Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Trace determination of the hydrogen sulfide biomarker thiosulfate in human urine by HPLC coupled with element selective ICPMS/MS detection

Mon, 28/11/2022 - 12:00
Anal Chim Acta. 2023 Jan 2;1237:340583. doi: 10.1016/j.aca.2022.340583. Epub 2022 Nov 6.ABSTRACTHydrogen sulfide is a toxic gas but also established as a naturally occurring gaseous signaling molecule in humans, playing key physiological roles with particular involvement in lung disease including COVID-19. Thiosulfate is the conventional biomarker of hydrogen sulfide and is excreted in human urine at low micromolar levels. Thiosulfate is amenable to detection by the element-selective inductively coupled plasma tandem mass spectrometry (ICPMS/MS), but sulfur speciation in human samples at trace levels is challenging due to the high complexity of human sulfur metabolome and the utility of this detector under such settings has not been demonstrated. We report a method for thiosulfate determination in human urine at trace physiological levels by HPLC-ICPMS/MS. The method involved one-step derivatization to improve chromatographic behavior followed by direct injection. The instrumental limit of detection was 1.4 μg S L-1 (0.02 μM or 0.1 pmol). In a group of samples from volunteers (n = 24), measured thiosulfate concentrations in the diluted urine matrix were down to 8.0 μg S L-1 with a signal-to-noise ratio >10. The method was validated for recovery (80-110%), repeatability (RSD% <5%), and linearity (r2 = 0.9999, at a tested working concentration range of 0.01-1.0 mg S L-1), and the accuracy was assessed by comparing with HPLC-ESIMS/MS which showed agreement within ±20%. This work demonstrates the applicability of HPLC-ICPMS/MS for sulfur speciation at trace levels in a matrix with complex sulfur metabolome as human urine and provides a sensitive method for the determination of the hydrogen sulfide biomarker.PMID:36442947 | DOI:10.1016/j.aca.2022.340583

Comprehensive Multidimensional Liquid Chromatography-Mass Spectrometry for the Characterization of Charge Variants of a Bispecific Antibody

Mon, 28/11/2022 - 12:00
J Am Soc Mass Spectrom. 2022 Nov 28. doi: 10.1021/jasms.2c00296. Online ahead of print.ABSTRACTIdentification and further characterization of antibody charge variants is a crucial step during biopharmaceutical drug development, particularly with regard to the increasing complexity of novel antibody formats. As a standard analytical approach, manual offline fractionation of charge variants by cation-exchange chromatography followed by comprehensive analytical testing is applied. These conventional workflows are time-consuming and labor-intensive and overall reach their limits in terms of chromatographic separation of enhanced structural heterogeneities raised from new antibody formats. For these reasons, we aimed to develop an alternative online characterization strategy for charge variant characterization of a therapeutic bispecific antibody by online mD-LC-MS at middle-up (2D-LC-MS) and bottom-up (4D-LC-MS) level. Using the implemented online mD-LC-MS approach, all medium- and even low-abundant product variants previously identified by offline fraction experiments and liquid chromatography mass spectrometry could be monitored. The herein reported automated online mD-LC-MS methodology therefore represents a complementary and in part alternative approach for analytical method validation including multiattribute monitoring (MAM) strategies by mass spectrometry, offering various benefits including increased throughput and reduced sample handling and combined protein information at intact protein and peptide level.PMID:36442848 | DOI:10.1021/jasms.2c00296

Deep phenotyping and biomarkers of various dairy fat intakes in an 8-week randomized clinical trial and 2-year swine study

Mon, 28/11/2022 - 12:00
J Nutr Biochem. 2022 Nov 25:109239. doi: 10.1016/j.jnutbio.2022.109239. Online ahead of print.ABSTRACTHealth effects of dairy fats (DF) are difficult to evaluate, as DF intakes are hard to assess epidemiologically and DF have heterogeneous compositions that influence biological responses. We set out to find biomarkers of DF intake and assess biological response to a summer DF diet (R2), a winter DF diet (R3), and a R3 supplemented with calcium (R4) compared to a plant-fat-based diet (R1) in a randomized clinical trial (n=173) and a 2-year study in mildly metabolically disturbed downsized pigs (n=32). Conventional clinical measures were completed by LC/MS plasma metabolomics/lipidomics. The measured effects were modeled as biological functions to facilitate interpretation. DF intakes in pigs specifically induced a U-shaped metabolic trajectory, reprogramming metabolism to close to its initial status after a one-year turnaround. Twelve lipid species repeatably predicted DF intakes in both pigs and humans (6.6% errors). More broadly, in pigs, quality of DF modulated the time-related biological response (R2: 30 regulated functions, primarily at 6 months; R3: 26 regulated functions, mostly at 6-12 months; R4: 43 regulated functions, mostly at 18 months). Despite this heterogeneity, 9 functions overlapped under all 3 DF diets in both studies, related to a restricted area of amino acids metabolism, cofactors, nucleotides and xenobiotic pathways and the microbiota. In conclusion, over the long-term, DF reprograms metabolism to close to its initial biological status in metabolically-disrupted pigs. Quality of the DF modulates its metabolic influence, although some effects were common to all DF. A resilient signature of DF consumption found in pigs was validated in humans.PMID:36442717 | DOI:10.1016/j.jnutbio.2022.109239

