Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Analysis of the ethanol stress response mechanism in Wickerhamomyces anomalus based on transcriptomics and metabolomics approaches

Tue, 15/11/2022 - 12:00
BMC Microbiol. 2022 Nov 15;22(1):275. doi: 10.1186/s12866-022-02691-y.ABSTRACTBACKGROUND: Wickerhamomyces anomalus (W. anomalus) is a kind of non-Saccharomyces yeast that has a variety of unique physiological characteristics and metabolic features and is widely used in many fields, such as food preservation, biomass energy, and aquaculture feed protein production. However, the mechanism of W. anomalus response to ethanol stress is still unclear, which greatly limits its application in the production of ethanol beverages and ethanol fuels. Therefore, we checked the effects of ethanol stress on the morphology, the growth, and differentially expressed genes (DEGs) and metabolites (DEMs) of W. anomalus.RESULTS: High concentrations of ethanol (9% ethanol and 12% ethanol) remarkably inhibited the growth of W. anomalus. Energy metabolism, amino acid metabolism, fatty acids metabolism, and nucleic acid metabolism were significantly influenced when exposing to 9% ethanol and 12% ethanolstress, which maybe universal for W. anomalus to response to different concentrations of ethanol stressl Furthermore, extracellular addition of aspartate, glutamate, and arginine significantly abated ethanol damage and improved the survival rate of W. anomalus.CONCLUSIONS: The results obtained in this study provide insights into the mechanisms involved in W. anomalus response to ethanol stress. Therefore, new strategies can be realized to improve the ethanol tolerance of W. anomalus through metabolic engineering.PMID:36380285 | DOI:10.1186/s12866-022-02691-y

Different color regulation mechanism in willow barks determined using integrated metabolomics and transcriptomics analyses

Tue, 15/11/2022 - 12:00
BMC Plant Biol. 2022 Nov 15;22(1):530. doi: 10.1186/s12870-022-03909-x.ABSTRACTBACKGROUND: The rich yellow-orange to vividly deep red bark of willow (Salix spp.) branches have high ornamental and economic value. However, the mechanism underlying the regulation of willow branch color remains unknown. Therefore, we performed metabolomics and transcriptomics analyses of purple, green, and red willow barks to elucidating the mechanisms regulating color development.RESULTS: Seven anthocyanins were isolated; pelargonidin, petunidin 3-O-rutinoside, and cyanin chloride were the most abundant in red bark, whereas pelargonin chloride was most abundant in purple bark. The green bark contained the highest level of malvidin; however, the malvidin level was not significantly higher than in the red bark. The purple bark contained the largest amount of canthaxanthin, a carotenoid pigment. The integrated pathways of flavonoid biosynthesis, carotenoid biosynthesis, and porphyrin and chlorophyll metabolism were constructed for the willow barks. Among the three barks, the expression of the structural genes ANS, ANR, and BZ1, which are involved in anthocyanin synthesis, was the highest in red bark, likely causing anthocyanin accumulation. The expression of CrtZ, which participates in the carotenoid pathway, was the highest in purple bark, likely leading to canthaxanthin accumulation. The high expression of DVR, POR, and CRD1 may be associated with green pigment synthesis in the chlorophyll biosynthesis pathway.CONCLUSIONS: Purple bark color is co-regulated by anthocyanins and carotenoids, whereas red bark is characterized by anthocyanin accumulation and chlorophyll degradation. The green pigment is regulated by maintaining chlorophyll synthesis. BZ1 and CrtZ are candidate genes regulating anthocyanin and canthaxanthin accumulation in red and purple barks respectively. Collectively, our results may facilitate the genetic breeding and cultivation of colorful willows with improved color and luster.PMID:36380271 | DOI:10.1186/s12870-022-03909-x

Acute and chronic inflammation alter immunometabolism in a cutaneous delayed-type hypersensitivity reaction (DTHR) mouse model

Tue, 15/11/2022 - 12:00
Commun Biol. 2022 Nov 15;5(1):1250. doi: 10.1038/s42003-022-04179-x.ABSTRACTT-cell-driven immune responses are responsible for several autoimmune disorders, such as psoriasis vulgaris and rheumatoid arthritis. Identification of metabolic signatures in inflamed tissues is needed to facilitate novel and individualised therapeutic developments. Here we show the temporal metabolic dynamics of T-cell-driven inflammation characterised by nuclear magnetic resonance spectroscopy-based metabolomics, histopathology and immunohistochemistry in acute and chronic cutaneous delayed-type hypersensitivity reaction (DTHR). During acute DTHR, an increase in glutathione and glutathione disulfide is consistent with the ear swelling response and degree of neutrophilic infiltration, while taurine and ascorbate dominate the chronic phase, suggesting a switch in redox metabolism. Lowered amino acids, an increase in cell membrane repair-related metabolites and infiltration of T cells and macrophages further characterise chronic DTHR. Acute and chronic cutaneous DTHR can be distinguished by characteristic metabolic patterns associated with individual inflammatory pathways providing knowledge that will aid target discovery of specialised therapeutics.PMID:36380134 | DOI:10.1038/s42003-022-04179-x

