Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

A Polymorphism in the Gene Encoding Heat Shock Factor 1 (<em>HSF1</em>) Increases the Risk of Type 2 Diabetes: A Pilot Study Supports a Role for Impaired Protein Folding in Disease Pathogenesis

Sat, 26/11/2022 - 12:00
Life (Basel). 2022 Nov 20;12(11):1936. doi: 10.3390/life12111936.ABSTRACTThe aim of this pilot study was to investigate whether polymorphisms in the gene encoding heat shock factor 1 (HSF1), a transcriptional activator of molecular chaperones, play a role in the development of type 2 diabetes (T2D). A total of 3229 unrelated individuals of Slavic origin, including 1569 T2D patients and 1660 age- and sex-matched healthy controls, were enrolled for the study. Five common single nucleotide polymorphisms (SNPs) of the HSF1 gene were genotyped using the MassArray-4 system. SNPs rs7838717 (p = 0.002) and rs3757971 (p = 0.005) showed an association with an increased risk of T2D in females with a body mass index ≥ 25 kg/m2. The rs7838717T-rs4279640T-rs3757971C and rs7838717T-rs4279640T-rs3757971T haplotypes were associated with increased and decreased disease risk in overweight or obese females, respectively. The associations were replicated as disease susceptibility genes in large cohorts from the UK Biobank (p = 0.008), DIAMANTE (p = 2.7 × 10-13), and DIAGRAM (p = 0.0004) consortiums. The functional annotation of the SNPs revealed that the rs7838717-T and rs3757971C alleles correlated with increased expression of the genes involved in unfolded protein response. The present study showed, for the first time, that genetic variation of HSF1 is associated with the risk of type 2 diabetes, supporting a role for impaired protein folding in disease pathogenesis.PMID:36431071 | DOI:10.3390/life12111936

A Coding Basis and Three-in-One Integrated Data Visualization Method 'Ana' for the Rapid Analysis of Multidimensional Omics Dataset

Sat, 26/11/2022 - 12:00
Life (Basel). 2022 Nov 12;12(11):1864. doi: 10.3390/life12111864.ABSTRACTWith innovations and advancements in analytical instruments and computer technology, omics studies based on statistical analysis, such as phytochemical omics, oilomics/lipidomics, proteomics, metabolomics, and glycomics, are increasingly popular in the areas of food chemistry and nutrition science. However, a remaining hurdle is the labor-intensive data process because learning coding skills and software operations are usually time-consuming for researchers without coding backgrounds. A MATLAB® coding basis and three-in-one integrated method, 'Ana', was created for data visualizations and statistical analysis in this work. The program loaded and analyzed an omics dataset from an Excel® file with 7 samples * 22 compounds as an example, and output six figures for three types of data visualization, including a 3D heatmap, heatmap hierarchical clustering analysis, and principal component analysis (PCA), in 18 s on a personal computer (PC) with a Windows 10 system and in 20 s on a Mac with a MacOS Monterey system. The code is rapid and efficient to print out high-quality figures up to 150 or 300 dpi. The output figures provide enough contrast to differentiate the omics dataset by both color code and bar size adjustments per their higher or lower values, allowing the figures to be qualified for publication and presentation purposes. It provides a rapid analysis method that would liberate researchers from labor-intensive and time-consuming manual or coding basis data analysis. A coding example with proper code annotations and completed user guidance is provided for undergraduate and postgraduate students to learn coding basis statistical data analysis and to help them utilize such techniques for their future research.PMID:36430999 | DOI:10.3390/life12111864

Chemical Profiling and Molecular Docking Study of <em>Agathophora alopecuroides</em>

