Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer

Sun, 20/08/2023 - 12:00
J Biochem Mol Toxicol. 2023 Aug 20:e23506. doi: 10.1002/jbt.23506. Online ahead of print.ABSTRACTEndocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.PMID:37598318 | DOI:10.1002/jbt.23506

Wound-response jasmonate dynamics in the primary vasculature

Sun, 20/08/2023 - 12:00
New Phytol. 2023 Aug 20. doi: 10.1111/nph.19207. Online ahead of print.ABSTRACTThe links between wound-response electrical signalling and the activation of jasmonate synthesis are unknown. We investigated damage-response remodelling of jasmonate precursor pools in the Arabidopsis thaliana leaf vasculature. Galactolipids and jasmonate precursors in primary veins from undamaged and wounded plants were analysed using MS-based metabolomics and NMR. In parallel, DAD1-LIKE LIPASEs (DALLs), which control the levels of jasmonate precursors in veins, were identified. A novel galactolipid containing the jasmonate precursor 12-oxo-phytodienoic acid (OPDA) was identified in veins: sn-2-O-(cis-12-oxo-phytodienoyl)-sn-3-O-(β-galactopyranosyl) glyceride (sn-2-OPDA-MGMG). Lower levels of sn-1-OPDA-MGMG were also detected. Vascular OPDA-MGMGs, sn-2-18:3-MGMG and free OPDA pools were reduced rapidly in response to damage-activated electrical signals. Reduced function dall2 mutants failed to build resting vascular sn-2-OPDA-MGMG and OPDA pools and, upon wounding, dall2 produced less jasmonoyl-isoleucine (JA-Ile) than the wild-type. DALL3 acted to suppress excess JA-Ile production after wounding, whereas dall2 dall3 double mutants strongly reduce jasmonate signalling in leaves distal to wounds. LOX6 and DALL2 function to produce OPDA and the non-bilayer-forming lipid sn-2-OPDA-MGMG in the primary vasculature. Membrane depolarizations trigger rapid depletion of these molecules. We suggest that electrical signal-dependent lipid phase changes help to initiate vascular jasmonate synthesis in wounded leaves.PMID:37598308 | DOI:10.1111/nph.19207

Evaluation of the diabetes care cascade and compliance with WHO global coverage targets in Iran based on STEPS survey 2021

Sat, 19/08/2023 - 12:00
Sci Rep. 2023 Aug 19;13(1):13528. doi: 10.1038/s41598-023-39433-7.ABSTRACTThis study aimed to investigate the diabetes mellitus (DM) and prediabetes epidemiology, care cascade, and compliance with global coverage targets. We recruited the results of the nationally representative Iran STEPS Survey 2021. Diabetes and prediabetes were two main outcomes. Diabetes awareness, treatment coverage, and glycemic control were calculated for all population with diabetes to investigate the care cascade. Four global coverage targets for diabetes developed by the World Health Organization were adopted to assess the DM diagnosis and control status. Among 18,119 participants, the national prevalence of DM and prediabetes were 14.2% (95% confidence interval 13.4-14.9) and 24.8% (23.9-25.7), respectively. The prevalence of DM treatment coverage was 65.0% (62.4-67.7), while the prevalence of good (HbA1C < 7%) glycemic control was 28.0% (25.0-31.0) among all individuals with diabetes. DM diagnosis and statin use statics were close to global targets (73.3% vs 80%, and 50.1% vs 60%); however, good glycemic control and strict blood pressure control statistics, were much way behind the goals (36.7% vs 80%, and 28.5% vs 80%). A major proportion of the Iranian population are affected by DM and prediabetes, and glycemic control is poorly achieved, indicating a sub-optimal care for diabetes and comorbidities like hypertension.PMID:37598214 | DOI:10.1038/s41598-023-39433-7

Fushenmu treatment ameliorates RyR2 with related metabolites in a zebrafish model of barium chloride induced arrhythmia