Current uses of artificial intelligence in the analysis of biofluid markers involved in corneal and ocular surface diseases: a systematic review

Tue, 15/11/2022 - 12:00
Eye (Lond). 2022 Nov 15. doi: 10.1038/s41433-022-02307-9. Online ahead of print.ABSTRACTCorneal and ocular surface diseases (OSDs) carry significant psychosocial and economic burden worldwide. We set out to review the literature on the application of artificial intelligence (AI) and bioinformatics for analysis of biofluid biomarkers in corneal and OSDs and evaluate their utility in clinical decision making. MEDLINE, EMBASE, Cochrane and Web of Science were systematically queried for articles using AI or bioinformatics methodology in corneal and OSDs and examining biofluids from inception to August 2021. In total, 10,264 articles were screened, and 23 articles consisting of 1058 individuals were included. Using various AI/bioinformatics tools, changes in certain tear film cytokines that are proinflammatory such as increased expression of apolipoprotein, haptoglobin, annexin 1, S100A8, S100A9, Glutathione S-transferase, and decreased expression of supportive tear film components such as lipocalin-1, prolactin inducible protein, lysozyme C, lactotransferrin, cystatin S, and mammaglobin-b, proline rich protein, were found to be correlated with pathogenesis and/or treatment outcomes of dry eye, keratoconus, meibomian gland dysfunction, and Sjögren's. Overall, most AI/bioinformatics tools were used to classify biofluids into diseases subgroups, distinguish between OSD, identify risk factors, or make predictions about treatment response, and/or prognosis. To conclude, AI models such as artificial neural networks, hierarchical clustering, random forest, etc., in conjunction with proteomic or metabolomic profiling using bioinformatics tools such as Gene Ontology or Kyoto Encylopedia of Genes and Genomes pathway analysis, were found to inform biomarker discovery, distinguish between OSDs, help define subgroups with OSDs and make predictions about treatment response in a clinical setting.PMID:36380089 | DOI:10.1038/s41433-022-02307-9

Functional metabolomics revealed the dual-activation of cAMP-AMP axis is a novel therapeutic target of pancreatic cancer

Tue, 15/11/2022 - 12:00
Pharmacol Res. 2022 Nov 12:106554. doi: 10.1016/j.phrs.2022.106554. Online ahead of print.ABSTRACTPancreatic cancer (PC) is one of the most malignant cancers, owing to extremely high aggressiveness and mortality. Yet, this condition currently incurs widely drug resistance and therapeutic deficiency. In this study, we proposed a novel functional metabolomics strategy as Spatial Temporal Operative Real Metabolomics (STORM) to identify the determinant functional metabolites in a dynamic and visualized pattern whose level changes are mechanistically associated with therapeutic efficiency of gemcitabine against PC. Integrating quantitative analysis and spatial-visualization characterization of functional metabolites in vivo, we identified that the AMP-cAMP axis was a novel therapeutic target of PC to intermediate therapeutic efficiency of gemcitabine. Gemcitabine could induce the dual accumulation of cyclic AMP (cAMP) and AMP in tumor tissues. Quantitative analysis of associated biosynthetic enzymes and genes revealed that two independent intracellular ATP derived biosynthetic pathways to promote the dual activation of AMP-cAMP axis in a lower-level energetic environment. Then, gemcitabine induced the dual accumulation of AMP and cAMP can separately activate signaling pathways of AMPK and PKA, leading to the inhibition of tumor growth by the upregulation of the downstream tumor suppressor GADD45A. Collectively, our new STORM strategy was the first time to identify novel target of PC from a metabolic perspective as the dual activation of AMP-cAMP axis induced by gemcitabine can efficiently suppress PC tumor growth. In addition, such discovery has the capability to lower drug resistance of gemcitabine by specifically interacting with novel target, contributing to the improvement of therapeutic efficiency.PMID:36379357 | DOI:10.1016/j.phrs.2022.106554

Ocean acidification affects the bioenergetics of marine mussels as revealed by high-coverage quantitative metabolomics