Sat, 26/11/2022 - 12:00
Life (Basel). 2022 Nov 11;12(11):1852. doi: 10.3390/life12111852.ABSTRACTNatural products continue to provide inspiring chemical moieties that represent a key stone in the drug discovery process. As per our previous research, the halophyte Agathophora alopecuroides was noted as a potential antidiabetic plant. However, the chemical profiling and highlighting the metabolite(s) responsible for the observed antidiabetic activity still need to be investigated. Accordingly, the present study presents the chemical profiling of this species using the LC-HRMS/MS technique followed by a study of the ligand-protein interaction using the molecular docking method. LC-HRMS/MS results detected twenty-seven compounds in A. alopecuroides extract (AAE) belonging to variable chemical classes. Among the detected compounds, alkaloids, flavonoids, lignans, and iridoids were the most prevailing. In order to highlight the bioactive compounds in AAE, the molecular docking technique was adopted. Results suggested that the two alkaloids (Eburnamonine and Isochondrodendrine) as well as the four flavonoids (Narirutin, Pelargonidin 3-O-rutinoside, Sophora isoflavanone A, and Dracorubin) were responsible for the observed antidiabetic activity. It is worth mentioning that this is the first report for the metabolomic profiling of A. alopecuroides as well as the antidiabetic potential of Isochondrodendrine, Sophora isoflavanone A, and Dracorubin that could be a promising target for an antidiabetic drug.PMID:36430987 | DOI:10.3390/life12111852

Salivary microRNA and Metabolic Profiles in a Mouse Model of Subchronic and Mild Social Defeat Stress

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 21;23(22):14479. doi: 10.3390/ijms232214479.ABSTRACTIdentification of early biomarkers of stress is important for preventing mood and anxiety disorders. Saliva is an easy-to-collect and non-invasive diagnostic target. The aim of this study was to characterize the changes in salivary whole microRNAs (miRNAs) and metabolites in mice subjected to subchronic and mild social defeat stress (sCSDS). In this study, we identified seven upregulated and one downregulated miRNAs/PIWI-interacting RNA (piRNA) in the saliva of sCSDS mice. One of them, miR-208b-3p, which is reported as a reliable marker for myocardial infarction, was upregulated in the saliva of sCSDS mice. Histological analysis showed frequent myocardial interstitial fibrosis in the heart of such mice. In addition, gene ontology and pathway analyses suggested that the pathways related to energy metabolism, such as the oxidative phosphorylation and the pentose phosphate pathway, were significantly related to the miRNAs affected by sCSDS in saliva. In contrast, salivary metabolites were not significantly changed in the sCSDS mice, which is consistent with our previous metabolomic study on the plasma of sCSDS mice. Taken in the light of previous studies, the present study provides novel potential stress biomarkers for future diagnosis using saliva.PMID:36430957 | DOI:10.3390/ijms232214479

Renal Cell Carcinoma as a Metabolic Disease: An Update on Main Pathways, Potential Biomarkers, and Therapeutic Targets

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 18;23(22):14360. doi: 10.3390/ijms232214360.ABSTRACTClear cell renal cell carcinoma (ccRCC) is the most frequent histological kidney cancer subtype. Over the last decade, significant progress has been made in identifying the genetic and metabolic alterations driving ccRCC development. In particular, an integrated approach using transcriptomics, metabolomics, and lipidomics has led to a better understanding of ccRCC as a metabolic disease. The metabolic profiling of this cancer could help define and predict its behavior in terms of aggressiveness, prognosis, and therapeutic responsiveness, and would be an innovative strategy for choosing the optimal therapy for a specific patient. This review article describes the current state-of-the-art in research on ccRCC metabolic pathways and potential therapeutic applications. In addition, the clinical implication of pharmacometabolomic intervention is analyzed, which represents a new field for novel stage-related and patient-tailored strategies according to the specific susceptibility to new classes of drugs.PMID:36430837 | DOI:10.3390/ijms232214360

Integrated Metabolomics and Morpho-Biochemical Analyses Reveal a Better Performance of <em>Azospirillum brasilense</em> over Plant-Derived Biostimulants in Counteracting Salt Stress in Tomato