Sat, 19/08/2023 - 12:00
Chin Med. 2023 Aug 19;18(1):103. doi: 10.1186/s13020-023-00812-x.ABSTRACTBACKGROUND: Fushenmu (Pini Radix in Poria, FSM) is a folk parasitic herb that has been mainly used for palpitation and amnesiain in traditional Chinese medicine (TCM). Recently, as an individual herb or a component of formulations, Fushenmu exhibits therapeutic potential for the treatment of cardiac arrhythmias. Yet, how specific targets or pathways of Fushenmu inhibit arrhythmia has not yet been reported.METHODS: Here, based on clinical functional genomics, metabolomics and molecular biologic technologies, a network construction strategy was adopted to identify FSM therapeutic targets and biomarkers that might explore its functions.RESULTS: In this study, it was found that FSM recovered arrhythmia-associated heart failure in barium chloride (BaCl2) induced arrhythmic zebrafish embryos, as was evidenced by the shortened cardiac sinus venosus-bulbus arteriosus (SV-BA) distance, smaller cardiovascular bleeding areas, and reduced cardiomyocyte apoptosis. Moreover, analysis via ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-QTOF-ESI-MS/MS) components identification and network pharmacology prediction showed that 11 main active components of FSM acted on 33 candidate therapeutic targets. Metabolomic analysis also suggested that FSM could rescue 242 abnormal metabolites from arrhythmic zebrafish embryos. Further analysis based on the combination of target prediction and metabolomic results illustrated that FSM down-regulated Ryanodine Receptor 2 (RyR2) expressions, inhibited adrenaline and 3',5'-Cyclic AMP (cAMP) levels in a dose-dependent manner, which was confirmed by metabolites quantification and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay.CONCLUSION: In summary, this study revealed that FSM mitigated BaCl2 induced cardiac damage caused by arrhythmia by suppressing RyR2 expressions, decreasing adrenaline and cAMP through the adrenergic signalling pathway.PMID:37598173 | DOI:10.1186/s13020-023-00812-x

Depicting the landscape of gut microbial-metabolic interaction and microbial-host immune heterogeneity in deficient and proficient DNA mismatch repair colorectal cancers

Sat, 19/08/2023 - 12:00
J Immunother Cancer. 2023 Aug;11(8):e007420. doi: 10.1136/jitc-2023-007420.ABSTRACTBACKGROUND: Accumulating evidence has indicated the role of gut microbiota in remodeling host immune signatures, but various interplays underlying colorectal cancers (CRC) with deficient DNA mismatch repair (dMMR) and proficient DNA mismatch repair (pMMR) remain poorly understood. This study aims to decipher the gut microbiome-host immune interactions between dMMR and pMMR CRC.METHOD: We performed metagenomic sequencing and metabolomic analysis of fecal samples from a cohort encompassing 455 participants, including 21 dMMR CRC, 207 pMMR CRC, and 227 healthy controls. Among them, 50 tumor samples collected from 5 dMMR CRC and 45 pMMR CRC were conducted bulk RNA sequencing.RESULTS: Pronounced microbiota and metabolic heterogeneity were identified with 211 dMMR-enriched species, such as Fusobacterium nucleatum and Akkermansia muciniphila, 2 dMMR-depleted species, such as Flavonifractor plautii, 13 dMMR-enriched metabolites, such as retinoic acid, and 77 dMMR-depleted metabolites, such as lactic acid, succinic acid, and 2,3-dihydroxyvaleric acid. F. plautii was enriched in pMMR CRC and it was positively associated with fatty acid degradation, which might account for the accumulation of dMMR-depleted metabolites classified as short chain organic acid (lactic acid, succinic acid, and 2,3-dihydroxyvaleric acid) in pMMR CRC. The microbial-metabolic association analysis revealed the characterization of pMMR CRC as the accumulation of lactate induced by the depletion of specific gut microbiota which was negatively associated with antitumor immune, whereas the nucleotide metabolism and peptide degradation mediated by dMMR-enriched species characterized dMMR CRC. MMR-specific metabolic landscapes were related to distinctive immune features, such as CD8+ T cells, dendritic cells and M2-like macrophages.CONCLUSIONS: Our mutiomics results delineate a heterogeneous landscape of microbiome-host immune interactions within dMMR and pMMR CRC from aspects of bacterial communities, metabolic features, and correlation with immunocyte compartment, which infers the underlying mechanism of heterogeneous immune responses.PMID:37597851 | DOI:10.1136/jitc-2023-007420