Tue, 15/11/2022 - 12:00
Sci Total Environ. 2022 Nov 12:160090. doi: 10.1016/j.scitotenv.2022.160090. Online ahead of print.ABSTRACTOcean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mussels. The thick shell mussels Mytilus coruscus were exposed to seawater pH 8.1 (control) and pH 7.7 (acidification) for 14 days and allowed to recover at pH 8.1 for 7 days. The levels of carbohydrates, lipids and proteins significantly decreased in the digestive glands of the mussels exposed to acidification. The 14-day acidification exposure increased the energy demands of mussels, resulting in increased electron transport system (ETS) activity and decreased cellular energy allocation (CEA). Significant carry-over effects were observed on all cellular energy parameters except the concentration of carbohydrates and cellular energy demand (Ec) after 7 days of recovery. Metabolomic analysis showed that acidification affected the phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and glycine, serine and threonine metabolism. Correlation analysis showed that mussel cell energy parameters (carbohydrates, lipids, proteins, CEA) were negatively/positively correlated with certain differentially abundant metabolites. Overall, the integrated biochemical and metabolomics analyses demonstrated the negative effects of acidification on energy metabolism at the cellular level and implicated the alteration of biosynthesis and metabolism of amino acids as a mechanism of metabolic perturbation caused by acidification in mussels.PMID:36379341 | DOI:10.1016/j.scitotenv.2022.160090

Monoterpenoid acylphloroglucinols from Hypericum hengshanense W. T. Wang with antiproliferative activities

Tue, 15/11/2022 - 12:00
Phytochemistry. 2022 Nov 12:113500. doi: 10.1016/j.phytochem.2022.113500. Online ahead of print.ABSTRACTHypericum species (Hypericaceae) are a group of important plants with medicinal, edible, and ornamental values. A phytochemical study on the whole plants of H. hengshanense W. T. Wang, a species endemic to China, led to the isolation and elucidation of 25 monoterpenoid acylphloroglucinols (MAPs). Among them, 10 are undescribed compounds, namely hyphengshanols A-D, (+)-empetrilatinol A, (-)-empetrilatinol B, (-)-hyperjovinol A, (9S,2'S)-dauphinol F, and (8R,2'S)-empetrikathiforin. In addition, the absolute configurations of other six compounds were firstly determined in the current study. The structures were established by ultraviolet (UV), high resolution electrospray ionization mass spectrum (HR-ESI-MS), and nuclear magnetic resonance spectroscopy (NMR) data. The absolute configurations were determined by experimental and calculated electronic circular dichroism (ECD) data analyses. Cytotoxicity assays on five human cell lines HL-60, A549, SMMC-7721, MDA-MB-231, and SW480 revealed that 16 compounds exhibited broad-spectrum antiproliferative activities with IC50 ranging from 7.54 to 45.70 μM.PMID:36379320 | DOI:10.1016/j.phytochem.2022.113500

Different effects and mechanisms of polystyrene micro- and nano-plastics on the uptake of heavy metals (Cu, Zn, Pb and Cd) by lettuce (Lactuca sativa L.)

Tue, 15/11/2022 - 12:00
Environ Pollut. 2022 Nov 12:120656. doi: 10.1016/j.envpol.2022.120656. Online ahead of print.ABSTRACTHeavy metals are widely distributed in soil ecosystems, posing a potential threat to soil biota. Micro- and nano-plastics (MNPs) can impact the accumulation of heavy metals in plants through changing soil microbial community and cause injury to plants. In this work, two concentrations (100 and 1000 mg/kg) polystyrene microplastics (PS-MPs) and nanoplastics (PS-NPs) were adopted to explore the effects and mechanisms of MNPs on the uptake of Cu, Zn, Pb and Cd in lettuce (Lactuca sativa L.). MPs increased the uptake of heavy metals in lettuce by increasing the relative abundance of the key metal-activation bacteria in rhizospheric soil. At the end of experiment, the contents of Cu, Zn, Pb and Cd in NP treatments were significantly (p < 0.05) higher than that of MPs, particularly in 1000 mg/kg of NPs, with concentrations of 52.6, 174, 10.3, and 33.2 mg/kg, respectively. Biomarkers and gene expression reveled that 1000 mg/kg of NPs caused more severe injuries to lettuce plant at the end. Moreover, metabolomic analysis demonstrated that NPs disturbed the metabolism of ATP-binding cassette transporter (ABC transporter) and plant hormone signal transduction of lettuce root, causing increased uptake of heavy metals by lettuce. This work reveals that MPs may increase accumulation of heavy metals by altering the rhizosphere microorganisms, whereas NPs increase accumulation of heavy metals by causing more severe injuries to lettuce plant.PMID:36379290 | DOI:10.1016/j.envpol.2022.120656

