes compete with sperm for essential nutrients, and their presence reduces sperm production of essential nutrients. IMPORTANCE Idiopathic nonobstructive azoospermia is one of the great challenges in assisted reproductive therapy. Although microdissection testicular sperm extraction technology is currently available, many men with iNOA still face the problem of poor sperm retrieval and poor sperm quality. The role of seminal plasma microbes in male disease has been continuously investigated since semen was demonstrated to harbor commensal microbes. To our knowledge, this is the first detailed description of the microbe-host relationship in iNOA semen. This study is an important complement to research on the treatment and etiology of iNOA and the rationale for our ongoing research.PMID:36633411 | DOI:10.1128/spectrum.04365-22

Effect of different storage conditions on the stability and safety of almonds

Thu, 12/01/2023 - 12:00
J Food Sci. 2023 Jan 12. doi: 10.1111/1750-3841.16453. Online ahead of print.ABSTRACTAlmond production in Portugal is of great importance for the economy of their main producing areas. However, the contamination of these nut fruits with fungi and mycotoxins poses a significant risk to food safety and security. This work intended to evaluate the influence of storage conditions on the microbial and mycotoxin stability and safety of almonds throughout long-term storage. Two almond varieties-Lauranne and Guara-were submitted to three different storage conditions, namely, 4°C with noncontrolled relative humidity (RH), 60% RH at 25°C, and 70% RH at 25°C, for a storage period of 9 months. Samples were collected after 0, 3, 6, and 9 months of storage and analyzed for microbial loads (aerobic mesophiles, yeasts, and molds), mold incidence and diversity, and mycotoxin contamination. In total, 26 species were identified belonging to 6 genera: Aspergillus, Cladosporium, Fusarium, Penicillium, Paecilomyces, and Talaromyces. For the variety Guara, mycotoxins related to Aspergillus sect. Flavi, such as aflatoxins, averufin, versicolorin C, and norsolorinic acid, were detected only after 9 months of storage at 70% and 60% RH. Penicillium mycotoxins, such as quinolactacin A and roquefortine C, were also detected. For the variety Lauranne, Penicillium mycotoxins were detected, such as citrinin, quinolactacins A and B, roquefortines C and D, cyclopenin, cyclopenol, penitrem A, viridicatin, and viridicatol. Mycotoxins related to Aspergillus, such as aspulvinone E, flavoglaucin, paspalin, asperglaucide, asperphenamate, cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Val), were also detected. PRACTICAL APPLICATION: (Optional, for JFS Research Articles ONLY) The quality of almonds depends on the storage period and the RH and temperature at which they are stored. Storage of almonds at 60% RH at 25°C is a good storage condition to maintain the stability and safety of nuts in terms of microbial and mycotoxin contaminations.PMID:36633227 | DOI:10.1111/1750-3841.16453

Bioactive polysaccharides promote gut immunity <em>via</em> different ways

Thu, 12/01/2023 - 12:00
Food Funct. 2023 Jan 12. doi: 10.1039/d2fo03181g. Online ahead of print.ABSTRACTNumerous kinds of bioactive polysaccharides are identified as having intestinal immunomodulatory activity; however, the ways in which the different polysaccharides work differ. Therefore, we selected nine representative bioactive polysaccharides, including xanthan gum, inulin, guar gum, arabinogalactan, carrageenan, glucomannan, araboxylan, xylan, and fucoidan, and compared their intestinal immunomodulatory mechanisms. A cyclophosphamide (CTX)-induced immunosuppressed model was used in this experiment, and the effects of these polysaccharides on the number of T cells in the intestinal mucosa, expression of transcription factors and inflammatory factors, intestinal metabolome and gut microbiota were compared and discussed. The results revealed that the nine polysaccharides promote intestinal immunity in different ways. In detail, guar gum, inulin and glucomannan better alleviated immune suppression in intestinal mucosal T cells. Inulin improved the intestinal microenvironment by significantly upregulating the abundance of Lactobacillus and Monoglobus and promoted short chain fatty acid (SCFA) production. Fucoidan and carrageenan promoted the colonization of the beneficial bacteria Rikenella and Roseburia. In addition, fucoidan, inulin and carrageenan inhibited the colonization of harmful bacteria Helicobacter, upregulated the abundance of Clostridia_UCG-014 and alleviated the accumulation of amino acids, bile acids and indoles in the large intestine. In conclusion, our study uncovered the different intestinal immunomodulatory mechanisms of the different polysaccharides and provided a guideline for the development of superior intestinal immunomodulatory polysaccharides.PMID:36633119 | DOI:10.1039/d2fo03181g