Metabolites from specific intestinal bacteria in vivo fermenting Lycium barbarum polysaccharide improve collagenous arthritis in rats

Mon, 28/11/2022 - 12:00
Int J Biol Macromol. 2022 Nov 25:S0141-8130(22)02815-X. doi: 10.1016/j.ijbiomac.2022.11.257. Online ahead of print.ABSTRACTRheumatoid arthritis (RA) is an autoimmune disease affected patients' quality of life severely. Our previous study found Lycium barbarum polysaccharide (LBP) alleviated RA, but it remains unknown whether gut microbiota is necessary for the alleviation. Here, RA models were established in rats with microbiota and rats treated by antibiotic cocktail, and LBP was applied for the intervention on rats. The biochemical test, 16S rDNA sequencing and metabolome analysis were applied to analyze the effects of LBP on gut microbiota, their metabolites and hosts. Results showed the LBP intervention improved RA by inhibiting pro-inflammatory cytokines IL-1α, IL-1β, TNF-α and IL-6 only in rats with microbiota, but not in pseudo-germ-free rats. The abundance of specific bacteria, including Romboutsia, Lactobacillus, Turicibacter, Clostridium_sensu_stricto_1, Faecalibacterium and Adlercreutzia, and several metabolites, including O-desmethylangolensin, 3-hydroxydodecanedioic acid, N-formyl-L-methionine, suberic acid, (S)-oleuropeic acid, prolyl-histidine, 13,14-dihydro PGF-1a, (R)-pelletierine and short-chain fatty acids increased only in RA rats with microbiota after the intervention. Our results suggest that intestinal bacteria are necessary for LBP alleviating RA alleviation. The fermentation metabolite acts on the host instead of LBP itself, which may be the reason for the improvement of RA.PMID:36442555 | DOI:10.1016/j.ijbiomac.2022.11.257

Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla

Mon, 28/11/2022 - 12:00
Int J Biol Macromol. 2022 Nov 25:S0141-8130(22)02808-2. doi: 10.1016/j.ijbiomac.2022.11.249. Online ahead of print.ABSTRACTPlant-derived monoterpene indole alkaloids (MIAs) from Uncaria rhynchophylla (UR) have huge medicinal properties in treating Alzheimer's disease, Parkinson's disease, and depression. Although many bioactive UR-MIA products have been isolated as drugs, their biosynthetic pathway remains largely unexplored. In this study, untargeted metabolome identified 79 MIA features in UR tissues (leaf, branch stem, hook stem, and stem), of which 30 MIAs were differentially accumulated among different tissues. Short time series expression analysis captured 58 pathway genes and 12 hub regulators responsible for UR-MIA biosynthesis and regulation, which were strong links with main UR-MIA features. Coexpression networks further pointed to two strictosidine synthases (UrSTR1/5) that were coregulated with multiple MIA-related genes and highly correlated with UR-MIA features (r > 0.7, P < 0.005). Both UrSTR1/5 catalyzed the formation of strictosidine with tryptamine and secologanin as substrates, highlighting the importance of key residues (UrSTR1: Glu309, Tyr155; UrSTR5: Glu295, Tyr141). Further, overexpression of UrSTR1/5 in UR hairy roots constitutively increased the biosynthesis of bioactive UR-MIAs (rhynchophylline, isorhynchophylline, corynoxeine, etc), whereas RNAi of UrSTR1/5 significantly decreased UR-MIA biosynthesis. Collectively, our work not only provides candidates for reconstituting the biosynthesis of bioactive UR-MIAs in heterologous hosts but also highlights a powerful strategy for mining natural product biosynthesis in medicinal plants.PMID:36442554 | DOI:10.1016/j.ijbiomac.2022.11.249

A Ganoderma lucidum polysaccharide F31 alleviates hyperglycemia through kidney protection and adipocyte apoptosis