Sperm signatures of fertility and freezability

Tue, 15/11/2022 - 12:00
Anim Reprod Sci. 2022 Nov 3;247:107147. doi: 10.1016/j.anireprosci.2022.107147. Online ahead of print.ABSTRACTApart from traditional semen examination parameters, there is not yet a set of functional markers for accurate determination of bull fertility and sperm freezability or cryopreservability, which are vital for production of food animals to feed the world. Therefore, reliable biomarkers are needed to objectively analyze semen quality and predict male fertility. Rapid developments in animal biotechnology have led to significant progress in developing science-based solutions for global problems in food animal production. Although andrology studies employing genomic and functional genomics (transcriptomics, proteomics, and metabolomics) approaches have elucidated some molecular aspects of sperm, there is also a need for additional mechanistic studies to ascertain the functional underpinnings. Biomarkers discovered through applying various -omics technologies using sperm from bulls with varying fertility phenotypes are valuable for semen evaluation and fertility prediction.PMID:36379193 | DOI:10.1016/j.anireprosci.2022.107147

Exogenous pyruvate and recombinant human basic fibroblast growth factor maintain pluripotency and enhance global metabolic activity of bovine embryonic stem cells grown on low-density feeder layers

Tue, 15/11/2022 - 12:00
Theriogenology. 2022 Nov 12;196:37-49. doi: 10.1016/j.theriogenology.2022.10.042. Online ahead of print.ABSTRACTA suitable microenvironment or niche is essential for self-renewal and pluripotency of stem cells cultured in vitro, including bovine embryonic stem cells (bESCs). Feeder cells participate in the construction of stem cell niche by secreting growth factors and extracellular matrix proteins. In this study, metabolomics and transcriptomics analyses were used to investigate the effects of low-density feeder cells on bESCs. The results showed that bESCs co-cultured with low-density feeder cells experienced a decrease in pluripotent gene expression, cell differentiation, and a reduction of central carbon metabolic activity. When cell-permeable pyruvate (Pyr) and recombinant human basic fibroblast growth factor (rhbFGF) were added to the culture system, the pluripotency of bESCs on low-density feeder layers was rescued, and acetyl-coenzyme A (AcCoA) synthesis and fatty acid de novo synthesis increased. In addition, rhbFGF enhances the effects of Pyr and activates the overall metabolic level of bESCs grown on low-density feeder layers. This study explored the rescue effects of exogenous Pyr and rhbFGF on bESCs cultured on low-density feeder layers, which will provide a reference for improvement of the PSC culture system through the supplementation of energy metabolites and growth factors.PMID:36379144 | DOI:10.1016/j.theriogenology.2022.10.042

"Metabolomic diversity of local strains of Beauveria bassiana (Balsamo) Vuillemin and their efficacy against the cassava mite, Tetranychus truncatus Ehara (Acari: Tetranychidae)"

Tue, 15/11/2022 - 12:00
PLoS One. 2022 Nov 15;17(11):e0277124. doi: 10.1371/journal.pone.0277124. eCollection 2022.ABSTRACTA desirable substitute for chemical pesticides is mycopesticides. In the current investigation, rDNA-ITS (Internal transcribed spacer) and TEF (Transcriptional Elongation Factor) sequencing were used for molecular identification of six Beauveria bassiana strains. Both, leaf discs and potted plant bioassaye were carried out to study their pathogenicity against the cassava mite, Tetranychus truncatus. LC50 and LC90 values of potential B. bassiana strains were estimated. We also discovered a correlation between intraspecific B. bassiana strains pathogenicity and comprehensive metabolome profiles. Bb5, Bb6, Bb8, Bb12, Bb15, and Bb21 strains were identified as B. bassiana by sequencing of rDNA-ITS and TEF segments and sequence comparison to NCBI (National Center for Biotechnology Information) GenBank. Out of the six strains tested for pathogenicity, Bb6, Bb12, and Bb15 strains outperformed against T. truncatus with LC50 values 1.4×106, 1.7×106, and 1.4×106 and with a LC90 values 7.3×107, 1.4×108, and 4.2×108 conidia/ml, respectively, at 3 days after inoculation and were considered as potential strains for effective mite control. Later, Gas Chromatography-Mass Spectrometry (GC-MS) analysis of the above six B. bassiana strains was done on secondary metabolites extracted with ethyl acetate revealed that the potential B. bassiana strains (Bb6, Bb12, and Bb15) have higher levels of acaricidal such as Bis(dimethylethyl)-phenol: Bb6 (5.79%), Bb12 (6.15%), and Bb15 (4.69%). Besides, insecticidal (n-Hexadecanoic acid), and insect innate immunity overcoming compound (Nonadecene) were also identified; therefore, the synergistic effect of these compounds might lead toa higher pathogenicity of B. bassiana against T. truncatus. Further, these compounds also exhibited two clusters, which separate the potential and non-potential strains in the dendrogram of Thin Layer Chromatography. These results clearly demonstrated the potentiality of the B. bassiana strains against T. truncatus due to the occurrence of their bioactive volatile metabolome.PMID:36378665 | DOI:10.1371/journal.pone.0277124