FoxO signaling and mitochondria-related apoptosis pathways mediate tsinling lenok trout (Brachymystax lenok tsinlingensis) liver injury under high temperature stress

Sat, 19/08/2023 - 12:00
Int J Biol Macromol. 2023 Aug 17:126404. doi: 10.1016/j.ijbiomac.2023.126404. Online ahead of print.ABSTRACTTsinling lenok trout (Brachymystax lenok tsinlingensis) is a typical cold water fish. High temperature has been shown to damage the liver of fish. However, few studies have investigated the liver apoptosis induced by high temperature stress in fish from the perspective of gene expression and metabolic function. Therefore, we investigated the changes caused by high temperature stress (24 °C) on the liver tissue structure, antioxidant capacity, liver gene expression, and the metabolome of tsinling lenok trout. The transcriptomic results showed that genes associated with apoptosis, such as CASP8, CASP3, PERK, Bcl-6 and TRAIL, were upregulated under high temperature stress. Metabolomic analysis showed that the metabolic pathway of nucleotide synthesis was significantly downregulated, while that of oxygen radical synthesis was significantly upregulated. Integrated analysis showed that after high temperature stress, immune-related signaling pathways in trout were activated and their apoptosis level increased, which might be related to hepatopancreas injury. In addition, abnormalities in the tricarboxylic acid cycle and mitochondrial function were observed, suggesting that functional hypoxia caused by high temperature might be involved fish cell apoptosis. These results provide new insights into the process of cell apoptosis in fish under high temperature stress.PMID:37597633 | DOI:10.1016/j.ijbiomac.2023.126404

Dopaminergic and serotoninergic neurotoxicity of lanthanide phosphate (TbPO<sub>4</sub>) in developing zebrafish

Sat, 19/08/2023 - 12:00
Chemosphere. 2023 Aug 17:139861. doi: 10.1016/j.chemosphere.2023.139861. Online ahead of print.ABSTRACTRare earth elements (REEs) are exploited for global use in manufacturing. Such activities result in their release into the environment and the transformation into more stable phosphate deposition. The objective of this study was to evaluate molecular and behavioral changes of zebrafish exposed to the synthesized terbium phosphate (TbPO4) at concentrations of 10, 20, and 50 mg/L and to determine its potential for neurotoxicity. Metabolomics related to neurotransmitters, and assessment of transcripts and proteins were conducted to uncover the molecular mechanisms underlying TbPO4 with emphasis on neurotransmitter systems. Exposure to 20 mg/L TbPO4 induced larval hyperactivity and perturbed the cholinergic system in zebrafish. Based on metabolomics related to neurotransmitters, dopamine (DA), serotonin (5-HT), and many of their precursors and metabolites were decreased in abundance by TbPO4. In addition, the expression levels of transcripts related to the synthesis, transport, receptor binding, and metabolism of DA and 5-HT were analyzed at the mRNA and protein levels. Transcript and protein levels for tyrosine hydroxylase (TH), the rate-limiting enzyme for DA synthesis, were down-regulated in larval fish. Monoamine oxidase (MAO), an enzyme that catabolizes monoamines DA and 5-HT, also reduced mRNA abundance. We hypothesize that DA synthesis and monoamine metabolism are associated with behavioral alterations. In addition, a mechanism for the disruption of neurotransmitter systems by TbPO4 may be the apoptosis of neurons. This study elucidates putative mechanisms and exposure risks to wildlife and humans by characterizing phosphatic REE-induced neurotoxicity in developing zebrafish.PMID:37597622 | DOI:10.1016/j.chemosphere.2023.139861

Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer

Sat, 19/08/2023 - 12:00
Cell Rep Med. 2023 Aug 10:101162. doi: 10.1016/j.xcrm.2023.101162. Online ahead of print.ABSTRACTMetabolic reprogramming is known as an emerging mechanism of chemotherapy resistance, but the metabolic signatures of pancreatic ductal adenocarcinomas (PDACs) remain unclear. Here, we characterize the metabolomic profile of PDAC organoids and classify them into glucomet-PDAC (high glucose metabolism levels) and lipomet-PDAC (high lipid metabolism levels). Glucomet-PDACs are more resistant to chemotherapy than lipomet-PDACs, and patients with glucomet-PDAC have a worse prognosis. Integrated analyses reveal that the GLUT1/aldolase B (ALDOB)/glucose-6-phosphate dehydrogenase (G6PD) axis induces chemotherapy resistance by remodeling glucose metabolism in glucomet-PDAC. Increased glycolytic flux, G6PD activity, and pyrimidine biosynthesis are identified in glucomet-PDAC with high GLUT1 and low ALDOB expression, and these phenotypes could be reversed by inhibiting GLUT1 expression or by increasing ALDOB expression. Pharmacological inhibition of GLUT1 or G6PD enhances the chemotherapy response of glucomet-PDAC. Our findings uncover potential metabolic heterogeneity related to differences in chemotherapy sensitivity in PDAC and develop a promising pharmacological strategy for patients with chemotherapy-resistant glucomet-PDAC through the combination of chemotherapy and GLUT1/ALDOB/G6PD axis inhibitors.PMID:37597521 | DOI:10.1016/j.xcrm.2023.101162

Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines

Sat, 19/08/2023 - 12:00
FEBS J. 2023 Aug 19. doi: 10.1111/febs.16931. Online ahead of print.ABSTRACTTransglutaminase 2 (TG2), mediating post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterized by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G-protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterize various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and to better understand the role of TG2 in cancer.PMID:37597264 | DOI:10.1111/febs.16931

Reduced iron and cobalt levels in response to curcumin supplementation are not responsible for the prolonged larval development and do not affect the oxidative stress tolerance and polyamine status of D. melanogaster

Sat, 19/08/2023 - 12:00
Biofactors. 2023 Aug 19. doi: 10.1002/biof.2000. Online ahead of print.ABSTRACTRecent reports indicated that the phytochemical curcumin possesses iron-chelating activity. Here, by employing the fruit fly Drosophila melanogaster, we conducted feeding studies supplementing curcumin or, as a control, the iron chelator bathophenanthroline (BPA). First, the absorption and further metabolization of dietary curcuminoids were proved by metabolomics analyses. Next, we found that 0.2% dietary curcumin, similar to BPA, lowered the iron but also the cobalt content, and to a lesser extent affected the manganese and zinc status. Supplementation during larval stages was required and sufficient for both compounds to elicit these alterations in adult animals. However, curcumin-induced retarded larval development was not attributable to the changed trace metal status. In addition, a reduction in the iron content of up to 70% by curcumin or BPA supplementation did not reduce heme-dependent catalase activity and tolerance toward H2 O2 in D. melanogaster. Moreover, polyamines were not influenced by curcumin treatment and decreased iron levels. This was confirmed for selected organs from 0.2% curcumin-treated mice, except for the spleen. Here, elevated spermidine level and concomitant upregulation of genes involved in polyamine production were associated with a putatively anemia-derived increased spleen mass. Our data underline that the metal-chelating property of curcumin needs to be considered in feeding studies.PMID:37597249 | DOI:10.1002/biof.2000

Multiplexed targeted analysis of polyunsaturated fatty acids and oxylipins using liquid chromatography-tandem mass spectrometry