Mon, 28/11/2022 - 12:00
Int J Biol Macromol. 2022 Nov 25:S0141-8130(22)02790-8. doi: 10.1016/j.ijbiomac.2022.11.231. Online ahead of print.ABSTRACTIn this paper, we reported an excellent hypoglycemic effect of a Ganoderma lucidium polysaccharide F31 with efficacies between 45 and 54 %, approaching to that of liraglutide (52 %). Significantly, F31 reduced the body weight gains and food intakes. F31 decreased 4 key compounds, consisting of adenosine, adenosine, galactitol and glycerophosphocholine and elevated 8 key compounds, including arginine, proline, arachidonic acid, creatine, aspartic acid, leucine, phenylalanine and ornithine, which protected kidney function. Also, apoptosis was promoted by F31 in epididymal fat through increasing Caspase-3, Caspase-6 and Bax and decreasing Bcl-2. On 3 T3-L1 preadipocyte cells, F31 induced early apoptosis through reducing mitochondrial membrane potential. Finally, a molecular docking was performed to reveal a plausible cross-talk between kidney and epididymal fat through glycerophosphorylcholine-Bax axis. Overall, F31 alleviated hyperglycemia through kidney protection and adipocyte apoptosis in db/db mice. This work may provide novel insights into the hypoglycemic activity of polysaccharides.PMID:36442553 | DOI:10.1016/j.ijbiomac.2022.11.231

Phenylalanine induces mango fruit resistance against chilling injuries during storage at suboptimal temperature

Mon, 28/11/2022 - 12:00
Food Chem. 2022 Nov 19;405(Pt B):134909. doi: 10.1016/j.foodchem.2022.134909. Online ahead of print.ABSTRACTCold is the best means of prolonging fruit storage. However, tropical fruit are susceptible to cold storage. The mode of action of mango fruit tolerance to suboptimal cold temperature of 7 or 10 °C after postharvest application of 8 mM phenylalanine was investigated using transcriptomic and metabolomic analyses of mango fruit during suboptimal cold storage. Phenylalanine-treated fruit had less chilling injuries-black spot and pitting electrolyte leakage,-and reduced decay after suboptimal cold storage. Phenylalanine treatment induced genes related to plant-pathogen interactions, plant hormone signal transduction, and the phenylpropanoid pathway, increasing the levels of the flavonoids quercetin and kaempferol glycosides and anthocyanins, and antioxidant content. Reduced oxidation led to lower lipid peroxidation, and a reduction in fatty acid-degradation products, e.g., volatile aldehydes. Treatment with phenylalanine, therefore, enhances chilling tolerance of mango fruit through regulation of metabolic and defense-related pathways, maintaining high levels of flavonoids, and antioxidants enzyme activity, and reducing H2O2 content, lipid peroxidation, and volatile aldehydes.PMID:36442247 | DOI:10.1016/j.foodchem.2022.134909

Metabolites of dietary atractyligenin glucoside in coffee drinkers' urine

Mon, 28/11/2022 - 12:00
Food Chem. 2022 Nov 23;405(Pt B):135026. doi: 10.1016/j.foodchem.2022.135026. Online ahead of print.ABSTRACTArabica roast coffee contains a substantial amount of water soluble atractyligenin-2-O-β-d-glucoside, which is ingested by consumption of coffee brew. Metabolomics data suggest this coffee compound is excreted as glucuronides, but the structures of conjugates have not been elucidated so far. We collected coffee drinkers' urine and isolated four metabolites by MS-guided liquid chromatographic fractionation. The structures were investigated by nuclear magnetic resonance (NMR) and time-of-flight mass spectrometry (ToF-MS) and identified as atractyligenin-19-O-β-d-glucuronide (M1), 2β-hydroxy-15-oxoatractylan-4α-carboxy-19-O-β-d-glucuronide (M2), and 2β-hydroxy-15-oxoatractylan-4α-carboxylic acid-2-O-β-d-glucuronide (M3). An unconjugated metabolite (M4) was confirmed as atractyligenin. We analyzed spot urines from n = 6 coffee drinking individuals and detected the metabolites M1, M2 and M4 in every sample, and M3 in four out of six samples, suggesting interindividual differences in metabolism.PMID:36442242 | DOI:10.1016/j.foodchem.2022.135026

Discovery of natural polyphenols from the wild vegetable Suaeda salsa L. with potential cardioprotective functions

Mon, 28/11/2022 - 12:00
Food Chem. 2022 Nov 15;405(Pt B):134968. doi: 10.1016/j.foodchem.2022.134968. Online ahead of print.ABSTRACTSuaeda salsa L. (Chenopodiaceae) is a wild vegetable distributed along the northern coast of China. Searching for potential agents with health benefits from S. salsa L. led to the identification of 14 flavonoids (1-14), eight phenolic acids (15-22), one coumarin (23), one benzoquinone (24), two sesquiterpenes (25, 26), and three lignins (27-29) from an aqueous ethanol (EtOH) extract of the above-ground whole plant using various column chromatographic methods. High-resolution electrospray ionization mass spectrometry (HRESIMS) analyses and nuclear magnetic resonance (1H and 13C NMR) spectroscopy were adopted to examine the structural properties of the compounds. To date, our study is the first to identify 20 compounds from this genus. Some compounds exhibited significant health benefits in zebrafish models. Compounds 2, 4, 23, and 28 significantly improved oxidative damage, while compounds 1-5, 7, 11, 13, 18, 19, and 23 significantly improved zebrafish lateral line neuromast inflammation. Additionally, compounds 1, 4, 8, 13, and 16 significantly promoted zebrafish angiogenesis, while compounds 3-5 and 18 significantly improved zebrafish arrhythmia. Furthermore, a flavonoid-targeted metabolomics study revealed that flavanone was the precursor of all of the flavonoids and had its highest accumulation in August, while the others showed their highest accumulation in September. Thus, the best time to harvest most of the bioactive polyphenols is during September. The present study revealed that the wild vegetable S. salsa L. might be developed as a potential cardioprotective functional food.PMID:36442239 | DOI:10.1016/j.foodchem.2022.134968