Combined transcriptomic and metabolomic analysis of Salmonella in the presence or absence of PhoP-PhoQ system under low Mg<sup>2+</sup> conditions

Tue, 15/11/2022 - 12:00
Metabolomics. 2022 Nov 15;18(11):93. doi: 10.1007/s11306-022-01946-z.ABSTRACTINTRODUCTION: Previous reports revealed the role played by Salmonella PhoP-PhoQ system in virulence activation, antimicrobial tolerance and intracellular survival, the impact of PhoP-PhoQ on cell metabolism has been less extensively described.OBJECTIVES: The aim of this study is to address whether and how the PhoP-PhoQ system affects the cell metabolism of Salmonella.METHODS: We constructed a Salmonella phoP deletion mutant strain TT-81 (PhoP-OFF), a Salmonella PhoP constitutively expressed strain TT-82 (PhoP-ON) and a wild-type Salmonella PhoP strain TT-80 (PhoP-N), using P22-mediated generalized transduction or λ Red-mediated targeted mutagenesis. We then measured the in vitro growth kinetics of all test strains and determined their metabolomic and transcriptomic profiles using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) and RNA-seq technique, respectively.RESULTS: Low-Mg2+ conditions impaired the growth of the phoP deletion mutant strain TT-81 (PhoP-OFF) dramatically. 42 metabolites in the wild-type PhoP strain TT-80 (PhoP-N) and 28 metabolites in the PhoP constitutively expressed strain TT-82 (PhoP-ON) changed by the absence of phoP. In contrast, the level of 19 compounds in TT-80 (PhoP-N) changed comparing to the PhoP constitutively expressed strain TT-82 (PhoP-N). The mRNA level of 95 genes in TT-80 (PhoP-N) changed when phoP was disrupted, wherein 78 genes downregulated and 17 genes upregulated. 106 genes were determined to be differentially expressed between TT-81 (PhoP-OFF) and TT-82 (PhoP-ON). While only 16 genes were found to differentially expressed between TT-82 (PhoP-ON) and TT-80 (PhoP-N).CONCLUSION: Our findings confirmed the impact of PhoP-PhoQ system on lipopolysaccharide (LPS) modification, energy metabolism, and the biosynthesis or transport of amino acids. Most importantly, we demonstrated that the turnover of a given metabolite could respond differentially to the level of phoP. Taken together, the present study provided new insights into the adaptation of Salmonella to the host environment and helped to characterize the impact of the PhoP-PhoQ system on the cell metabolism.PMID:36378357 | DOI:10.1007/s11306-022-01946-z

Hepatic Acat2 overexpression promotes systemic cholesterol metabolism and adipose lipid metabolism in mice

Tue, 15/11/2022 - 12:00
Diabetologia. 2022 Nov 15. doi: 10.1007/s00125-022-05829-9. Online ahead of print.ABSTRACTAIMS/HYPOTHESIS: Acetyl coenzyme A acetyltransferase (ACAT), also known as acetoacetyl-CoA thiolase, catalyses the formation of acetoacetyl-CoA from acetyl-CoA and forms part of the isoprenoid biosynthesis pathway. Thus, ACAT plays a central role in cholesterol metabolism in a variety of cells. Here, we aimed to assess the effect of hepatic Acat2 overexpression on cholesterol metabolism and systemic energy metabolism.METHODS: We generated liver-targeted adeno-associated virus 9 (AAV9) to achieve hepatic Acat2 overexpression in mice. Mice were injected with AAV9 through the tail vein and subjected to morphological, physiological (body composition, indirect calorimetry, treadmill, GTT, blood biochemistry, cardiac ultrasonography and ECG), histochemical, gene expression and metabolomic analysis under normal diet or feeding with high-fat diet to investigate the role of ACAT2 in the liver.RESULTS: Hepatic Acat2 overexpression reduced body weight and total fat mass, elevated the metabolic rate, improved glucose tolerance and lowered the serum cholesterol level of mice. In addition, the overexpression of Acat2 inhibited fatty acid, glucose and ketone metabolic pathways but promoted cholesterol metabolism and changed the bile acid pool and composition of the liver. Hepatic Acat2 overexpression also decreased the size of white adipocytes and promoted lipid metabolism in white adipose tissue. Furthermore, hepatic Acat2 overexpression protected mice from high-fat-diet-induced weight gain and metabolic defects CONCLUSIONS/INTERPRETATION: Our study identifies an essential role for ACAT2 in cholesterol metabolism and systemic energy expenditure and provides key insights into the metabolic benefits of hepatic Acat2 overexpression. Thus, adenoviral Acat2 overexpression in the liver may be a potential therapeutic tool in the treatment of obesity and hypercholesterolaemia.PMID:36378328 | DOI:10.1007/s00125-022-05829-9