Sat, 19/08/2023 - 12:00
STAR Protoc. 2023 Aug 17;4(3):102226. doi: 10.1016/j.xpro.2023.102226. Online ahead of print.ABSTRACTPolyunsaturated fatty acids (PUFAs) and their oxidized products (oxylipins) are important mediators in intra- and extra-cellular signaling. We describe here the simultaneous quantification of 163 PUFAs and oxylipins using liquid chromatography-mass spectrometry (LC-MS). The protocol details steps for PUFA purification from various biological materials, the conditions for LC-MS analysis, as well as quantitative approaches for data evaluation. We provide an example of PUFA quantification in animal tissue along with the bioinformatic protocol, enabling efficient inter-sample comparison and statistical analysis. For complete details on the use and execution of this protocol, please refer to Vila et al.,1 Costanza et al.,2 Blomme et al.,3 and Blomme et al.4.PMID:37597187 | DOI:10.1016/j.xpro.2023.102226

Metabolomics targets tissue-specific responses in alleviating the negative effects of salinity in tef (Eragrostis tef) during germination

Sat, 19/08/2023 - 12:00
Planta. 2023 Aug 19;258(3):67. doi: 10.1007/s00425-023-04224-x.ABSTRACTSalinity induced metabolite responses resulted in differential accumulation of flavonoids and antioxidant metabolites in shoots and roots suggesting improved antioxidant capacity in providing salt-adaptive phenotype of tef seedling. Tef [(Eragrostis tef) (Zucc.) Trotter] is an important 'cash crop' of Ethiopia grown mainly for human food, and development of elite tef cultivars with better performance is vital to Ethiopian farmers and breeders. Soil salinity is one of the key constraints that affects tef yield in the Ethiopian lowlands and Rift valley where cultivation of tef is limited. Being a minor crop, the responses of tef towards salinity is unknown. Salinity involves physiological and metabolite reprogramming that can have major impact on germination and seedling establishment. Here we evaluate the in vitro effect of NaCl on tef germination and associate this with metabolomic approaches to suggest salt tolerance mechanisms. In this study, 19 tef varieties were screened for NaCl tolerance and were investigated using untargeted metabolomics. Screened tef varieties showed differential germination rates with NaCl treatment varying from < 20 to 100%. Viable seedlings exposed to NaCl exhibited purple-red pigment accumulation in the roots except for Beten and Tullu nasy varieties. Metabolite comparisons between shoots and roots showed significant differences and, in particular, roots of salt tolerant tef varieties accumulated flavonoid derivatives as well as sugars and cell wall associated metabolites. These metabolic changes were correlated with patterns of antioxidant capacities and total flavonoid content in shoots and roots and suggested a mitigating response by tef to salinity. Our study highlights the role of flavonoid accumulation following salt stress on tef seedlings and further these findings could be used as targets for selective tef breeding.PMID:37597049 | DOI:10.1007/s00425-023-04224-x

Immunogenic cell death (ICD) enhancers-Drugs that enhance the perception of ICD by dendritic cells

Sat, 19/08/2023 - 12:00
Immunol Rev. 2023 Aug 19. doi: 10.1111/imr.13269. Online ahead of print.ABSTRACTThe search for immunostimulatory drugs applicable to cancer immunotherapy may profit from target-agnostic methods in which agents are screened for their functional impact on immune cells cultured in vitro without any preconceived idea on their mode of action. We have built a synthetic mini-immune system in which stressed and dying cancer cells (derived from standardized cell lines) are confronted with dendritic cells (DCs, derived from immortalized precursors) and CD8+ T-cell hybridoma cells expressing a defined T-cell receptor. Using this system, we can identify three types of immunostimulatory drugs: (i) pharmacological agents that stimulate immunogenic cell death (ICD) of malignant cells; (ii) drugs that act on DCs to enhance their response to ICD; and (iii) drugs that act on T cells to increase their effector function. Here, we focus on strategies to develop drugs that enhance the perception of ICD by DCs and to which we refer as "ICD enhancers." We discuss examples of ICD enhancers, including ligands of pattern recognition receptors (exemplified by TLR3 ligands that correct the deficient function of DCs lacking FPR1) and immunometabolic modifiers (exemplified by hexokinase-2 inhibitors), as well as methods for target deconvolution applicable to the mechanistic characterization of ICD enhancers.PMID:37596984 | DOI:10.1111/imr.13269