Pseudotargeted metabolomics analysis of pine pollen intervention in the liver of premature ovarian failure rats

Thu, 12/01/2023 - 12:00
Se Pu. 2023 Jan;41(1):47-57. doi: 10.3724/SP.J.1123.2022.04017.ABSTRACTPremature ovarian failure (POF) is a prevalent gynecological disease. In traditional Chinese medicine, it is believed that POF is directly related to abnormal function of the liver and kidneys. As such, regulation of the liver metabolism through the use of medicinal and edible substances is important for the treatment of POF. Pine pollen, a traditional Chinese medicinal and edible pollen variety, contains various active substances, such as sex hormones and phytohormones, which have been used to inhibit inflammation, regulate the immune system, and protect reproductive tissues. Using ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS), this study examined the influence of pine pollen on the liver metabolome of cyclophosphamide-induced POF model Sprague Dawley (SD) rats. The variations in the metabolites present in the liver tissue of control SD rats, model SD rats, and SD rats treated with various doses of pine pollen or estrogen were analyzed using principal component analysis (PCA) in combination with orthogonal partial least squares discriminant analysis (OPLS-DA) and other multivariate statistical methods to reveal the mechanism of pine pollen intervention in the livers of POF SD rats. An animal model experiment was conducted using six groups of ten-week-old rats. Cyclophosphamide was administered intraperitoneally to the model group and four intervention groups at a dosage of 60 mg/kg for 1 d followed by a dosage of 10 mg/kg for 14 d. Within the following four weeks, each of the four intervention groups received the intragastric administration of 0.1, 0.5, or 1.5 g/kg bodyweight (BW) of pine pollen, or 0.075 g/kg BW of conjugated estrogens (positive control). Equal quantities of normal saline were administered to the control and cyclophosphamide-treated model groups. Subsequently, the rat livers were subject to pseudotargeted metabolomics, and a total of 687 liver metabolites were discovered using both positive and negative ions. The metabolites differing in content were screened using the t-test (p<0.05) and the fold change (FC>2 or <0.5) in univariate analysis, and the variable importance in projection (VIP>1) in multivariate analysis. It was found that in comparison with the control group, the contents of 32 metabolites significantly increased, while those of 28 metabolites significantly decreased in the model group. The majority of these metabolites were involved α-linolenic acid metabolism, vitamin B6 metabolism, and purine metabolism, along with the lysine degradation and glycolysis/gluconeogenesis metabolic pathways. Compared with the cyclophosphamide-induced model group, the estrogen group exhibited increased levels of 47 metabolites and decreased levels of 29 metabolites, wherein 34 metabolites were restored to the levels found in the control group. These metabolites mainly involved the vitamin B6, lysine, glycolysis/gluconeogenesis, arginine and proline, and cysteine and methionine metabolic pathways. In the low/medium/high-dose pine pollen groups, the contents of 34/32/34 metabolites increased, the contents of 30/37/24 metabolites decreased, and the contents of 47/38/34 metabolites were restored to the levels found in the control group, respectively. These metabolites were mainly involved in vitamin B6 metabolism, purine metabolism, and the glycolysis/gluconeogenesis metabolic pathway. These results therefore indicate that the restoring effect of pine pollen is equivalent or superior to that of conjugated estrogen. Additionally, based on the known metabolic pathways, it appears that when estrogen interferes with the liver metabolism, the key metabolic pathways that become affected are the arginine and proline metabolism and cysteine and methionine metabolism pathways. In contrast, pine pollen intervention affected existing metabolic pathways that were known to be disordered by cyclophosphamide. The use of pine pollen may therefore restore the levels of many metabolites. It should be noted that 23 overlaps exist between the estrogen-restored metabolites and the pine pollen-restored metabolites, including a variety of acylcarnitines, such as ACar 10∶0. As a result, pine pollen extract may be able to normalize the liver metabolic abnormalities induced by POF. This study therefore establishes a theoretical reference for the development of functional applications for pine pollen and for the treatment of POF.PMID:36633076 | DOI:10.3724/SP.J.1123.2022.04017

Pseudotargeted Metabolomics Approach Enabling the Classification-Induced Ginsenoside Characterization and Differentiation of Ginseng and Its Compound Formulation Products