Trauma Induces Intravascular Hemolysis, Exacerbated by RBC Transfusion and Associated with Disrupted Arginine-Nitric Oxide Metabolism

Tue, 15/11/2022 - 12:00
Shock. 2022 Nov 16. doi: 10.1097/SHK.0000000000002036. Online ahead of print.ABSTRACTBACKGROUND: Severe injury can provoke systemic processes that lead to organ dysfunction, and hemolysis of both native and transfused red blood cells (RBC's) may contribute. Hemolysis can release erythrocyte proteins, such as hemoglobin and arginase-1, the latter with the potential to disrupt arginine metabolism and limit physiologic nitric oxide (NO) production. We aimed to quantify hemolysis and arginine metabolism in trauma patients and measure association with injury severity, transfusions, and outcomes.METHODS: Blood was collected from injured patients at a Level I Trauma Center enrolled in the COMBAT trial. Proteomics and metabolomics were performed on plasma fractions through liquid chromatography coupled with mass spectrometry. Abundances of erythrocyte proteins comprising a hemolytic profile as well as haptoglobin, L-arginine, ornithine, and L-citrulline (NO surrogate marker) were analyzed at different timepoints and correlated with transfusions and adverse outcomes.RESULTS: More critically injured patients, non-survivors, and those with longer ventilator requirement had higher levels of hemolysis markers with reduced L-arginine and L-citrulline. In logistic regression, elevated hemolysis markers, reduced L-arginine, and reduced L-citrulline were significantly associated with these adverse outcomes. An increased number of blood transfusions was significantly associated with elevated hemolysis markers and reduced L-arginine and L-citrulline independently of new injury severity score and arterial base excess.CONCLUSIONS: Severe injury induces intravascular hemolysis, which may mediate post-injury organ dysfunction. In addition to native RBC's, transfused RBC's can lyse and may exacerbate trauma-induced hemolysis. Arginase-1 released from RBC's may contribute to the depletion of L-arginine and the subsequent reduction in the NO necessary to maintain organ perfusion.PMID:36378232 | DOI:10.1097/SHK.0000000000002036

Potential mechanism of pyrotinib-induced diarrhea was explored by gut microbiome and ileum metabolomics

Tue, 15/11/2022 - 12:00
Anticancer Drugs. 2022 Nov 16. doi: 10.1097/CAD.0000000000001440. Online ahead of print.ABSTRACTBACKGROUND: Pyrotinib is a novel epidermal growth factor receptor/human epidermal growth factor receptor-2 (HER2) tyrosine kinase inhibitor that exhibited clinical efficacy in patients with HER2-positive breast cancer and HER2-mutant/amplified lung cancer. However, severe diarrhea adverse responses preclude its practical use. At present, the mechanism of pyrotinib-induced diarrhea is unknown and needs further study.METHODS: First, to develop a suitable and reproducible animal model, we compared the effects of different doses of pyrotinib (20, 40, 60 and 80 mg/kg) in Wistar rats. Second, we used this model to examine the intestinal toxicity of pyrotinib. Finally, the mechanism underlying pyrotinib-induced diarrhea was fully studied using gut microbiome and host intestinal tissue metabolomics profiling.RESULTS: Reproducible diarrhea occurred in rats when they were given an 80 mg/kg daily dose of pyrotinib. Using the pyrotinib-induced model, we observed that Lachnospiraceae and Acidaminococcaceae decreased in the pyrotinib groups, whereas Enterobacteriaceae, Helicobacteraceae and Clostridiaceae increased at the family level by 16S rRNA gene sequence. Multiple bioinformatics methods revealed that glycocholic acid, ursodeoxycholic acid and cyclic AMP increased in the pyrotinib groups, whereas kynurenic acid decreased, which may be related to the pathogenesis of pyrotinib-induced diarrhea. Additionally, pyrotinib-induced diarrhea may be associated with a number of metabolic changes mediated by the gut microbiome, such as Primary bile acid biosynthesis.CONCLUSION: We reported the establishment of a reproducible pyrotinib-induced animal model for the first time. Furthermore, we concluded from this experiment that gut microbiome imbalance and changes in related metabolites are significant contributors to pyrotinib-induced diarrhea.PMID:36378136 | DOI:10.1097/CAD.0000000000001440

A New Benzothiazolthiazolidine Derivative, 11726172, Is Active <em>In Vitro</em>, <em>In Vivo</em>, and against Nonreplicating Cells of Mycobacterium tuberculosis

