Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Volatile-mediated signaling in barley induces metabolic reprogramming and resistance against the biotrophic fungus Blumeria hordei

Tue, 15/11/2022 - 12:00
Plant Biol (Stuttg). 2022 Nov 14. doi: 10.1111/plb.13487. Online ahead of print.ABSTRACTPlants have evolved a vast variety of secondary metabolites to counteract biotic stress. Volatile organic compounds (VOCs) are released upon herbivore attack or pathogen infection. Recent studies suggest that VOCs can act as signaling molecules in plant defense and induce resistance in distant organs and neighboring plants. However, knowledge is lacking on the function of VOCs in biotrophic fungal infection on cereal plants. We analyzed VOCs emitted by 13 ± 1-day old barley plants (Hordeum vulgare L.) after mechanical wounding using passive absorbers and TD-GC/MS detection. We investigated the effect of pure VOC, and complex VOC mixtures released from wounded plants on the barley - powdery mildew interaction by pre-exposure in a dynamic headspace connected to a powdery mildew susceptibility assay. Untargeted metabolomics and lipidomics were applied to investigate metabolic changes in sender and receiver barley plants. Green leaf volatiles (GLVs) dominated the volatile profile of wounded barley plants with (Z)-3-hexenyl acetate (Z3HAC) as the most abundant compound. Barley volatiles emitted after mechanical wounding enhanced resistance in receiver plants towards fungal infection. We found volatile-mediated modifications of the plant-pathogen interaction in a concentration dependent manner. Pre-exposure with physiologically relevant concentrations of Z3HAC resulted in induced resistance, suggesting that this GLV is a key player in barley anti-pathogen defense. The complex VOC mixture released from wounded barley and Z3HAC induced e.g. accumulation of chlorophyll, linolenic acid and linolenate-conjugated lipids as well as defense-related secondary metabolites such as hordatines in receiving plants. Barley VOCs hence induce a complex physiological response and disease resistance in receiver plants.PMID:36377298 | DOI:10.1111/plb.13487

Untargeted GC-MS metabolomics to identify and classify bioactive compounds in Combretum platypetalum subsp. oatesii (Rolfe) Exell (Combretaceae)

Tue, 15/11/2022 - 12:00
Phytochem Anal. 2022 Nov 14. doi: 10.1002/pca.3184. Online ahead of print.ABSTRACTINTRODUCTION: Combretum platypetalum is used in traditional African healing practices against different infections. Unfortunately, no scientific knowledge of its phytochemical composition exists, except for the isolation of two compounds from the leaves. Scientific study has been limited to the leaves only, despite the applications of stems and roots in traditional medicine practice and natural product drug discovery programs.OBJECTIVE: Omics was applied to identify and classify different volatile and semivolatile bioactive compounds in the leaf, stem, and root parts of C. platypetalum. The thermal stability of the plant constituents at 60-65°C extraction temperature by Soxhlet and maceration at room temperature on the type, class, and concentration of compounds in the leaf was further investigated.METHOD: A GC-MS untargeted metabolomics approach, automated deconvolution by the Automated Mass Spectral Deconvolution and Identification System (AMDIS) for GC-MS data, preprocessing by Metab R, and multivariate statistical data analysis were employed in this study.RESULTS: A total of 97 phytoconstituents, including 17 bioactive compounds belonging to the terpenoids, flavonoids, long-chain fatty acids, and other unclassified structural arrangements distributed across C. platypetalum, were identified for the first time. A correlation (r = 0.782; P = 0.000) between Soxhlet and maceration extraction methods relative to resolved chromatographic peak areas of metabolites was established.CONCLUSION: Findings corroborate the reported bio-investigation of its leaf extracts, its traditional uses, and previous findings from the Combretum genus. The results substantiate the possible applications of C. platypetalum in natural product drug discovery and provide a guide for future investigations.PMID:36377224 | DOI:10.1002/pca.3184

Gut microbiome, cognitive function and brain structure: a multi-omics integration analysis