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 17;23(22):14216. doi: 10.3390/ijms232214216.ABSTRACTIncreased soil salinity is one of the main concerns in agriculture and food production, and it negatively affects plant growth and crop productivity. In order to mitigate the adverse effects of salinity stress, plant biostimulants (PBs) have been indicated as a promising approach. Indeed, these products have a beneficial effect on plants by acting on primary and secondary metabolism and by inducing the accumulation of protective molecules against oxidative stress. In this context, the present work is aimed at comparatively investigating the effects of microbial (i.e., Azospirillum brasilense) and plant-derived biostimulants in alleviating salt stress in tomato plants by adopting a multidisciplinary approach. To do so, the morphological and biochemical effects were assessed by analyzing the biomass accumulation and root characteristics, the activity of antioxidant enzymes and osmotic stress protection. Furthermore, modifications in the metabolomic profiles of both leaves and root exudates were also investigated by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). According to the results, biomass accumulation decreased under high salinity. However, the treatment with A. brasilense considerably improved root architecture and increased root biomass by 156% and 118% in non-saline and saline conditions, respectively. The antioxidant enzymes and proline production were enhanced in salinity stress at different levels according to the biostimulant applied. Moreover, the metabolomic analyses pointed out a wide set of processes being affected by salinity and biostimulant interactions. Crucial compounds belonging to secondary metabolism (phenylpropanoids, alkaloids and other N-containing metabolites, and membrane lipids) and phytohormones (brassinosteroids, cytokinins and methylsalicylate) showed the most pronounced modulation. Overall, our results suggest a better performance of A. brasilense in alleviating high salinity than the vegetal-derived protein hydrolysates herein evaluated.PMID:36430691 | DOI:10.3390/ijms232214216

Combined Metabolomic and Transcriptomic Analysis Reveals Allantoin Enhances Drought Tolerance in Rice

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 16;23(22):14172. doi: 10.3390/ijms232214172.ABSTRACTDrought is a misfortune for agriculture and human beings. The annual crop yield reduction caused by drought exceeds the sum of all pathogens. As one of the gatekeepers of China's "granary", rice is the most important to reveal the key drought tolerance factors in rice. Rice seedlings of Nipponbare (Oryza sativa L. ssp. Japonica) were subjected to simulated drought stress, and their root systems were analyzed for the non-targeted metabolome and strand-specific transcriptome. We found that both DEGs and metabolites were enriched in purine metabolism, and allantoin accumulated significantly in roots under drought stress. However, few studies on drought tolerance of exogenous allantoin in rice have been reported. We aimed to further determine whether allantoin can improve the drought tolerance of rice. Under the treatment of exogenous allantoin at different concentrations, the drought resistant metabolites of plants accumulated significantly, including proline and soluble sugar, and reactive oxygen species (ROS) decreased and reached a significant level in 100 μmol L-1. To this end, a follow-up study was identified in 100 μmol L-1 exogenous allantoin and found that exogenous allantoin improved the drought resistance of rice. At the gene level, under allantoin drought treatment, we found that genes of scavenge reactive oxygen species were significantly expressed, including peroxidase (POD), catalase (CATA), ascorbate peroxidase 8 (APX8) and respiratory burst oxidase homolog protein F (RbohF). This indicates that plants treated by allantoin have better ability to scavenge reactive oxygen species to resist drought. Alternative splicing analysis revealed a total of 427 differentially expressed alternative splicing events across 320 genes. The analysis of splicing factors showed that gene alternative splicing could be divided into many different subgroups and play a regulatory role in many aspects. Through further analysis, we restated the key genes and enzymes in the allantoin synthesis and catabolism pathway, and found that the expression of synthetase and hydrolase showed a downward trend. The pathway of uric acid to allantoin is completed by uric acid oxidase (UOX). To find out the key transcription factors that regulate the expression of this gene, we identified two highly related transcription factors OsERF059 and ONAC007 through correlation analysis. They may be the key for allantoin to enhance the drought resistance of rice.PMID:36430648 | DOI:10.3390/ijms232214172

Identification of Canine Pyometra-Associated Metabolites Using Untargeted Metabolomics