Tue, 15/11/2022 - 12:00
mSphere. 2022 Nov 15:e0036922. doi: 10.1128/msphere.00369-22. Online ahead of print.ABSTRACTTuberculosis (TB) still poses a global menace as one of the deadliest infectious diseases. A quarter of the human population is indeed latently infected with Mycobacterium tuberculosis. People with latent infection have a 5 to 10% lifetime risk of becoming ill with TB, representing a reservoir for TB active infection. This is a worrisome problem to overcome in the case of relapse; unfortunately, few drugs are effective against nonreplicating M. tuberculosis cells. Novel strategies to combat TB, including its latent form, are urgently needed. In response to the lack of new effective drugs and after screening about 500 original chemical molecules, we selected a compound, 11726172, that is endowed with potent antitubercular activity against M. tuberculosis both in vitro and in vivo and importantly also against dormant nonculturable bacilli. We also investigated the mechanism of action of 11726172 by applying a multidisciplinary approach, including transcriptomic, labeled metabolomic, biochemical, and microbiological procedures. Our results represent an important step forward in the development of a new antitubercular compound with a novel mechanism of action active against latent bacilli. IMPORTANCE The discontinuation of TB services due to COVID-19 causes concern about a future resurgence of TB, also considering that latent infection affects a high number of people worldwide. To combat this situation, the identification of antitubercular compounds targeting Mycobacterium tuberculosis through novel mechanisms of action is necessary. These compounds should be active against not only replicating bacteria cells but also nonreplicating cells to limit the reservoir of latently infected people on which the bacterium can rely to spread after reactivation.PMID:36377880 | DOI:10.1128/msphere.00369-22

Systems-Wide Dissection of Organic Acid Assimilation in Pseudomonas aeruginosa Reveals a Novel Path To Underground Metabolism

Tue, 15/11/2022 - 12:00
mBio. 2022 Nov 15:e0254122. doi: 10.1128/mbio.02541-22. Online ahead of print.ABSTRACTThe human pathogen Pseudomonas aeruginosa (Pa) is one of the most frequent and severe causes of nosocomial infection. This organism is also a major cause of airway infections in people with cystic fibrosis (CF). Pa is known to have a remarkable metabolic plasticity, allowing it to thrive under diverse environmental conditions and ecological niches; yet, little is known about the central metabolic pathways that sustain its growth during infection or precisely how these pathways operate. In this work, we used a combination of 'omics approaches (transcriptomics, proteomics, metabolomics, and 13C-fluxomics) and reverse genetics to provide systems-level insight into how the infection-relevant organic acids succinate and propionate are metabolized by Pa. Moreover, through structural and kinetic analysis of the 2-methylcitrate synthase (2-MCS; PrpC) and its paralogue citrate (CIT) synthase (GltA), we show how these two crucial enzymatic steps are interconnected in Pa organic acid assimilation. We found that Pa can rapidly adapt to the loss of GltA function by acquiring mutations in a transcriptional repressor, which then derepresses prpC expression. Our findings provide a clear example of how "underground metabolism," facilitated by enzyme substrate promiscuity, "rewires" Pa metabolism, allowing it to overcome the loss of a crucial enzyme. This pathogen-specific knowledge is critical for the advancement of a model-driven framework to target bacterial central metabolism. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that, due to its unrivalled resistance to antibiotics, ubiquity in the built environment, and aggressiveness in infection scenarios, has acquired the somewhat dubious accolade of being designated a "critical priority pathogen" by the WHO. In this work, we uncover the pathways and mechanisms used by P. aeruginosa to grow on a substrate that is abundant at many infection sites: propionate. We found that if the organism is prevented from metabolizing propionate, the substrate turns from being a convenient nutrient source into a potent poison, preventing bacterial growth. We further show that one of the enzymes involved in these reactions, 2-methylcitrate synthase (PrpC), is promiscuous and can moonlight for another essential enzyme in the cell (citrate synthase). Indeed, mutations that abolish citrate synthase activity (which would normally prevent the cell from growing) can be readily overcome if the cell acquires additional mutations that increase the expression of PrpC. This is a nice example of the evolutionary utility of so-called "underground metabolism."PMID:36377867 | DOI:10.1128/mbio.02541-22

Lipopolysaccharide and statin-mediated immune-responsive protein networks revealed in macrophages through affinity purification spacer-arm controlled cross-linking (AP-SPACC) proteomics