Thu, 12/01/2023 - 12:00
J Agric Food Chem. 2023 Jan 12. doi: 10.1021/acs.jafc.2c07664. Online ahead of print.ABSTRACTThe use of diversified ginseng extracts in health-promoting foods is difficult to differentiate, as they share bioactive ginsenosides among different Panax species (e.g., P. ginseng, P. quinquefolius, P. notoginseng, and P. japonicus) and different parts (e.g., root, leaf, and flower). This work was designed to develop a pseudo-targeted metabolomics approach to discover ginsenoside markers facilitating the precise authentication of ginseng and its use in compound formulation products (CFPs). Versatile mass spectrometry experiments on the QTrap mass spectrometer achieved classified characterization of the neutral, malonyl, and oleanolic acid-type ginsenosides, with 567 components characterized. A pseudo-targeted metabolomics approach by multiple reaction monitoring (MRM) of 262 ion pairs could assist to establish key identification points for 12 ginseng species. The simultaneous detection of 14 markers enabled the identification of ginseng from 15 ginseng-containing CFPs. The pseudo-targeted metabolomics strategy enabled better performance in differentiating among multiple ginseng, compared with the full-scan high-resolution mass spectrometry approach.PMID:36632992 | DOI:10.1021/acs.jafc.2c07664

Microplastic pollution destabilized the osmoregulatory metabolism but did not affect intestinal microbial biodiversity of earthworms in soil

Thu, 12/01/2023 - 12:00
Environ Pollut. 2023 Jan 9:121020. doi: 10.1016/j.envpol.2023.121020. Online ahead of print.ABSTRACTMetabolomic and gut microbial responses of soil fauna to environmentally relevant concentrations of microplastics indicate the potential molecular toxicity of microplastics; however, limited data exist on these responses. In this study, earthworms (Eisenia fetida) were exposed to spherical (25-30 μm diameter) polystyrene microplastic-contaminated soil (0.02%, w:w) for 14 days. Changes in weight, survival rate, intestinal microbiota and metabolic responses of the earthworms were assessed. The results showed that polystyrene microplastics did not influence the weight, survival rate, or biodiversity of the gut microbiota, but significantly decreased the relative abundance of Bacteroidetes at the phylum level. Moreover, polystyrene microplastics disturbed the osmoregulatory metabolism of earthworms, as indicated by the significantly decreased betaine, myo-inositol and lactate, and increased 2-hexyl-5-ethyl-furan-3-sulfonic acid at the metabolic level. This study provides important insights into the molecular toxicity of environmentally relevant concentrations of polystyrene microplastics on soil fauna.PMID:36632970 | DOI:10.1016/j.envpol.2023.121020

BPA and its alternatives BPF and BPAF exaggerate hepatic lipid metabolism disorders in male mice fed a high fat diet

Thu, 12/01/2023 - 12:00
Sci Total Environ. 2023 Jan 9:161521. doi: 10.1016/j.scitotenv.2023.161521. Online ahead of print.ABSTRACTAlternatives to Bisphenol A (BPA) such as BPF and BPAF, have found increasing industrial applications. However, toxicological research on these BPA analogues remains limited. This study aimed to investigate the effects of BPA, BPF, and BPAF exposure on hepatotoxicity in mice fed with high-fat diets (HFD). Male mice were exposed to the bisphenols at a dose of 0.05 mg per kg body weight per day (mg/kg bw/day) for eight consecutive weeks, or 5 mg/kg bw/day for the first week followed by 0.05 mg/kg bw/day for seven weeks under HFD. The low dose (0.05 mg/kg bw/day) was corresponding to the tolerable daily intake (TDI) of BPA and the high dose (5 mg/kg bw/day) was corresponding to its no observed adverse effect level (NOAEL). Biochemical analysis revealed that exposure to these bisphenols resulted in liver damage. Metabolomics analysis showed disturbances of fatty acid and lipid metabolism in bisphenol-exposed mouse livers. BPF and BPAF exposure reduced lipid accumulation in HFD mouse liver by lowering glyceride and cholesterol levels. Transcriptomics analysis demonstrated that expression levels of genes related to fatty acid synthesis and metabolism were changed, which might be related to the activation of the PPAR signaling pathway. Besides, a feedback regulation mechanism might exist to maintain hepatic metabolic homeostasis. For the first time, this study demonstrated the effects of BPF and BPAF exposure in HFD-mouse liver. Considering the reality of the high prevalence of obesity nowadays and the ubiquitous environmental distribution of bisphenols, this study provides insight and highlights the adverse effects of BPA alternatives, further contributing to the consideration of the safe use of such compounds.PMID:36632902 | DOI:10.1016/j.scitotenv.2023.161521

Pages