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 16;23(22):14161. doi: 10.3390/ijms232214161.ABSTRACTCanine pyometra frequently occurs in middle-aged to older intact bitches, which seriously affects the life of dogs and brings an economic loss to their owners. Hence, finding a key metabolite is very important for the diagnosis and development of a new safe and effective therapy for the disease. In this study, dogs with pyometra were identified by blood examinations, laboratory analyses and diagnostic imaging, and fifteen endometrium tissues of sick dogs with pyometra and fifteen controls were collected and their metabolites were identified utilizing a UHPLC-qTOF-MS-based untargeted metabolomics approach. The results indicated that the elevated inflammatory cells were observed in dogs with pyometra, suggesting that sick dogs suffered systemic inflammation. In the untargeted metabolic profile, 705 ion features in the positive polarity mode and 414 ion features in the negative polarity mode were obtained in endometrium tissues of sick dogs with pyometra, with a total of 275 differential metabolites (173 in positive and 102 in negative polarity modes). Moreover, the multivariate statistical analyses such as PCA and PLS-DA also showed that the metabolites were significantly different between the two groups. Then, these differential metabolites were subjected to pathway analysis using Metaboanalyst 4.0, and Galactose metabolism, cAMP signaling pathway and Glycerophospholipid metabolism were enriched, proving some insights into the metabolic changes during pyometra. Moreover, the receiver operating characteristic curves further confirmed kynurenic acid was expected to be a candidate biomarker of canine pyometra. In conclusion, this study provided a new idea for exploring early diagnosis methods and a safe and effective therapy for canine pyometra.PMID:36430638 | DOI:10.3390/ijms232214161

Study of the Pollen Grain Metabolome under Deposition of Nitrogen and Phosphorus in <em>Taxus baccata</em> L. and <em>Juniperus communis</em> L

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 15;23(22):14105. doi: 10.3390/ijms232214105.ABSTRACTNitrogen plays an important role in both quantitative and qualitative aspects of plant reproduction, including pollen grain compounds and seed production. Recent studies have pointed out that pollen grains produced by male plants of T. baccata and J. communis subjected to a long period of fertilizer supplementation have lower in vitro germination ability and higher nitrogen content. To gain molecular insights into these observations, we conducted GC-MS analysis of both species to characterize the metabolomes of dry, mature pollen grains, which allowed for the identification and quantification of more than 200 metabolites. The results demonstrated that fertilizer supplementation impacts the relative content of 14 metabolites in J. communis (9 downregulated and 5 upregulated) and 21 in T. baccata (6 downregulated and 15 upregulated). Although plants showed little similarity in patterns, in metabolite profiles, both up and down fold-changes were observed. This is the first report on the gymnosperm pollen grain metabolomic profile and changes induced by long-term nitrogen and phosphorus supplementation. Pollen grains produced by fertilizer-supplemented male individuals had significantly lower relative content of linolenic acid, 5,6-dihydrouracil, maltotriose, galactonic acid, D-xylulose, and glycerol-α-phosphate but higher content of sorbitol, glucosamine, and 1,5-anhydro-D-glucitol as well as n-acetyl-d-hexosamine, dimethyl phthalate, glycine, galactose-6-phosphate, D-fructose-6-phosphate, pyroglutamic acid, and 3-(3-hydroxyphenyl)-3-hydroxypropionic acid. Thus, in pollen grain samples earlier shown to have different germination abilities, the presence of different metabolites indicates a significant environmental impact on the quality of gymnosperm pollen grains.PMID:36430583 | DOI:10.3390/ijms232214105

Alterations in the Kynurenine-Tryptophan Pathway and Lipid Dysregulation Are Preserved Features of COVID-19 in Hemodialysis

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 15;23(22):14089. doi: 10.3390/ijms232214089.ABSTRACTCoronavirus disease 2019 (COVID-19)-induced metabolic alterations have been proposed as a source for prognostic biomarkers and may harbor potential for therapeutic exploitation. However, the metabolic impact of COVID-19 in hemodialysis (HD), a setting of profound a priori alterations, remains unstudied. To evaluate potential COVID-19 biomarkers in end-stage kidney disease (CKD G5), we analyzed the plasma metabolites in different COVID-19 stages in patients with or without HD. We recruited 18 and 9 asymptomatic and mild, 11 and 11 moderate, 2 and 13 severely affected, and 10 and 6 uninfected HD and non-HD patients, respectively. Plasma samples were taken at the time of diagnosis and/or upon admission to the hospital and analyzed by targeted metabolomics and cytokine/chemokine profiling. Targeted metabolomics confirmed stage-dependent alterations of the metabolome in non-HD patients with COVID-19, which were less pronounced in HD patients. Elevated kynurenine levels and lipid dysregulation, shown by an increase in circulating free fatty acids and a decrease in lysophospholipids, could distinguish patients with moderate COVID-19 from non-infected individuals in both groups. Kynurenine and lipid alterations were also associated with ICAM-1 and IL-15 levels in HD and non-HD patients. Our findings support the kynurenine pathway and plasma lipids as universal biomarkers of moderate and severe COVID-19 independent of kidney function.PMID:36430566 | DOI:10.3390/ijms232214089