Comprehensive Online Reversed-Phase × Chiral Two-Dimensional Liquid Chromatography-Mass Spectrometry with Data-Independent Sequential Window Acquisition of All Theoretical Fragment-Ion Spectra-Acquisition for Untargeted Enantioselective Amino Acid...

Mon, 28/11/2022 - 12:00
Anal Chem. 2022 Nov 28. doi: 10.1021/acs.analchem.2c03042. Online ahead of print.ABSTRACTThis work presents an advanced analytical platform for untargeted enantioselective amino acid analysis (eAAA) by comprehensive achiral × chiral 2D-LC hyphenated to ESI-QTOF-MS/MS utilizing data-independent SWATH (sequential window acquisition of all theoretical fragment-ion spectra) technology. The methodology involves N-terminal pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ) as retention, selectivity, and MS tag, supporting retention and UV detection in RPLC (1D), chiral recognition, and thus enantioselectivity by the core-shell tandem column composed of a quinine carbamate weak anion exchanger (QN-AX) and a zwitterionic chiral ion-exchanger (ZWIX(+)) (2D) as well as the ionization efficiency during positive electrospray ionization due to a high proton affinity of the AQC label. Furthermore, the urea-type MS tag gives rise to the generation of AQC-tag characteristic signature fragments in MS2. The latter allows the chemoselective mass spectrometric filtering of targeted and untargeted N-derivatized amino acids or related labeled species. The chiral core-shell tandem column provides a complete enantioselective amino acid profile of all proteinogenic amino acids within 1 min, with full baseline separation of all enantiomers, but without resolution of isomeric Ile/allo-Ile (aIle)/Leu, which can be resolved by RPLC. The entire LC × LC separation occurs within a total run time of 60 min (1D), with the chiral 2D operated in gradient elution mode and a cycle time of 60 s. A strategy to mine the 2D-LC-SWATH data is presented and demonstrated for the qualitative eAAA of two peptide hydrolysate samples of therapeutic peptides containing common and uncommon as well as primary and secondary amino acids. Absolute configuration assignment of amino acids using template matching for all proteinogenic amino acids was made feasible due to method robustness and the inclusion of an isotopically labeled L-[U-13C15N]-AA standard. The quantification performance of this LC × LC-MS/MS assay was also evaluated. Accuracies were acceptable for the majority of AAs enabling AA composition determination in peptide hydrolysates simultaneously with configuration assignment, as exemplified by oxytocin. This methodology represents a step toward truly untargeted 2D enantioselective amino acid analysis and metabolomics.PMID:36442145 | DOI:10.1021/acs.analchem.2c03042

Human T cells recognize HLA-DP-bound peptides in two orientations

Mon, 28/11/2022 - 12:00
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2214331119. doi: 10.1073/pnas.2214331119. Epub 2022 Nov 29.ABSTRACTHuman leukocyte antigen (HLA) molecules present small peptide antigens to T cells, thereby allowing them to recognize pathogen-infected and cancer cells. A central dogma over the last 50+ y is that peptide binding to HLA molecules is mediated by the docking of side chains of particular amino acids in the peptide into pockets in the HLA molecules in a conserved N- to C-terminal orientation. Whether peptides can be presented in a reversed C- to N-terminal orientation remains unclear. Here, we performed large-scale identification of peptides bound to HLA-DP molecules and observed that in addition to peptide binding in an N- to C-terminal orientation, in 9 out of 14 HLA-DP allotypes, reverse motifs are found, compatible with C- to N-terminal peptide binding. Moreover, we isolated high-avidity human cytomegalovirus (CMV)-specific HLA-DP-restricted CD4+ T cells from the memory repertoire of healthy donors and demonstrate that such T cells recognized CMV-derived peptides bound to HLA-DPB1*01:01 or *05:01 in a reverse C- to N-terminal manner. Finally, we obtained a high-resolution HLA-DPB1*01:01-CMVpp65(142-158) peptide crystal structure, which is the molecular basis for C- to N-terminal peptide binding to HLA-DP. Our results point to unique features of HLA-DP molecules that substantially broaden the HLA class II bound peptide repertoire to combat pathogens and eliminate cancer cells.PMID:36442096 | DOI:10.1073/pnas.2214331119