Tue, 15/11/2022 - 12:00
Transl Neurodegener. 2022 Nov 14;11(1):49. doi: 10.1186/s40035-022-00323-z.ABSTRACTBACKGROUND: Microbiome-gut-brain axis may be involved in the progression of age-related cognitive impairment and relevant brain structure changes, but evidence from large human cohorts is lacking. This study was aimed to investigate the associations of gut microbiome with cognitive impairment and brain structure based on multi-omics from three independent populations.METHODS: We included 1430 participants from the Guangzhou Nutrition and Health Study (GNHS) with both gut microbiome and cognitive assessment data available as a discovery cohort, of whom 272 individuals provided fecal samples twice before cognitive assessment. We selected 208 individuals with baseline microbiome data for brain magnetic resonance imaging during the follow-up visit. Fecal 16S rRNA and shotgun metagenomic sequencing, targeted serum metabolomics, and cytokine measurements were performed in the GNHS. The validation analyses were conducted in an Alzheimer's disease case-control study (replication study 1, n = 90) and another community-based cohort (replication study 2, n = 1300) with cross-sectional dataset.RESULTS: We found protective associations of specific gut microbial genera (Odoribacter, Butyricimonas, and Bacteroides) with cognitive impairment in both the discovery cohort and the replication study 1. Result of Bacteroides was further validated in the replication study 2. Odoribacter was positively associated with hippocampal volume (β, 0.16; 95% CI 0.06-0.26, P = 0.002), which might be mediated by acetic acids. Increased intra-individual alterations in gut microbial composition were found in participants with cognitive impairment. We also identified several serum metabolites and inflammation-associated metagenomic species and pathways linked to impaired cognition.CONCLUSIONS: Our findings reveal that specific gut microbial features are closely associated with cognitive impairment and decreased hippocampal volume, which may play an important role in dementia development.PMID:36376937 | DOI:10.1186/s40035-022-00323-z

Enhancement of fatty acid degradation pathway promoted glucoamylase synthesis in Aspergillus niger

Tue, 15/11/2022 - 12:00
Microb Cell Fact. 2022 Nov 15;21(1):238. doi: 10.1186/s12934-022-01966-3.ABSTRACTBACKGROUND: Our recent multi-omics analyses of glucoamylase biosynthesis in Aspergillus niger (A. niger) suggested that lipid catabolism was significantly up-regulated during high-yield period under oxygen limitation. Since the catabolism of fatty acids can provide energy compounds such as ATP and important precursors such as acetyl-CoA, we speculated that enhancement of this pathway might be beneficial to glucoamylase overproduction.RESULTS: Based on previous transcriptome data, we selected and individually overexpressed five candidate genes involved in fatty acid degradation under the control of the Tet-on gene switch in A. niger. Overexpression of the fadE, fadA and cyp genes increased the final specific enzyme activity and total secreted protein on shake flask by 21.3 ~ 31.3% and 16.0 ~ 24.2%, respectively. And a better inducible effect by doxycycline was obtained from early logarithmic growth phase (18 h) than stationary phase (42 h). Similar with flask-level results, the glucoamylase content and total extracellular protein in engineered strains OE-fadE (overexpressing fadE) and OE-fadA (overexpressing fadA) on maltose-limited chemostat cultivation were improved by 31.2 ~ 34.1% and 35.1 ~ 38.8% compared to parental strain B36. Meanwhile, intracellular free fatty acids were correspondingly decreased by 41.6 ~ 44.6%. The metabolomic analysis demonstrated intracellular amino acids pools increased 24.86% and 18.49% in two engineered strains OE-fadE and OE-fadA compared to B36. Flux simulation revealed that increased ATP, acetyl-CoA and NADH was supplied into TCA cycle to improve amino acids synthesis for glucoamylase overproduction.CONCLUSION: This study suggested for the first time that glucoamylase production was significantly improved in A. niger by overexpression of genes fadE and fadA involved in fatty acids degradation pathway. Harnessing the intracellular fatty acids could be a strategy to improve enzyme production in Aspergillus niger cell factory.PMID:36376878 | DOI:10.1186/s12934-022-01966-3

Spatial multi-omics analyses of the tumor immune microenvironment

Tue, 15/11/2022 - 12:00
J Biomed Sci. 2022 Nov 14;29(1):96. doi: 10.1186/s12929-022-00879-y.ABSTRACTIn the past decade, single-cell technologies have revealed the heterogeneity of the tumor-immune microenvironment at the genomic, transcriptomic, and proteomic levels and have furthered our understanding of the mechanisms of tumor development. Single-cell technologies have also been used to identify potential biomarkers. However, spatial information about the tumor-immune microenvironment such as cell locations and cell-cell interactomes is lost in these approaches. Recently, spatial multi-omics technologies have been used to study transcriptomes, proteomes, and metabolomes of tumor-immune microenvironments in several types of cancer, and the data obtained from these methods has been combined with immunohistochemistry and multiparameter analysis to yield markers of cancer progression. Here, we review numerous cutting-edge spatial 'omics techniques, their application to study of the tumor-immune microenvironment, and remaining technical challenges.PMID:36376874 | DOI:10.1186/s12929-022-00879-y