Metabolomic and Proteomic Changes in <em>Candida albicans</em> Biofilm in Response to Zosteric Acid Treatment

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 15;23(22):14067. doi: 10.3390/ijms232214067.ABSTRACTZosteric acid (ZA) is a secondary metabolite of the seagrass Zostera marina, with antibiofilm activity against fungi. Information concerning its mechanisms of action is lacking and this limits the development of more potent derivatives based on the same target and activity structure. The aim of this work was to investigate the ZA mode of action by analyzing the metabolic status of Candida albicans biofilm and its protein expression profile upon ZA treatment. Fourier-Transform Infrared Spectroscopy confirmed that ZA modified the metabolomic response of treated cells, showing changes in the spectral regions, mainly related to the protein compartment. Nano Liquid Chromatography-High-Resolution Mass Spectrometry highlighted that 10 proteins were differentially expressed in the C. albicans proteome upon ZA treatment. Proteins involved in the biogenesis, structure and integrity of cell walls as well as adhesion and stable attachment of hyphae were found downregulated, whereas some proteins involved in the stress response were found overexpressed. Additionally, ZA was involved in the modulation of non-DNA-based epigenetic regulatory mechanisms triggered by reactive oxygen species. These results partially clarified the ZA mechanism of action against fungi and provided insight into the major C. albicans pathways responsible for biofilm formation.PMID:36430545 | DOI:10.3390/ijms232214067

Severe Obstructive Sleep Apnea Disrupts Vigilance-State-Dependent Metabolism

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 14;23(22):14052. doi: 10.3390/ijms232214052.ABSTRACTThe direct pathophysiological effects of obstructive sleep apnea (OSA) have been well described. However, the systemic and metabolic consequences of OSA are less well understood. The aim of this secondary analysis was to translate recent findings in healthy subjects on vigilance-state-dependent metabolism into the context of OSA patients and answer the question of how symptomatic OSA influences metabolism and whether these changes might explain metabolic and cardiovascular consequences of OSA. Patients with suspected OSA were assigned according to their oxygen desaturation index (ODI) and Epworth Sleepiness Scale (ESS) score into symptomatic OSA and controls. Vigilance-state-dependent breath metabolites assessed by high-resolution mass spectrometry were used to test for a difference in both groups. In total, 44 patients were eligible, of whom 18 (40.9%) were assigned to the symptomatic OSA group. Symptomatic OSA patients with a median [25%, 75% quartiles] ODI of 40.5 [35.0, 58.8] events/h and an ESS of 14.0 [11.2, 15.8] showed moderate to strong evidence for differences in 18 vigilance-state-dependent breath compounds compared to controls. These identified metabolites are part of major metabolic pathways in carbohydrate, amino acid, and lipid metabolism. Thus, beyond hypoxia per se, we hypothesize that disturbed sleep in OSA patients persists as disturbed sleep-dependent metabolite levels during daytime.PMID:36430527 | DOI:10.3390/ijms232214052

Integrated Transcriptomic, Metabolomic, and Physiological Analyses Reveal New Insights into Fragrance Formation in the Heartwood of <em>Phoebe hui</em>