Effects of Microbial Action and Moist-Heat Action on the Nonvolatile Components of Pu-Erh Tea, as Revealed by Metabolomics

Mon, 28/11/2022 - 12:00
J Agric Food Chem. 2022 Nov 28. doi: 10.1021/acs.jafc.2c05925. Online ahead of print.ABSTRACTMicrobial action and moist-heat action are crucial factors that influence the piling fermentation (PF) of Pu-erh tea. However, their effects on the quality of Pu-erh tea remain unclear. In this study, the effects of spontaneous PF (SPPF) and sterile PF (STPF) on the chemical profile of Pu-erh tea were investigated for the first time, and sun-dried green tea was used as a raw material to determine the factors contributing to the unique quality of Pu-erh tea. The results indicated that the SPPF-processed samples had a stale and mellow taste, whereas the STPF-processed samples had a sweet and mellow taste. Through metabolomics-based analysis, 21 potential markers of microbial action (including kaempferol, quercetin, and dulcitol) and 10 potential markers of moist-heat action (including ellagic acid, β-glucogallin, and ascorbic acid) were screened among 186 differential metabolites. Correlation analysis with taste revealed that metabolites upregulated by moist-heat and microbial action were the main factors contributing to the staler mellow taste of the SPPF-processed samples and the sweeter mellow taste of the STPF-processed samples. Kaempferol, quercetin, d-glucuronic acid, and dulcitol were the main active substances formed under microbial action. This study provides new knowledge regarding the quality formation mechanism of Pu-erh tea.PMID:36441948 | DOI:10.1021/acs.jafc.2c05925

Essential amino acids as diagnostic biomarkers of hepatocellular carcinoma based on metabolic analysis

Mon, 28/11/2022 - 12:00
Oncotarget. 2022 Nov 22;13:1286-1298. doi: 10.18632/oncotarget.28306.ABSTRACTMetabolomics, defined as the comprehensive identification of all small metabolites in a biological sample, has the power to shed light on phenotypic changes associated with various diseases, including cancer. To discover potential metabolomic biomarkers of hepatocellular carcinoma (HCC), we investigated the metabolomes of tumor and non-tumor tissue in 20 patients with primary HCC using capillary electrophoresis-time-of-flight mass spectrometry. We also analyzed blood samples taken immediately before and 14 days after hepatectomy to identify associated changes in the serum metabolome. Marked changes were detected in the different quantity of 61 metabolites that could discriminate between HCC tumor and paired non-tumor tissue and additionally between HCC primary tumors and colorectal liver metastases. Among the 30 metabolites significantly upregulated in HCC tumors compared with non-tumor tissues, 10 were amino acids, and 7 were essential amino acids (leucine, valine, tryptophan, isoleucine, methionine, lysine, and phenylalanine). Similarly, the serum metabolomes of HCC patients before hepatectomy revealed a significant increase in 16 metabolites, including leucine, valine, and tryptophan. Our results reveal striking differences in the metabolomes of HCC tumor tissue compared with non-tumor tissue, and identify the essential amino acids leucine, valine, and tryptophan as potential metabolic biomarkers for HCC.PMID:36441784 | DOI:10.18632/oncotarget.28306

Changes of serum metabolites levels during neoadjuvant chemoradiation and prediction of the pathological response in locally advanced rectal cancer