Single sample pathway analysis in metabolomics: performance evaluation and application

Tue, 15/11/2022 - 12:00
BMC Bioinformatics. 2022 Nov 14;23(1):481. doi: 10.1186/s12859-022-05005-1.ABSTRACTBACKGROUND: Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) alongside the evaluation of two novel methods we propose: ssClustPA and kPCA, using semi-synthetic metabolomics data. We then demonstrate how ssPA can facilitate pathway-based interpretation of metabolomics data by performing a case-study on inflammatory bowel disease mass spectrometry data, using clustering to determine subtype-specific pathway signatures.RESULTS: While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease data demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/ ), providing implementations of all the methods benchmarked in this study.CONCLUSION: This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data.PMID:36376837 | DOI:10.1186/s12859-022-05005-1

Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling

Tue, 15/11/2022 - 12:00
BMC Plant Biol. 2022 Nov 14;22(1):528. doi: 10.1186/s12870-022-03907-z.ABSTRACTBACKGROUND: Soil salinization and alkalization are widespread environmental problems that limit grapevine (Vitis vinifera L.) growth and yield. However, little is known about the response of grapevine to alkali stress. This study investigated the differences in physiological characteristics, chloroplast structure, transcriptome, and metabolome in grapevine plants under salt stress and alkali stress.RESULTS: We found that grapevine plants under salt stress and alkali stress showed leaf chlorosis, a decline in photosynthetic capacity, a decrease in chlorophyll content and Rubisco activity, an imbalance of Na+ and K+, and damaged chloroplast ultrastructure. Fv/Fm decreased under salt stress and alkali stress. NPQ increased under salt stress whereas decreased under alkali stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the differentially expressed genes (DEGs) induced by salt stress and alkali stress were involved in different biological processes and have varied molecular functions. The expression of stress genes involved in the ABA and MAPK signaling pathways was markedly altered by salt stress and alkali stress. The genes encoding ion transporter (AKT1, HKT1, NHX1, NHX2, TPC1A, TPC1B) were up-regulated under salt stress and alkali stress. Down-regulation in the expression of numerous genes in the 'Porphyrin and chlorophyll metabolism', 'Photosynthesis-antenna proteins', and 'Photosynthesis' pathways were observed under alkali stress. Many genes in the 'Carbon fixation in photosynthetic organisms' pathway in salt stress and alkali stress were down-regulated. Metabolome showed that 431 and 378 differentially accumulated metabolites (DAMs) were identified in salt stress and alkali stress, respectively. L-Glutamic acid and 5-Aminolevulinate involved in chlorophyll synthesis decreased under salt stress and alkali stress. The abundance of 19 DAMs under salt stress related to photosynthesis decreased. The abundance of 16 organic acids in salt stress and 22 in alkali stress increased respectively.CONCLUSIONS: Our findings suggested that alkali stress had more adverse effects on grapevine leaves, chloroplast structure, ion balance, and photosynthesis than salt stress. Transcriptional and metabolic profiling showed that there were significant differences in the effects of salt stress and alkali stress on the expression of key genes and the abundance of pivotal metabolites in grapevine plants.PMID:36376811 | DOI:10.1186/s12870-022-03907-z

The Metabolomics of Critical Illness

Tue, 15/11/2022 - 12:00
Handb Exp Pharmacol. 2022 Nov 15. doi: 10.1007/164_2022_622. Online ahead of print.ABSTRACTCritical illness is associated with dramatic changes in metabolism driven by immune, endocrine, and adrenergic mediators. These changes involve early activation of catabolic processes leading to increased energetic substrate availability; later on, they are followed by a hypometabolic phase characterized by deranged mitochondrial function. In sepsis and ARDS, these rapid clinical changes are reflected in metabolomic profiles of plasma and other fluids, suggesting that metabolomics could one day be used to assist in the diagnosis and prognostication of these syndromes. Some metabolites, such as lactate, are already in clinical use and define patients with septic shock, a high-mortality subtype of sepsis. Larger-scale metabolomic profiling may ultimately offer a tool to identify subgroups of critically ill patients who may respond to therapy, but further work is needed before this type of precision medicine is readily employed in the clinical setting.PMID:36376705 | DOI:10.1007/164_2022_622