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 14;23(22):14044. doi: 10.3390/ijms232214044.ABSTRACTPhoebe hui is an extremely valuable tree that is the main source of the fragrant golden-thread nanmu wood. Although the fragrance of wood has been investigated in several trees, the potential substances and gene regulation mechanisms that are involved in fragrance formation are poorly understood. Here, three radial tissues, sapwood (SW), heartwood (HW), and the transition zone (TZ) in between them, were compared via integrative physiological, volatile-metabolomic, and transcriptomic analyses to identify the key metabolites and regulatory mechanisms involved in fragrance formation. During heartwood formation, gradual starch grain loss was accompanied by the deposition of lipids and extractives in the cell lumen. Extracts of terpenoids were synthesized and accumulated in the heartwood, including monoterpenoids (limonene and p-cymene) and sesquiterpenes (cubebene and guaiadiene); these were identified as being closely related to the special fragrance of the wood. Additionally, the expression of transcripts showed that the genes related to primary metabolism were specifically upregulated in the SW, whereas genes annotated in terpenoid biosynthesis were specifically upregulated in the HW. Therefore, we speculated that terpenoid biosynthesis occurs in situ in the HW via the HW formation model of Type-III (Santalum) using the precursors that were produced by primary metabolism in the SW. The expression levels of transcription factors (e.g., MYB, WRKY, and C2H2) acted as the major regulatory factors in the synthesis of terpenoids. Our results explain the special fragrance in P. hui and broaden the current knowledge of the regulatory mechanisms of fragrance formation. This work provides a framework for future research that is focused on improving wood quality and value.PMID:36430522 | DOI:10.3390/ijms232214044

MUC1 Tissue Expression and Its Soluble Form CA15-3 Identify a Clear Cell Renal Cell Carcinoma with Distinct Metabolic Profile and Poor Clinical Outcome

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 12;23(22):13968. doi: 10.3390/ijms232213968.ABSTRACTAn altered metabolism is involved in the development of clear cell renal carcinoma (ccRCC). MUC1 overexpression has been found to be associated with advanced disease and poor prognosis. In this study, we evaluated the metabolomic profile of human ccRCC, according to MUC1 expression, and integrated it with transcriptomic data. Moreover, we analyzed the role of MUC1 in sustaining ccRCC aggressiveness and the prognostic value of its soluble form CA15-3. Integrated metabolomic and transcriptomic analysis showed that MUC1-expressing ccRCC was characterized by metabolic reprogramming involving the glucose and lipid metabolism pathway. In addition, primary renal cancer cells treated with a small interfering RNA targeting MUC1 (siMUC1) migrated and proliferated at a slower rate than untreated cancer cells. After cisplatin treatment, the death rate of cancer cells treated with siMUC1 was significantly greater than that of untreated cells. Kaplan-Meier curves showed significant differences in CSS and PFS among groups of patients with high versus low levels of CA15-3. In a multivariate analysis, CA15-3 was an independent adverse prognostic factor for cancer-specific and progression-free survival. In conclusion, MUC1 expressing ccRCC is characterized by a particular metabolic reprogramming. The inhibition of MUC1 expression decreases cell motility and viability and improves cisplatin susceptibility, suggesting that this pathway can regulate de novo chemotherapy resistance in ccRCC.PMID:36430448 | DOI:10.3390/ijms232213968

Metabolomics Analysis Revealed Significant Metabolic Changes in Brain Cancer Cells Treated with Paclitaxel and/or Etoposide

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 11;23(22):13940. doi: 10.3390/ijms232213940.ABSTRACTCancer of the central nervous system (CNS) is ranked as the 19th most prevalent form of the disease in 2020. This study aims to identify candidate biomarkers and metabolic pathways affected by paclitaxel and etoposide, which serve as potential treatments for glioblastoma, and are linked to the pathogenesis of glioblastoma. We utilized an untargeted metabolomics approach using the highly sensitive ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) for identification. In this study, 92 and 94 metabolites in U87 and U373 cell lines were profiled, respectively. The produced metabolites were then analyzed utilizing t-tests, volcano plots, and enrichment analysis modules. Our analysis revealed distinct metabolites to be significantly dysregulated (nutriacholic acid, L-phenylalanine, L-arginine, guanosine, ADP, hypoxanthine, and guanine), and to a lesser extent, mevalonic acid in paclitaxel and/or etoposide treated cells. Furthermore, both urea and citric acid cycles, and metabolism of polyamines and amino acids (aspartate, arginine, and proline) were significantly enriched. These findings can be used to create a map that can be utilized to assess the antitumor effect of paclitaxel and/or etoposide within the studied cancer cells.PMID:36430415 | DOI:10.3390/ijms232213940

Metabolomic Profiling of Plasma, Urine, and Saliva of Kidney Transplantation Recipients