Mon, 28/11/2022 - 12:00
Metabolomics. 2022 Nov 28;18(12):99. doi: 10.1007/s11306-022-01959-8.ABSTRACTINTRODUCTION: Previous studies have explored prediction value of serum metabolites in neoadjuvant chemoradiation therapy (NCRT) response for rectal cancer. To date, limited literature is available for serum metabolome changes dynamically through NCRT.OBJECTIVES: This study aimed to explore temporal change pattern of serum metabolites during NCRT, and potential metabolic biomarkers to predict the pathological response to NCRT in locally advanced rectal cancer (LARC) patients.METHODS: Based on dynamic UHPLC-QTOF-MS untargeted metabolomics design, this study included 106 LARC patients treated with NCRT. Biological samples of the enrolled patients were collected in five consecutive time-points. Untargeted metabolomics was used to profile serum metabolic signatures from LARC patients. Then, we used fuzzy C-means clustering (FCM) to explore temporal change patterns in metabolites cluster and identify monotonously changing metabolites during NCRT. Repeated measure analysis of variance (RM-ANOVA) and multilevel partial least-squares discriminant analysis (ML-PLS-DA) were performed to select metabolic biomarkers. Finally, a panel of dynamic differential metabolites was used to build logistic regression prediction models.RESULTS: Metabolite profiles showed a clearly tendency of separation between different follow-up panels. We identified two clusters of 155 serum metabolites with monotonously changing patterns during NCRT (74 decreased metabolites and 81 increased metabolites). Using RM-ANOVA and ML-PLS-DA, 8 metabolites (L-Norleucine, Betaine, Hypoxanthine, Acetylcholine, 1-Hexadecanoyl-sn-glycero-3-phosphocholine, Glycerophosphocholine, Alpha-ketoisovaleric acid, N-Acetyl-L-alanine) were further identified as dynamic differential biomarkers for predicting NCRT sensitivity. The area under the ROC curve (AUC) of prediction model combined with the baseline measurement was 0.54 (95%CI = 0.43 ~ 0.65). By incorporating the variability indexes of 8 dynamic differential metabolites, the prediction model showed better discrimination performance than baseline measurement, with AUC = 0.67 (95%CI 0.57 ~ 0.77), 0.64 (0.53 ~ 0.75), 0.60 (0.50 ~ 0.71), and 0.56 (0.45 ~ 0.67) for the variability index of difference, linear slope, ratio, and standard deviation, respectively.CONCLUSION: This study identified eight metabolites as dynamic differential biomarkers to discriminate NCRT-sensitive and resistant patients. The changes of metabolite level during NCRT show better performance in predicting NCRT sensitivity. These findings highlight the clinical significance of metabolites variabilities in metabolomics analysis.PMID:36441416 | DOI:10.1007/s11306-022-01959-8

The stereoselective metabolic disruption of cypermethrin on rats by a sub-acute study based on metabolomics

Mon, 28/11/2022 - 12:00
Environ Sci Pollut Res Int. 2022 Nov 28. doi: 10.1007/s11356-022-24359-w. Online ahead of print.ABSTRACTDue to the massive application of cypermethrin (CYP) for pest control in China, the adverse effects on non-target organisms have aroused great attention. However, comparative studies between its different stereoisomers remain scarce, especially for metabolism perturbations. Herein, the rats were administered α-CYP, β-CYP, and θ-CYP by gavage at doses of 8.5, 29.2, and 25.0 mg/kg/day, respectively, for 28 consecutive days. By blood examination, significant changes in liver and renal function parameters were observed in rats exposed to all three CYPs. The stereoisomeric selectivity in metabolic disturbances was assessed based on a metabolomic strategy via multivariate analysis and pathway analysis. The results demonstrated that amino acid and glycolipid metabolism were disrupted in all CYP groups. Among them, the most significant changes in the metabolic phenotype were observed in the θ-CYP group, with 56 differential metabolites enriched in 9 differential metabolic pathways. At the same time, the endogenous metabolite trimethylamine oxide (TMAO), which is closely linked to the gut microbiota, was also significantly elevated in this group. Gender differences were found in α- and θ-CYP-exposed rats, with perturbations in amino acid and glucose metabolism of greater concern in females and lipid metabolism of greater concern in males. Overall, β-CYP exhibited a lower risk of metabolic perturbations than α-CYP or θ-CYP, which helps to screen suitable agrochemical products for green agricultural development.PMID:36441315 | DOI:10.1007/s11356-022-24359-w

Urinary volatile Organic compounds in non-alcoholic fatty liver disease (NAFLD), type two diabetes mellitus (T2DM) and NAFLD-T2DM coexistence

Mon, 28/11/2022 - 12:00
Metabolomics. 2022 Nov 28;18(12):98. doi: 10.1007/s11306-022-01960-1.ABSTRACTINTRODUCTION: Accumulating evidence have shown a significant correlation between urinary volatile organic compounds (VOCs) profile and the manifestation of several physiological and pathological states, including liver diseases. Previous studies have investigated the urinary metabolic signature as a non-invasive tool for the early discrimination between non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), which nowadays represents one of the most important challenges in this context, feasible only by carrying out liver biopsy.OBJECTIVES: The aim of the study was to investigate the differences in the urinary VOCs profiles of non-alcoholic fatty liver disease (NAFLD) patients, diabetes mellitus (T2DM) subjects and NAFLD/T2DM patients.METHODS: Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied to profile the urinary VOCs. Urine samples were analysed both under acid and alkaline conditions, to obtain a range of urinary volatiles with different physicochemical properties.RESULTS: Urinary VOCs profiles of 13 NAFLD patients, 13 T2DM subjects and 13 NAFLD/T2DM patients were investigated by multivariate and univariate data analysis techniques which allowed to identify 21 volatiles under alkaline conditions able to describe the NAFLD/T2DM group concerning the other two groups.CONCLUSION: Our results suggest that VOCs signatures can improve the knowledge of the pathological condition where NAFLD coexists with T2DM and discovering new features that are not simply the sum of the two diseases. These preliminary findings may be considered as hypothesis-generating, to be clearly confirmed by larger prospective investigations.PMID:36441279 | DOI:10.1007/s11306-022-01960-1