Metabolic changes induced by Cuscuta campestris Yunck in the host species Artemisia campestris subsp. variabilis (Ten.) Greuter as a strategy for successful parasitisation

Tue, 15/11/2022 - 12:00
Planta. 2022 Nov 15;256(6):118. doi: 10.1007/s00425-022-04025-8.ABSTRACTC. campestris parasitisation increases internal host defences at the expense of environmentally directed ones in the host species A. campestris, thus limiting plant defence against progressive parasitisation. Cuscuta campestris Yunck is a holoparasitic species that parasitises wild species and crops. Among their hosts, Artemisia campestris subsp. variabilis (Ten.) Greuter is significantly affected in natural ecosystems. Limited information is available on the host recognition mechanism and there are no data on the interactions between these species and the effects on the primary and specialised metabolism in response to parasitisation. The research aims at evaluating the effect of host-parasite interactions, through a GC-MS untargeted metabolomic analysis, chlorophyll a fluorescence, ionomic and δ13C measurements, as well as volatile organic compound (VOC) fingerprint in A. campestris leaves collected in natural environment. C. campestris parasitisation altered plant water status, forcing stomatal opening, stimulating plant transpiration, and inducing physical damages to the host antenna complex, thus reducing the efficiency of its photosynthetic machinery. Untargeted-metabolomics analysis highlighted that the parasitisation significantly perturbed the amino acids and sugar metabolism, inducing an increase in the production of osmoprotectants, which generally accumulate in plants as a protective strategy against oxidative stress. Notably, VOCs analysis highlighted a reduction in sesquiterpenoids and an increase in monoterpenoids levels; involved in plant defence and host recognition, respectively. Moreover, C. campestris induced in the host a reduction in 3-hexenyl-acetate, a metabolite with known repellent activity against Cuscuta spp. We offer evidences that C. campestris parasitisation increases internal host defences via primary metabolites at the expense of more effective defensive compounds (secondary metabolites), thus limiting A. campestris defence against progressive parasitisation.PMID:36376619 | DOI:10.1007/s00425-022-04025-8

Lipidomic markers of breast cancer malignant tumor histological types

Mon, 14/11/2022 - 12:00
Biomed Khim. 2022 Nov;68(5):375-382. doi: 10.18097/PBMC20226805375.ABSTRACTThe molecular profile of a tumor is associated with its histological type and can be used both to study the mechanisms of tumor progression and to diagnose it. In this work, changes in the lipid profile of a malignant breast tumor and the adjacent tissue were studied. The potential possibility of determining the histological type of the tumor by its lipid profile was evaluated. Lipid profiling was performed by reverse-phase chromato-mass-spectrometric analysis the tissue of lipid extract with identification of lipids by characteristic fragments. Potential lipid markers of the histological type of tumor were determined using the Kruskal-Wallis test. Impact of lipid markers was calculated by MetaboAnalyst. Classification models were built by support vector machines with linear kernel and 1-vs-1 architecture. Models were validated by leave-one out cross-validation. Accuracy of models based on microenvironment tissue, were 99% and 75%, accuracy of models, based on tumor tissue, were 90% and 40% for the positive ion mode and negative ion mode respectively. The lipid profile of marginal (adjacent) tissue can be used for identification histological types of breast cancer. Glycerophospholipid metabolism pathway changes were statistically significant in the adjacent tissue and tumor tissue.PMID:36373884 | DOI:10.18097/PBMC20226805375

Adiposity and NMR-measured lipid and metabolic biomarkers among 30,000 Mexican adults