Long-term rain exclusion in a Mediterranean forest: response of physiological and physico-chemical traits of Quercus pubescens across seasons

Sat, 19/08/2023 - 12:00
Plant J. 2023 Aug 19. doi: 10.1111/tpj.16424. Online ahead of print.ABSTRACTWith climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.PMID:37596909 | DOI:10.1111/tpj.16424

Increased serum α-tocopherol acetate mediated by gut microbiota ameliorates alveolar bone loss through the STAT3 signalling pathway in diabetic periodontitis

Sat, 19/08/2023 - 12:00
J Clin Periodontol. 2023 Aug 19. doi: 10.1111/jcpe.13862. Online ahead of print.ABSTRACTAIM: To evaluate whether and how gut microbiota-meditated metabolites regulate alveolar bone homeostasis in diabetic periodontitis (DP).MATERIALS AND METHODS: Lactobacillus casei (L. casei) was employed as a positive modulator of gut microbiota in DP mice. The destruction of alveolar bone was evaluated. Untargeted metabolomics was conducted to screen out the pivotal metabolites. A co-housing experiment was conducted to determine the connection between the gut microbiota and alpha-tocopherol acetate (α-TA). α-TA was applied to DP mice to investigate its effect against alveolar bone loss. Human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (HGFs) were extracted for the in vitro experiment. Transcriptomic analysis and immunohistochemistry were performed to detect the major affected signalling pathways.RESULTS: Positive regulation of the gut microbiota significantly attenuated alveolar bone loss and increased the serum α-TA level. The alteration in gut microbiota composition could affect the serum α-T (the hydrolysates of α-TA) level. α-TA could alleviate alveolar bone destruction in DP mice and α-T exert beneficial effects on hPDLCs and HGFs. Mechanistically, the STAT3 signalling pathway was the pivotal pathway involved in the protective role of α-TA.CONCLUSIONS: The gut microbiota-α-TA-STAT3 axis plays an important role in the regulation of diabetic alveolar bone homeostasis.PMID:37596824 | DOI:10.1111/jcpe.13862

HIV infection in adult Ugandans with new-onset type 2 diabetes: exploring its influence on the anthropometric and metabolic profile

Fri, 18/08/2023 - 12:00
AIDS Res Ther. 2023 Aug 18;20(1):56. doi: 10.1186/s12981-023-00553-9.ABSTRACTOBJECTIVE: HIV infection increases the risk of type 2 diabetes and may influence its phenotypic profile. In this study, we aimed to compare the anthropometric and metabolic characteristics of HIV-infected and uninfected adult Ugandans with new-onset type 2 diabetes to evaluate the influence of HIV infection on specific surrogate markers of adiposity, insulin resistance, and pancreatic beta-cell function.METHODS: We consecutively recruited 500 HIV-infected and uninfected adult Ugandans with new-onset type 2 diabetes (diagnosed in < 3 months) from seven tertiary hospitals over a 20-month period and compared their anthropometric and metabolic characteristics to identify any significant differences.RESULTS: Of the 500 participants with new-onset type 2 diabetes, 59 (11.8%) had a self-reported history of HIV infection. Compared with HIV-uninfected participants with type 2 diabetes, participants with HIV infection and type 2 diabetes had a lower median (IQR) hip circumference (97.8 [91.0-106.0] cm vs. 104.0 [96.0-112.0], p = 0.002) and visceral fat level (8 [6-11] vs. 10 [7-12], p < 0.001) assessed using bioimpedance analysis. No statistically significant difference was noted with the markers of pancreatic beta-cell function (fasting, 30-minute, and 120-minute C-peptide concentrations, oral insulinogenic index, and homeostatic model assessment 2-beta cell function) and insulin resistance (homeostatic model assessment 2-insulin resistance) between both groups.CONCLUSION: In our study population, HIV infection was not associated with increased adiposity, pancreatic beta-cell function, and insulin resistance. Large prospective studies are needed to investigate the effect of HIV on the pathogenesis of type 2 diabetes in adult Ugandans.PMID:37596620 | PMC:PMC10439581 | DOI:10.1186/s12981-023-00553-9