An integrative GC-MS and LC-MS metabolomics platform determination of the metabolite profile of <em>Bombax ceiba</em> L. root, and in silico &amp; in vitro evaluation of its antibacterial &amp; antidiabetic activities

Mon, 28/11/2022 - 12:00
Nat Prod Res. 2022 Nov 28:1-6. doi: 10.1080/14786419.2022.2149519. Online ahead of print.ABSTRACTThe Bombax ceiba L. tree is a member of the family Bombacaceae and the genus Bombax. Both Chinese and Indian traditional medicine have made extensive use of it in the treatment of sickness. Its chemical composition is still a mystery. B. ceiba roots methanol extract (BCRME) was analyzed by different chromatographic analytical techniques in order to identify its major chemical constituents. Twelve compounds and six compounds were identified from GC-MS and LC-MS analysis, respectively. This is the first report on the presence of lathodoratin, cedrene, 4H-1-benzopyran-4-one,8-[{dimethylamino} methyl]-7-methoxy-3-methyl-2-phenyl, asiatic acid, and (E)-2,4,4'-trihydroxylchalcone in B. ceiba roots. Methanol extract demonstrated noteworthy antibacterial activity against Staphylococcus aureus (MTCC96) (MIC: 100 µg/mL) compare to antibiotic ampicillin (MIC: 250 µg/mL) as well as the highest α-amylase inhibition (IC50=26.91 µg/mL) and α-glucosidase inhibition (IC50=21.21 µg/mL) effects, molecular docking study confirmed these findings, with some compounds having a very high docking score.PMID:36441059 | DOI:10.1080/14786419.2022.2149519

Integrative Analysis of Transcriptomic and Metabolomic Data for Identification of Pathways Related to Matrine-Induced Hepatotoxicity

Mon, 28/11/2022 - 12:00
Chem Res Toxicol. 2022 Nov 28. doi: 10.1021/acs.chemrestox.2c00264. Online ahead of print.ABSTRACTMatrine (MT) is a major bioactive compound extracted from Sophorae tonkinensis. However, the clinical application of MT is relatively restricted due to its potentially toxic effects, especially hepatotoxicity. Although MT-induced liver injury has been reported, little is known about the underlying molecular mechanisms. In this study, transcriptomics and metabolomics were applied to investigate the hepatotoxicity of MT in mice. The results indicated that liver injury occurred when the administration of MT (30 or 60 mg/kg, i.g) lasted for 2 weeks, including dramatically increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), etc. The metabolomic results revealed that steroid biosynthesis, purine metabolism, glutathione metabolism, and pyruvate metabolism were involved in the occurrence and development of MT-induced hepatotoxicity. Further, the transcriptomic data indicated that the downregulation of NSDHL with CYP51, FDFT1, and DHCR7, involved in steroid biosynthesis, resulted in a lower level of cholic acid. Besides, Gstps and Nat8f1 were related to the disorder of glutathione metabolism, and HMGCS1 could be treated as the marker gene of the development of MT-induced hepatotoxicity. In addition, other metabolites, such as taurine, flavin mononucleotide (FMN), and inosine monophosphate (IMP), also made a contribution to the boosting of MT-induced hepatotoxicity. In this work, our results provide clues for the mechanism investigation of MT-induced hepatotoxicity, and several biomarkers (metabolites and genes) closely related to the liver injury caused by MT are also provided. Meanwhile, new insights into the understanding of the development of MT-induced hepatotoxicity or other monomer-induced hepatotoxicity were also provided.PMID:36440846 | DOI:10.1021/acs.chemrestox.2c00264

Free triiodothyronine levels and age influences the metabolic profile and COVID-19 severity parameters in euthyroid and levothyroxine-treated patients