Mon, 14/11/2022 - 12:00
Commun Med (Lond). 2022 Nov 14;2(1):143. doi: 10.1038/s43856-022-00208-2.ABSTRACTBACKGROUND: Adiposity is a major cause of morbidity and mortality in part due to effects on blood lipids. Nuclear magnetic resonance (NMR) spectroscopy provides direct information on >130 biomarkers mostly related to blood lipid particles.METHODS: Among 28,934 Mexican adults without chronic disease and not taking lipid-lowering therapy, we examine the cross-sectional relevance of body-mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and hip circumference (HC) to NMR-measured metabolic biomarkers. Confounder-adjusted associations between each adiposity measure and NMR biomarkers are estimated before and after mutual adjustment for other adiposity measures.RESULTS: Markers of general (ie, BMI), abdominal (ie, WC and WHR) and gluteo-femoral (ie, HC) adiposity all display similar and strong associations across the NMR-platform of biomarkers, particularly for biomarkers that increase cardiometabolic risk. Higher adiposity associates with higher levels of Apolipoprotein-B (about 0.35, 0.30, 0.35, and 0.25 SD higher Apolipoprotein-B per 2-SD higher BMI, WHR, WC, and HC, respectively), higher levels of very low-density lipoprotein particles (and the cholesterol, triglycerides, and phospholipids within these lipoproteins), higher levels of all fatty acids (particularly mono-unsaturated fatty acids) and multiple changes in other metabolic biomarkers including higher levels of branched-chain amino acids and the inflammation biomarker glycoprotein acetyls. Associations for general and abdominal adiposity are fairly independent of each other but, given general and abdominal adiposity, higher gluteo-femoral adiposity is associated with a strongly favourable cardiometabolic lipid profile.CONCLUSIONS: Our results provide insight to the lipidic and metabolomic signatures of different adiposity markers in a previously understudied population where adiposity is common but lipid-lowering therapy is not.PMID:36376486 | DOI:10.1038/s43856-022-00208-2

Gut bacteriome and metabolome of Ascaris lumbricoides in patients

Mon, 14/11/2022 - 12:00
Sci Rep. 2022 Nov 14;12(1):19524. doi: 10.1038/s41598-022-23608-9.ABSTRACTThe most frequent intestinal helminth infections in humans are attributed to Ascaris lumbricoides, and there are concerns over the anthelminthic resistance of this species. The gut microbiota has essential roles in host physiology. Therefore, discovering host-parasite-microbiota interactions could help develop alternative helminthiasis treatments. Additionally, these interactions are modulated by functional metabolites that can reveal the mechanisms of infection and disease progression. Thus, we aimed to investigate bacteriomes in the gut of helminths and fecal samples of patients via next-generation sequencing. Our results showed that infection intensity was associated with the bacterial composition of helminth guts but not with the intestinal bacteriome of human hosts. Moreover, the metabolomes of A. lumbricoides in the heavy and light ascariasis cases were characterized using ultra-high performance liquid chromatography/time-of-flight mass spectrometry. Increased levels of essential biomolecules, such as amino acids, lipids, and nucleotide precursors, were found in the guts of helminths isolated from heavily infected patients, implying that these metabolites are related to egg production and ascariasis pathogenicity. These findings are the first step towards a more complete understanding of the mechanisms by which the bacteriome of helminth guts affect their colonization and may reveal novel and more effective approaches to parasitic disease therapy.PMID:36376367 | DOI:10.1038/s41598-022-23608-9

Multi-omics HeCaToS dataset of repeated dose toxicity for cardiotoxic & hepatotoxic compounds

Mon, 14/11/2022 - 12:00
Sci Data. 2022 Nov 14;9(1):699. doi: 10.1038/s41597-022-01825-1.ABSTRACTThe data currently described was generated within the EU/FP7 HeCaToS project (Hepatic and Cardiac Toxicity Systems modeling). The project aimed to develop an in silico prediction system to contribute to drug safety assessment for humans. For this purpose, multi-omics data of repeated dose toxicity were obtained for 10 hepatotoxic and 10 cardiotoxic compounds. Most data were gained from in vitro experiments in which 3D microtissues (either hepatic or cardiac) were exposed to a therapeutic (physiologically relevant concentrations calculated through PBPK-modeling) or a toxic dosing profile (IC20 after 7 days). Exposures lasted for 14 days and samples were obtained at 7 time points (therapeutic doses: 2-8-24-72-168-240-336 h; toxic doses 0-2-8-24-72-168-240 h). Transcriptomics (RNA sequencing & microRNA sequencing), proteomics (LC-MS), epigenomics (MeDIP sequencing) and metabolomics (LC-MS & NMR) data were obtained from these samples. Furthermore, functional endpoints (ATP content, Caspase3/7 and O2 consumption) were measured in exposed microtissues. Additionally, multi-omics data from human biopsies from patients are available. This data is now being released to the scientific community through the BioStudies data repository ( https://www.ebi.ac.uk/biostudies/ ).PMID:36376331 | DOI:10.1038/s41597-022-01825-1

Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b

Mon, 14/11/2022 - 12:00
Nat Commun. 2022 Nov 14;13(1):6948. doi: 10.1038/s41467-022-34802-8.ABSTRACTMHC class I-related protein 1 (MR1) is a metabolite-presenting molecule that restricts MR1-reactive T cells including mucosal-associated invariant T (MAIT) cells. In contrast to MAIT cells, the function of other MR1-restricted T cell subsets is largely unknown. Here, we report that mice in which a T cell-specific transcription factor, B-cell lymphoma/leukemia 11B (Bcl11b), was ablated in immature thymocytes (Bcl11b∆iThy mice) develop chronic inflammation. Bcl11b∆iThy mice lack conventional T cells and MAIT cells, whereas CD4+IL-18R+ αβ T cells expressing skewed Traj33 (Jα33)+ T cell receptors (TCR) accumulate in the periphery, which are necessary and sufficient for the pathogenesis. The disorders observed in Bcl11b∆iThy mice are ameliorated by MR1-deficiency, transfer of conventional T cells, or germ-free conditions. We further show the crystal structure of the TCR expressed by Traj33+ T cells expanded in Bcl11b∆iThy mice. Overall, we establish that MR1-reactive T cells have pathogenic potential.PMID:36376329 | DOI:10.1038/s41467-022-34802-8

P2X7 Receptor and Purinergic Signaling: Orchestrating Mitochondrial Dysfunction in Neurodegenerative Diseases

Mon, 14/11/2022 - 12:00
eNeuro. 2022 Nov 14;9(6):ENEURO.0092-22.2022. doi: 10.1523/ENEURO.0092-22.2022. Print 2022 Nov-Dec.ABSTRACTMitochondrial dysfunction is one of the basic hallmarks of cellular pathology in neurodegenerative diseases. Since the metabolic activity of neurons is highly dependent on energy supply, nerve cells are especially vulnerable to impaired mitochondrial function. Besides providing oxidative phosphorylation, mitochondria are also involved in controlling levels of second messengers such as Ca2+ ions and reactive oxygen species (ROS). Interestingly, the critical role of mitochondria as producers of ROS is closely related to P2XR purinergic receptors, the activity of which is modulated by free radicals. Here, we review the relationships between the purinergic signaling system and affected mitochondrial function. Purinergic signaling regulates numerous vital biological processes in the CNS. The two main purines, ATP and adenosine, act as excitatory and inhibitory neurotransmitters, respectively. Current evidence suggests that purinergic signaling best explains how neuronal activity is related to neuronal electrical activity and energy homeostasis, especially in the development of Alzheimer's and Parkinson's diseases. In this review, we focus on the mechanisms underlying the involvement of the P2RX7 purinoreceptor in triggering mitochondrial dysfunction during the development of neurodegenerative disorders. We also summarize various avenues by which the purine signaling pathway may trigger metabolic dysfunction contributing to neuronal death and the inflammatory activation of glial cells. Finally, we discuss the potential role of the purinergic system in the search for new therapeutic approaches to treat neurodegenerative diseases.PMID:36376084 | DOI:10.1523/ENEURO.0092-22.2022

Extracellular vesicles as source for the identification of minimally invasive molecular signatures in glioblastoma

Mon, 14/11/2022 - 12:00
Semin Cancer Biol. 2022 Nov 11:S1044-579X(22)00218-8. doi: 10.1016/j.semcancer.2022.11.004. Online ahead of print.ABSTRACTThe analysis of extracellular vesicles (EVs) as a source of cancer biomarkers is an emerging field since low-invasive biomarkers are highly demanded. EVs constitute a heterogeneous population of small membrane-contained vesicles that are present in most of body fluids. They are released by all cell types, including cancer cells and their cargo consists of nucleic acids, proteins and metabolites and varies depending on the biological-pathological state of the secretory cell. Therefore, EVs are considered as a potential source of reliable biomarkers for cancer. EV biomarkers in liquid biopsy can be a valuable tool to complement current medical technologies for cancer diagnosis, as their sampling is minimally invasive and can be repeated over time to monitor disease progression. In this review, we highlight the advances in EV biomarker research for cancer diagnosis, prognosis, and therapy monitoring. We especially focus on EV derived biomarkers for glioblastoma. The diagnosis and monitoring of glioblastoma still relies on imaging techniques, which are not sufficient to reflect the highly heterogenous and invasive nature of glioblastoma. Therefore, we discuss how the use of EV biomarkers could overcome the challenges faced in diagnosis and monitoring of glioblastoma.PMID:36375777 | DOI:10.1016/j.semcancer.2022.11.004

Genome-wide identification of FAR gene family and functional analysis of NlFAR10 during embryogenesis in the brown planthopper Nilaparvata lugens