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 11;23(22):13938. doi: 10.3390/ijms232213938.ABSTRACTKidney biopsy is commonly used to diagnose kidney transplant dysfunction after transplantation. Therefore, the development of minimally invasive and quantitative methods to evaluate kidney function in transplant recipients is necessary. Here, we used capillary electrophoresis-mass spectrometry to analyze the biofluids collected from transplant recipients with impaired (Group I, n = 31) and stable (Group S, n = 19) kidney function and from donors (Group D, n = 9). Metabolomics analyses identified and quantified 97 metabolites in plasma, 133 metabolites in urine, and 108 metabolites in saliva. Multivariate analyses revealed apparent differences in the metabolomic profiles of the three groups. In plasma samples, arginine biosynthesis and purine metabolism between the I and S Groups differed. In addition, considerable differences in metabolomic profiles were observed between samples collected from participants with T cell-mediated rejection (TCR), antibody-mediated rejection, and other kidney disorders (KD). The metabolomic profiles in the three types of biofluids showed different patterns between TCR and KD, wherein 3-indoxyl sulfate showed a significant increase in TCR consistently in both plasma and urine samples. These results suggest that each biofluid has different metabolite features to evaluate kidney function after transplantation and that 3-indoxyl sulfate could predict acute rejection.PMID:36430414 | DOI:10.3390/ijms232213938

Novel Insights into Anthocyanin Synthesis in the Calyx of Roselle Using Integrated Transcriptomic and Metabolomic Analyses

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 11;23(22):13908. doi: 10.3390/ijms232213908.ABSTRACTRoselle (Hibiscus sabdariffa L.) is an annual herbaceous plant of the genus Hibiscus in family Malvaceae. Roselle calyxes are rich in anthocyanins, which play important roles in human health. However, limited information is available on anthocyanin biosynthesis in the roselle calyx. In this study, transcriptomic and metabolomic analyses were performed to identify the key genes involved in anthocyanin biosynthesis in the roselle calyx. Three roselle cultivars with different calyx colors, including FZ-72 (red calyx, R), Baitao K (green calyx, G), and MG5 (stripped calyx, S), were used for metabolomic analyses with UPLC-Q-TOF/MS and RNA-seq. Forty-one compounds were quantified, including six flavonoids and 35 anthocyanins. The calyx of FZ-72 (red calyx) had the highest contents of anthocyanin derivatives such as delphinidin-3-O-sambubioside (955.11 μg/g) and cyanidin-3-O-sambubioside (531.37 μg/g), which were responsible for calyx color, followed by those in MG5 (stripped calyx) (851.97 and 330.06 μg/g, respectively). Baitao K (green calyx) had the lowest levels of these compounds. Furthermore, RNA-seq analysis revealed 114,415 differentially expressed genes (DEGs) in the calyxes at 30 days after flowering (DAF) for the corresponding cultivars FZ-72 (R), Baitao K (G), and MG5(S). The gene expression levels in the calyxes of the three cultivars were compared at different flowering stages, revealing 11,555, 11,949, and 7177 DEGs in R vs. G, R vs. S, and G vs. S, respectively. Phenylpropanoid and flavonoid biosynthesis pathways were found to be enriched. In the flavonoid pathway, 29, 28, and 27 genes were identified in G vs. R, G vs. S, and S vs. R, respectively. In the anthocyanin synthesis pathway, two, two, and one differential genes were identified in the three combinations; these differential genes belonged to the UFGT gene family. After joint analysis of the anthocyanin content in roselle calyxes, nine key genes belonging to the CHS, CHI, UFGT, FLS, ANR, DFR, CCoAOMT, SAT, and HST gene families were identified as strongly related to anthocyanin synthesis. These nine genes were verified using qRT-PCR, and the results were consistent with the transcriptome data. Overall, this study presents the first report on anthocyanin biosynthesis in roselle, laying a foundation for breeding roselle cultivars with high anthocyanin content.PMID:36430383 | DOI:10.3390/ijms232213908

Dose-Dependent Cytotoxicity of Polypropylene Microplastics (PP-MPs) in Two Freshwater Fishes

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 10;23(22):13878. doi: 10.3390/ijms232213878.ABSTRACTThe massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8-10 μm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P.&amp;nbsp;fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.PMID:36430357 | DOI:10.3390/ijms232213878