Influenza A virus infection disrupts oligodendrocyte homeostasis and alters the myelin lipidome in the adult mouse

Fri, 18/08/2023 - 12:00
J Neuroinflammation. 2023 Aug 19;20(1):190. doi: 10.1186/s12974-023-02862-2.ABSTRACTBACKGROUND: Recent data suggest that myelin may be altered by physiological events occurring outside of the central nervous system, which may cause changes to cognition and behavior. Similarly, peripheral infection by non-neurotropic viruses is also known to evoke changes to cognition and behavior.METHODS: Mice were inoculated with saline or influenza A virus. Bulk RNA-seq, lipidomics, RT-qPCR, flow cytometry, immunostaining, and western blots were used to determine the effect of infection on OL viability, protein expression and changes to the lipidome. To determine if microglia mediated infection-induced changes to OL homeostasis, mice were treated with GW2580, an inhibitor of microglia activation. Additionally, conditioned medium experiments using primary glial cell cultures were also used to test whether secreted factors from microglia could suppress OL gene expression.RESULTS: Transcriptomic and RT-qPCR analyses revealed temporal downregulation of OL-specific transcripts with concurrent upregulation of markers characteristic of cellular stress. OLs isolated from infected mice had reduced cellular expression of myelin proteins compared with those from saline-inoculated controls. In contrast, the expression of these proteins within myelin was not different between groups. Similarly, histological and immunoblotting analysis performed on various brain regions indicated that infection did not alter OL viability, but increased expression of a cellular stress marker. Shot-gun lipidomic analysis revealed that infection altered the lipid profile within the prefrontal cortex as well as in purified brain myelin and that these changes persisted after recovery from infection. Treatment with GW2580 during infection suppressed the expression of genes associated with glial activation and partially restored OL-specific transcripts to baseline levels. Finally, conditioned medium from activated microglia reduced OL-gene expression in primary OLs without altering their viability.CONCLUSIONS: These findings show that peripheral respiratory viral infection with IAV is capable of altering OL homeostasis and indicate that microglia activation is likely involved in the process.PMID:37596606 | PMC:PMC10439573 | DOI:10.1186/s12974-023-02862-2

Seasonal patterns in microbial carbon and iron transporter expression in the Southern Ocean