Mon, 14/11/2022 - 12:00
Int J Biol Macromol. 2022 Nov 11:S0141-8130(22)02632-0. doi: 10.1016/j.ijbiomac.2022.11.075. Online ahead of print.ABSTRACTFatty acyl-CoA reductases (FARs) catalyze the synthesis of fatty alcohols from corresponding fatty acid precursors in organisms. However, the function of FARs in insect fecundity and embryogenesis remains largely unclear. Here, a total of 22 putative FAR proteins were identified in the brown planthopper Nilaparvata lugens, a hemipteran insect pest of rice, and most of them were highly expressed in embryonic stages. Among them, NlFAR10 was specifically and highly expressed in the later embryogenesis, but was promiscuously expressed in tissues of adults. The heterologously expressed NlFAR10 was able to produce the intermediate fatty acid alcohols from the corresponding acyl-CoA precursors. When NlFAR10 was silenced through RNAi in vivo, the embryogenesis was obviously inhibited, resulting in low hatching rates. Moreover, the metabolome analyses indicated that loss of NlFAR10 affected lipid metabolism and purine metabolism during embryogenesis. To the best of our knowledge, this is the first report of a FAR member affecting insect embryogenesis, thus providing a new target for future pest management.PMID:36375673 | DOI:10.1016/j.ijbiomac.2022.11.075

Early metabolomic, lipid and lipoprotein changes in response to medical and surgical therapeutic approaches to obesity

Mon, 14/11/2022 - 12:00
Metabolism. 2022 Nov 11:155346. doi: 10.1016/j.metabol.2022.155346. Online ahead of print.ABSTRACTBACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1RA) and bariatric surgery have proven to be effective treatments for obesity and cardiometabolic conditions. We aimed to explore the early metabolomic changes in response to GLP-1RA (liraglutide) therapy vs. placebo and in comparison to bariatric surgery.METHODS: Three clinical studies were conducted: a bariatric surgery cohort study of participants with morbid obesity who underwent either Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) studied over four and twelve weeks, and two randomized placebo-controlled, crossover double blind studies of liraglutide vs. placebo administration in participants with type 2 diabetes (T2D) and participants with obesity studied for three and five weeks, respectively. Nuclear magnetic resonance spectroscopy-derived metabolomic data were assessed in all eligible participants who completed all the scheduled in-clinic visits. The primary outcome of the study was to explore the changes of the metabolome among participants with obesity with and without T2D receiving the GLP-1RA liraglutide vs. placebo and participants with obesity undergoing bariatric surgery during the three to five-week study period. In addition, we assessed the bariatric surgery effects longitudinally over the twelve weeks of the study and the differences between the bariatric surgery subgroups on the metabolome. The trials are registered with ClinicalTrials.gov, numbers NCT03851874, NCT01562678 and NCT02944500.RESULTS: Bariatric surgery had a more pronounced effect on weight and body mass index reduction (-14.19 ± 5.27 kg and - 5.19 ± 5.27, respectively, p < 0.001 for both) and resulted in more pronounced metabolomic and lipidomic changes compared to liraglutide therapy at four weeks postoperatively. Significant changes were observed in lipoprotein parameters, inflammatory markers, ketone bodies, citrate, and branched-chain amino acids after the first three to five weeks of intervention. After adjusting for the amount of weight loss, a significant difference among the study groups remained only for acetoacetate, β-hydroxybutyrate, and citrate (p < 0.05 after FDR correction). Glucose levels were significantly reduced in all intervention groups but mainly in the T2D group receiving GLP-1RA treatment. After adjusting for weight loss, only glucose levels remained significant (p = 0.001 after FDR correction), mainly due to the glucose change in the T2D group receiving GLP-1RA. Similar results with those observed at four weeks were observed in the surgical group when delta changes at twelve weeks were assessed. Comparing the two types of bariatric surgery, an intervention effect was more pronounced in the RYGB subgroup regarding total triglycerides, triglyceride-rich lipoprotein size, and trimethylamine-N-oxide (p for intervention: 0.031, 0.028, 0.036, respectively). However, after applying FDR correction, these changes deemed to be only suggestive; only time effects remained significant with no significant changes persisting in relation to the types of bariatric surgery.CONCLUSIONS: The results of this study suggest that the early metabolomic, lipid and lipoprotein changes observed between liraglutide treatment and bariatric surgery are similar and result largely from the changes in patients' body weight. Specific changes observed in the short-term post-surgical period between bariatric vs. nonsurgical treated participants, i.e., acetoacetate, β-hydroxybutyrate, and citrate changes, may reflect changes in patient diets and calorie intake indicating potential calorie and diet-driven metabolomics/lipidomic effects in the short-term postoperatively. Significant differences observed between SG and RYGB need to be confirmed and extended by future studies.PMID:36375643 | DOI:10.1016/j.metabol.2022.155346