Mon, 28/11/2022 - 12:00
Front Endocrinol (Lausanne). 2022 Nov 9;13:1025032. doi: 10.3389/fendo.2022.1025032. eCollection 2022.ABSTRACTMetabolic reprogramming is required to fight infections and thyroid hormones are key regulators of metabolism. We have analyzed in hospitalized COVID-19 patients: 40 euthyroid and 39 levothyroxine (LT4)-treated patients in the ward and 29 euthyroid and 9 LT4-treated patients in the intensive care unit (ICU), the baseline characteristics, laboratory data, thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), the FT3/FT4 ratio, 11 antiviral cytokines and 74 metabolomic parameters. No evidence for significant differences between euthyroid and LT4-treated patients were found in the biochemical, metabolomic and cytokines parameters analyzed. Only TSH (p=0.009) and ferritin (p=0.031) showed significant differences between euthyroid and LT4-treated patients in the ward, and TSH (p=0.044) and FT4 (p=0.012) in the ICU. Accordingly, severity and mortality were similar in euthyroid and LT4-treated patients. On the other hand, FT3 was negatively related to age (p=0.012), independently of sex and body mass index in hospitalized COVID-19 patients. Patients with low FT3 and older age showed a worse prognosis and higher levels of the COVID-19 severity markers IL-6 and IL-10 than patients with high FT3. IL-6 negatively correlated with FT3 (p=0.023) independently of age, body mass index and sex, whereas IL-10 positively associated with age (p=0.035) independently of FT3, body mass index and sex. A metabolomic cluster of 6 parameters defined low FT3 ward patients. Two parameters, esterified cholesterol (p=4.1x10-4) and small HDL particles (p=6.0x10-5) correlated with FT3 independently of age, body mass index and sex, whereas 3-hydroxybutyrate (p=0.010), acetone (p=0.076), creatinine (p=0.017) and high-density-lipoprotein (HDL) diameter (p=8.3x10-3) were associated to FT3 and also to age, with p-values of 0.030, 0.026, 0.017 and 8.3x10-3, respectively. In conclusion, no significant differences in FT3, cytokines, and metabolomic profile, or in severity and outcome of COVID-19, were found during hospitalization between euthyroid patients and hypothyroid patients treated with LT4. In addition, FT3 and age negatively correlate in COVID-19 patients and parameters that predict poor prognosis were associated with low FT3, and/or with age. A metabolomic cluster indicative of a high ketogenic profile defines non-critical hospitalized patients with low FT3 levels.PMID:36440226 | PMC:PMC9682171 | DOI:10.3389/fendo.2022.1025032

The metabolomics approach revealed a distinctive metabolomics pattern associated with hyperthyroidism treatment

Mon, 28/11/2022 - 12:00
Front Endocrinol (Lausanne). 2022 Nov 10;13:1050201. doi: 10.3389/fendo.2022.1050201. eCollection 2022.ABSTRACTBACKGROUND: Hyperthyroidism is characterized by increased thyroid hormone production, which impacts various processes, including metabolism and energy expenditure. Yet, the underlying mechanism and subsequent influence of these changes are unknown. Metabolomics is a broad analytical method that enables qualitative and quantitative examination of metabolite level changes in biological systems in response to various stimuli, pathologies, or treatments.OBJECTIVES: This study uses untargeted metabolomics to explore the potential pathways and metabolic patterns associated with hyperthyroidism treatment.METHODS: The study consisted of 20 patients newly diagnosed with hyperthyroidism who were assessed at baseline and followed up after starting antithyroid treatment. Two blood samples were taken from each patient, pre (hyperthyroid state) and post-treatment (euthyroid state). Hyperthyroid and euthyroid states were identified based on thyroxine and thyroid-stimulating hormone levels. The metabolic alteration associated with antithyroid therapy was investigated using liquid chromatography- high-resolution mass spectrometry. The untargeted metabolomics data was analyzed using both univariate and multivariate analyses using MetaboAnalyst v5.0. The significant metabolic pattern was identified using the lab standard pipeline, which included molecular annotation in the Human Metabolome Database, LipidMap, LipidBlast, and METLIN. The identified metabolites were examined using pathway and network analyses and linked to cellular metabolism.RESULTS: The results revealed a strong group separation between the pre- and post-hyperthyroidism treatment (Q2 = 0.573, R2 = 0.995), indicating significant differences in the plasma metabolome after treatment. Eighty-three mass ions were significantly dysregulated, of which 53 and 30 characteristics were up and down-regulated in the post-treatment compared to the pre-treatment group, respectively. The medium-chain acylcarnitines, octanoylcarnitine, and decanoylcarnitine, previously found to rise in hyperthyroid patients, were among the down-regulated metabolites, suggesting that their reduction could be a possible biomarker for monitoring euthyroid restoration. Kynurenine is a downregulated tryptophan metabolite, indicating that the enzyme kynurenine 3-hydroxylase, inhibited in hyperthyroidism, is back functioning. L-cystine, a cysteine dimer produced from cysteine oxidation, was among the down-regulated metabolites, and its accumulation is considered a sign of oxidative stress, which was reported to accompany hyperthyroidism; L-cystine levels dropped, this suggests that the plasma level of L-cystine can be used to monitor the progress of euthyroid state restoration.CONCLUSION: The plasma metabolome of patients with hyperthyroidism before and after treatments revealed differences in the abundance of several small metabolites. Our findings add to our understanding of hyperthyroidism's altered metabolome and associated metabolic processes and shed light on acylcarnitines as a new biomarker for treatment monitoring in conjunction with thyroxine and thyroid-stimulating hormone.PMID:36440210 | PMC:PMC9685425 | DOI:10.3389/fendo.2022.1050201

Pages