Tue, 15/11/2022 - 12:00
Mol Omics. 2022 Nov 15. doi: 10.1039/d2mo00224h. Online ahead of print.ABSTRACTToll-like receptor 4 (TLR4), a pattern recognition receptor, is activated by lipopolysaccharides (LPS) and induces the MyD88 pathway, which subsequently produces pro-inflammatory cytokines through activation of transcriptional nuclear factor (NF)-κB. Statins have been widely prescribed to reduce cholesterol synthesis for patients with cardiovascular disease. Statins may have pleiotropic effects, which include anti- and pro-inflammatory effects on cells. The molecular mechanism of the sequential influence of LPS and statin on the innate immune system remains unknown. We employed affinity purification-spacer-arm controlled cross-linking (AP-SPACC) MS-based proteomics analysis to identify the LPS- and statin-LPS-responsive proteins and their networks. LPS-stimulated RAW 264.7 macrophage cells singly and combined with the drug statin used in this study. Two chemical cross-linkers with different spacer chain lengths were utilized to stabilize the weak and transient interactors. Proteomic analysis identified 1631 differentially expressed proteins. We identified 151 immune-response proteins through functional enrichment analysis and visualized their interaction networks. Selected candidate protein-coding genes were validated, specifically squamous cell carcinoma antigens recognized by T cells 3, sphingosine-1-phosphate lyase 1, Ras-related protein Rab-35, and tumor protein D52 protein-coding genes through transcript-level expression analysis. The expressions of those genes were significantly increased upon statin treatment and decreased in LPS-stimulated macrophage cells. Therefore, we presumed that the expression changes of genes occurred due to immune response during activation of inflammation. These results highlight the immune-responsive proteins network, providing a new platform for novel investigations and discovering future therapeutic targets for inflammatory diseases.PMID:36377691 | DOI:10.1039/d2mo00224h

CLA improves the lipo-nutritional quality of pork and regulates the gut microbiota in Heigai pigs

Tue, 15/11/2022 - 12:00
Food Funct. 2022 Nov 15. doi: 10.1039/d2fo02549c. Online ahead of print.ABSTRACTConjugated linoleic acid (CLA) is a potential nutritional strategy to regulate meat quality in pigs and produce high-quality pork. However, the effects of CLA on nutritional quality, lipid dynamics, microbiota, and their metabolites in the gut of pigs remain unclear. Our study explored the effects of CLA on lipo-nutritional quality based on a Heigai pig model and investigated the regulatory mechanism using an integrated analysis of multiple omics. A total of 58 Heigai finishing pigs (body weight: 85.58 ± 10.39 kg) were randomly divided into 2 treatments and fed diets containing 1% soyabean oil and 1% CLA for 40 days. 1% CLA significantly decreased the backfat thickness (P < 0.05) and increased the intramuscular fat (IMF) content (P < 0.05). The expression of lipid metabolism-related genes was significantly changed (P < 0.05) and lipidome analysis showed the alternations of lipid dynamics in the longissimus dorsi muscle (LDM). In addition, based on the microbiome and metabolomic analyses, the relative abundances of Parabacteroides, Bacteroides, and Lachnospiraceae_UCG-010 increased and CLA changed the metabolome profiles and the short-chain fatty acid (SCFA) composition in the gut, which were significantly increased (P < 0.05). Additionally, Pearson's correlation analysis indicated that differential microbial genera and SCFAs induced by CLA had tight correlations with the backfat thickness, IMF content and lipids in the LDM. CLA enhances the lipid accumulation and metabolism in muscle and these changes are associated with the production and functions of the differential bacteria and SCFAs in the gut of pigs.PMID:36377505 | DOI:10.1039/d2fo02549c

Plasma metabolomics for the assessment of the progression of non-small cell lung cancer

Tue, 15/11/2022 - 12:00
Int J Biol Markers. 2022 Nov 14:3936155221137359. doi: 10.1177/03936155221137359. Online ahead of print.ABSTRACTOBJECTIVES: Non-small cell lung cancer (NSCLC) is a leading type of lung cancer with a high mortality rate worldwide. Although many procedures for the diagnosis and prognosis assessment of lung cancer exist, they are often laborious, expensive, and invasive. This study aimed to develop an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based analysis method for the plasma biomarkers of NSCLC with the potential to indicate the stages and progression of this malignancy conveniently and reliably.METHODS: A total of 53 patients with NSCLC in early stages (I-III) and advanced stage (IV) were classified into the early and advanced groups based on the tumor node metastasis staging system. A comprehensive metabolomic analysis of plasma from patients with NSCLC was performed via UPLC-MS/MS. Principal component analysis and partial least squares-discriminant analysis were conducted for statistical analysis. Potential biomarkers were evaluated and screened through receiver operating characteristic analyses and correlation analysis. Main differential metabolic pathways were also identified by utilizing metaboanalyst.RESULTS: A total of 129 differential metabolites were detected in accordance with the criteria of VIP ≥ 1 and a P-value of ≤ 0.05. The receiver operating characteristic curves indicated that 11 of these metabolites have the potential to be promising markers of disease progression. Apparent correlated metabolites were also filtered out. Furthermore, the 11 most predominant metabolic pathways with alterations involved in NSCLC were identified.CONCLUSION: Our study focused on the plasma metabolomic changes in patients with NSCLC. These changes may be used for the prediction of the stage and progression of NSCLC. Moreover, we discussed the metabolic pathways wherein the altered metabolites were mainly enriched.PMID:36377344 | DOI:10.1177/03936155221137359

Pages