UHPLC-MS/MS method for chiral separation of 3-hydroxy fatty acids on amylose-based chiral stationary phase and its application for the enantioselective analysis in plasma and platelets

Mon, 14/11/2022 - 12:00
J Pharm Biomed Anal. 2022 Nov 9;223:115151. doi: 10.1016/j.jpba.2022.115151. Online ahead of print.ABSTRACT3-Hydroxyfatty acids (3-OH-FAs) are formed in the hydration step during mitochondrial β-oxidation of saturated straight-chain fatty acids, which is a catabolic pathway that involves several enzymes. For an unbiased biological interpretation, an enantioselective analysis of 3-OH-FAs including their stereoisomers is necessary, which may contribute to the elucidation of enzymatic mechanisms in the biological pathways. In this work, an enantioselective gradient UHPLC-MS/MS method based on 1.6 µm particle polysaccharide column (Chiralpak IA-U) for chiral separation of 3-hydroxyfatty acids was developed which covers carbon chain length from C8 to C18 with a good resolution of R and S enantiomers. The method is fast and sensitive for detecting enantiomers of 3-OH-FAs by using a triple quadrupole instrument as a detector in a targeted, selected reaction monitoring (SRM) mode. A matrix matched-calibration strategy was applied for quantification of individual 3-OH-FA enantiomers. The method allows the simultaneous quantification of each enantiomer of 3-OH-FAs from C8-C18. One-phase liquid extraction with 2-propanol showed good extraction recoveries with over 90% on average. Further, the validated method was applied to investigate the alteration of 3-OH-FA enantiomers in platelets and plasma samples from human donors with different diagnoses of cardiovascular disease (acute coronary syndrome ACS, chronic coronary syndrome CCS). Both R and S enantiomers were detected in platelets and plasma samples with different predominance for R or S in dependence on carbon chain length, which might be associated with different functional enzymes of mitochondrial and peroxisomal β-oxidation. Finally, our study provides a new strategy for chiral separation and enantioselective analysis, showing great potential for targeted metabolomics in clinical biomarker discovery.PMID:36375395 | DOI:10.1016/j.jpba.2022.115151

LC-MS/MS determination of GTS-201, a dipeptide mimetic of the brain-derived neurotrophic factor, and neurotransmitter metabolites with application to a pharmacokinetic study in rats

Mon, 14/11/2022 - 12:00
J Pharm Biomed Anal. 2022 Oct 28;223:115125. doi: 10.1016/j.jpba.2022.115125. Online ahead of print.ABSTRACTBrain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family with diverse psychopharmacological effects including antidepressant and anxiolytic actions. However, the clinical use of BDNF is limited due to its poor pharmacokinetic properties. The development of low-molecular-weight BDNF mimetics passing through the blood-brain barrier is an emerging strategy for improved managing psychiatric diseases. The present study characterizes a novel dipeptide mimetic of the 2nd BDNF loop named GTS-201, which exhibits psychotropic properties in experimental animal models of anxiety and alcohol dependence. The aim of this work was to study the pharmacokinetics of GTS-201 in rats at a saturating dosage of 5 mg/kg applied by the intraperitoneal route and to characterize the effects on neurotransmitter levels in the blood and brain. The maximum concentration (Cmax) of GTS-201 in the plasma (867 ± 69 ng/ml) was recorded at 35 ± 7.7 min after administration (Tmax) with a half-elimination period (T1/2) of 19.5 ± 1.8 min, while in the brain tissue Cmax was 14.92 ± 3.11 ng/ml, Tmax was 40.0 ± 7.7 min and T1/2 were 87.5 ± 12.7 min. The relative tissue availability of the GTS-201 for the brain reached 2.9%. At the dose applied, GTS-201 induced a significant increase of serotonin (5-fold) and dopamine levels in the brain tissue (8-fold) along with a decrease in cortisol content in blood plasma 45 min after acute administration. In summary, GTS-201 crosses the blood-brain barrier after acute administration and affects the activity of serotonergic and dopaminergic systems, which may underlie its neuropsychotropic effects described previously.PMID:36375394 | DOI:10.1016/j.jpba.2022.115125

Pages