Fri, 18/08/2023 - 12:00
Microbiome. 2023 Aug 19;11(1):187. doi: 10.1186/s40168-023-01600-3.ABSTRACTBACKGROUND: Heterotrophic microbes in the Southern Ocean are challenged by the double constraint of low concentrations of organic carbon (C) and iron (Fe). These essential elements are tightly coupled in cellular processes; however, the prokaryotic requirements of C and Fe under varying environmental settings remain poorly studied. Here, we used a combination of metatranscriptomics and metaproteomics to identify prokaryotic membrane transporters for organic substrates and Fe in naturally iron-fertilized and high-nutrient, low-chlorophyll waters of the Southern Ocean during spring and late summer.RESULTS: Pronounced differences in membrane transporter profiles between seasons were observed at both sites, both at the transcript and protein level. When specific compound classes were considered, the two approaches revealed different patterns. At the transcript level, seasonal patterns were only observed for subsets of genes belonging to each transporter category. At the protein level, membrane transporters of organic compounds were relatively more abundant in spring as compared to summer, while the opposite pattern was observed for Fe transporters. These observations suggest an enhanced requirement for organic C in early spring and for Fe in late summer. Mapping transcripts and proteins to 50 metagenomic-assembled genomes revealed distinct taxon-specific seasonal differences pointing to potentially opportunistic clades, such as Pseudomonadales and Nitrincolaceae, and groups with a more restricted repertoire of expressed transporters, such as Alphaproteobacteria and Flavobacteriaceae.CONCLUSION: The combined investigations of C and Fe membrane transporters suggest seasonal changes in the microbial requirements of these elements under different productivity regimes. The taxon-specific acquisition strategies of different forms of C and Fe illustrate how diverse microbes could shape transcript and protein expression profiles at the community level at different seasons. Our results on the C- and Fe-related metabolic capabilities of microbial taxa provide new insights into their potential role in the cycling of C and Fe under varying nutrient regimes in the Southern Ocean. Video Abstract.PMID:37596690 | DOI:10.1186/s40168-023-01600-3

BLINK enables ultrafast tandem mass spectrometry cosine similarity scoring

Fri, 18/08/2023 - 12:00
Sci Rep. 2023 Aug 18;13(1):13462. doi: 10.1038/s41598-023-40496-9.ABSTRACTMetabolomics has a long history of using cosine similarity to match experimental tandem mass spectra to databases for compound identification. Here we introduce the Blur-and-Link (BLINK) approach for scoring cosine similarity. By bypassing fragment alignment and simultaneously scoring all pairs of spectra using sparse matrix operations, BLINK is over 3000 times faster than MatchMS, a widely used loop-based alignment and scoring implementation. Using a similarity cutoff of 0.7, BLINK and MatchMS had practically equivalent identification agreement, and greater than 99% of their scores and matching ion counts were identical. This performance improvement can enable calculations to be performed that would typically be limited by time and available computational resources.PMID:37596301 | DOI:10.1038/s41598-023-40496-9

One-carbon metabolizing enzyme ALDH1L1 influences mitochondrial metabolism through 5-aminoimidazole-4-carboxamide ribonucleotide accumulation and serine depletion, contributing to tumor suppression

Fri, 18/08/2023 - 12:00
Sci Rep. 2023 Aug 18;13(1):13486. doi: 10.1038/s41598-023-38142-5.ABSTRACTTumor cells generally require large amounts of nucleotides, and thus activate de novo purine synthesis (dnPS). In the dnPS reactions, 10-formyltetrahydorofolate (10-fTHF) supplied by one-carbon metabolism is utilized as a formyl group donor. We focused on aldehyde dehydrogenase 1 family member L1 (ALDH1L1), which metabolizes 10-fTHF to tetrahydrofolate and whose expression is often attenuated in hepatocellular carcinoma (HCC). We generated ALDH1L1-expressing HuH-7 cells to perform metabolome analysis and found that intracellular levels of serine were reduced and glycine was increased. In addition, 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP), a dnPS intermediate, accumulated due to the consumption of 10-fTHF by ALDH1L1, which inhibited ZMP formylation. Importantly, ALDH1L1-expressing cells showed reduced ZMP sensitivity and higher mitochondrial activity. The suppression of mitochondrial serine catabolism by ALDH1L1 expression was speculated to be closely related to this phenotype. Gene set enrichment analysis utilizing The Cancer Genome Atlas data revealed that genes related to oxidative phosphorylation were enriched in HCC patients with high ALDH1L1 expression. Moreover, drug sensitivity data analysis demonstrated that HCC cell lines with low expression of ALDH1L1 were sensitive to ZMP and cordycepin, a structural analog of ZMP and AMP. Our study revealed that ZMP and AMP analogs might be effective in the pharmacotherapy of HCC patients with low expression of ALDH1L1.PMID:37596270 | DOI:10.1038/s41598-023-38142-5

Pages