Sesamolin Alleviates Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites in High-Fat and High-Fructose Diet-Fed Mice

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 10;23(22):13853. doi: 10.3390/ijms232213853.ABSTRACTNonalcoholic fatty liver disease (NAFLD) has become a major public health problem. The effects of sesamolin on obesity-associated NAFLD and its possible mechanism are still poorly understood. The present study investigated the effects of sesamolin on NAFLD and changes in gut microbiota and serum metabolites in high-fat and high-fructose (HF-HF) diet-fed mice. Mice with NAFLD were treated with or without sesamolin. Sesamolin effectively suppressed obesity-associated metabolic disorder, attenuated hepatic steatosis and the infiltration of inflammatory cells, and decreased levels of hepatic proinflammatory cytokines. Sesamolin also altered the composition of gut microbiota at the genus level. Additionally, differential serum metabolite biomarkers identified in an untargeted metabolomics analysis showed that sesamolin changed the levels of metabolites and influenced metabolomics pathways including caffeine metabolism, steroid hormone biosynthesis, and cysteine and methionine metabolism. Changes in metabolite biomarkers and the abundances of Faecalibaculum, Lachnoclostridium, Mucispirillum, Allobaculum, and Bacteroides are highly correlated with those factors involved in the progression of NAFLD. These results are important in deciphering new mechanisms by which changes in bacteria and metabolites in sesamolin treatment might be associated with the alleviation of obesity-associated NAFLD in HF-HF diet-fed mice. Thus, sesamolin may be a potential compound for obesity-associated NAFLD treatment.PMID:36430326 | DOI:10.3390/ijms232213853

Omics Markers of Red Blood Cell Transfusion in Trauma

Sat, 26/11/2022 - 12:00
Int J Mol Sci. 2022 Nov 10;23(22):13815. doi: 10.3390/ijms232213815.ABSTRACTRed blood cell (RBC) transfusion is a life-saving intervention for millions of trauma patients every year worldwide. While hemoglobin thresholds are clinically driving the need for RBC transfusion, limited information is available with respect to transfusion efficacy at the molecular level in clinically relevant cohorts. Here, we combined plasma metabolomic and proteomic measurements in longitudinal samples (n = 118; up to 13 time points; total samples: 690) from trauma patients enrolled in the control of major bleeding after trauma (COMBAT) study. Samples were collected in the emergency department and at continuous intervals up to 168 h (seven days) post-hospitalization. Statistical analyses were performed to determine omics correlate to transfusions of one, two, three, five, or more packed RBC units. While confounded by the concomitant transfusion of other blood components and other iatrogenic interventions (e.g., surgery), here we report that transfusion of one or more packed RBCs-mostly occurring within the first 4 h from hospitalization in this cohort-results in the increase in circulating levels of additive solution components (e.g., mannitol, phosphate) and decreases in the levels of circulating markers of hypoxia, such as lactate, carboxylic acids (e.g., succinate), sphingosine 1-phosphate, polyamines (especially spermidine), and hypoxanthine metabolites with potential roles in thromboinflammatory modulation after trauma. These correlations were the strongest in patients with the highest new injury severity scores (NISS &gt; 25) and lowest base excess (BE &lt; -10), and the effect observed was proportional to the number of units transfused. We thus show that transfusion of packed RBCs transiently increases the circulating levels of plasticizers-likely leaching from the blood units during refrigerated storage in the blood bank. Changes in the levels of arginine metabolites (especially citrulline to ornithine ratios) are indicative of an effect of transfusion on nitric oxide metabolism, which could potentially contribute to endothelial regulation. RBC transfusion was associated with changes in the circulating levels of coagulation factors, fibrinogen chains, and RBC-proteins. Changes in lysophospholipids and acyl-carnitines were observed upon transfusion, suggestive of an effect on the circulating lipidome-though cell-extrinsic/intrinsic effects and/or the contribution of other blood components cannot be disentangled. By showing a significant decrease in circulating markers of hypoxia, this study provides the first multi-omics characterization of RBC transfusion efficacy in a clinically relevant cohort of trauma patients.PMID:36430297 | DOI:10.3390/ijms232213815

Pages