Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolic remission precedes possible weight regain after gastric bypass surgery

Thu, 17/08/2023 - 12:00
Obesity (Silver Spring). 2023 Aug 16. doi: 10.1002/oby.23864. Online ahead of print.ABSTRACTOBJECTIVE: Some patients regain weight to a variable extent from 1 year after Roux-en-Y gastric bypass surgery (RYGB), though rarely reaching preoperative values. The aim of the present study was to investigate whether, when, and to what extent metabolic remission occurs.METHODS: Fasting metabolite and lipid profiles were determined in blood plasma collected from a nonrandomized intervention study involving 148 patients before RYGB and at 2, 12, and 60 months post RYGB. Both short-term and long-term alterations in metabolism were assessed. Anthropometric and clinical variables were assessed at all study visits.RESULTS: This study found that the vast majority of changes in metabolite levels occurred during the first 2 months post RYGB. Notably, thereafter the metabolome started to return toward the presurgical state. Consequently, a close-to-presurgical metabolome was observed at the time when patients reached their lowest weight and glucose level. Lipids with longer acyl chains and a higher degree of unsaturation were altered more dramatically compared with shorter and more saturated lipids, suggesting a systematic and reversible lipid remodeling.CONCLUSIONS: Remission of the metabolic state was observed prior to notable weight regain. Further and more long-term studies are required to assess whether the extent of metabolic remission predicts future weight regain and glycemic deterioration.PMID:37587639 | DOI:10.1002/oby.23864

WEIGHT REGAIN AND THE METABOLIC PROFILE OF WOMEN IN THE POSTOPERATIVE PERIOD OF BARIATRIC SURGERY: A MULTIVARIATE ANALYSIS

Wed, 16/08/2023 - 12:00
Arq Bras Cir Dig. 2023 Aug 14;36:e1755. doi: 10.1590/0102-672020230037e1755. eCollection 2023.ABSTRACTBACKGROUND: Weight regain in the postoperative period after bariatric surgery is directly related to the relapse of preoperative comorbidities and a negative impact on the patients' biochemical profile.AIMS: To assess the metabolic impact of weight regain on preoperative comorbidities and on patients' biochemical profiles, in order to show the impact of the complications on the metabolic outcomes of bariatric surgery.METHODS: A retrospective study was carried out with 75 women in the late postoperative period of bariatric surgery who presented pathological weight regain (≥20% of the maximum weight loss). Data of interest consisted of glycemic, lipid, and inflammatory profile measurements at three different moments of evaluation: preoperative period, at the weight nadir (minimum weight), and after weight regain. A multivariate analysis was performed.RESULTS: The mean age was 46.39±12.09 years. Preoperative body mass index was 40.10±4.11 kg/m2. There was an overall increase of 3.36 points in the mean body mass index between the nadir and after regain: from 26.30±3.9 kg/m2 to 29.66±4.66 kg/m2. The mean time to reach the nadir was 18±7.6 months, with an average percentage of excess weight loss of 91.08±11.8%. The median time for pathological weight regain was 48 months, and the mean regain amongst the sample was 8.85±5.65 kg. There was a significant correlation between pathological weight regain and levels of insulin (r=0.351; p<0.011), C-peptide (r=0.303; p<0.011), C-reactive protein (r=0.402; p<0.001), and vitamin D (r=-0.435; p<0.001), the last two being the most influenced by the percentage of weight regained.CONCLUSIONS: The pathological weight regain in the postoperative period of bariatric surgery results in losses in the patients' metabolic and inflammatory profiles. However, the biochemical benefits are sustained up to the preoperative levels of the parameters analyzed.PMID:37585909 | DOI:10.1590/0102-672020230037e1755

Integrated lipidomic and transcriptomic analysis reveals diacylglycerol accumulation in olive of Longnan (China)

Wed, 16/08/2023 - 12:00
PeerJ. 2023 Aug 11;11:e15724. doi: 10.7717/peerj.15724. eCollection 2023.ABSTRACTBACKGROUND: Olive (Olea europaea L.) oil accumulate more diacylglycerols (DAG) than mostly vegetable oils. Unsaturated fatty acids-enriched DAG consumption enhanced wellness in subjects. However, the mechanism of DAG accumulation is not yet fully understood.METHODS: In this study, gene network of DAG accumulation and fatty acid composition in the two olive mesocarps ("Chenggu 32" (CG) and "Koroneiki" (QJ)) were investigated by integrating lipidome and transcriptome techniques.RESULTS: A total of 1,408 lipid molecules were identified by lipidomic analysis in olive mesocarp, of which DAG (DAG36:3, DAG36:4 and DAG36:5) showed higher content, and triacylglycerols (TAG54:3, TAG54:4) exhibited opposite trend in CG. Specifically, DAG was rich in polyunsaturated fatty acids (especially C18:2) at the sn-2 position, which was inconsistent with TAG at the same positions (Primarily C18:1). Transcriptomic analysis revealed that phospholipase C (NPC, EC 3.1.4.3) were up-regulated relative to QJ, whereas diacylglycerol kinase (ATP) (DGK, EC 2.7.1.107), diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), and phospholipid: diacylglycerol acyltransferase (PDAT, EC 2.3.1.158) were down-regulated.CONCLUSION: We speculated that the non-acyl coenzyme A pathway played a significant role in DAG biosynthesis. Additionally, fatty acyl-ACP thioesterase B (FATB, EC 3.1.2.14), stearoyl [acyl-carrier-protein] 9-desaturase (SAD, EC 1.14.19.2) and omega-6 fatty acid desaturase (FAD2, EC 1.14.19.6) were highly expressed in CG and may be involved in regulating fatty acid composition. Meanwhile, phospholipase A1 (LCAT, EC 3.1.1.32) involved in the acyl editing reaction facilitated PUFA linkage at the sn-2 position of DAG. Our findings provide novel insights to increase the DAG content, improve the fatty acid composition of olive oil, and identify candidate genes for the production of DAG-rich oils.PMID:37583911 | PMC:PMC10424668 | DOI:10.7717/peerj.15724

Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives

Wed, 16/08/2023 - 12:00
Chemosphere. 2023 Aug 14:139825. doi: 10.1016/j.chemosphere.2023.139825. Online ahead of print.ABSTRACTPesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.PMID:37586498 | DOI:10.1016/j.chemosphere.2023.139825

Boosting NAD preferentially blunts Th17 inflammation via arginine biosynthesis and redox control in healthy and psoriasis subjects

Wed, 16/08/2023 - 12:00
Cell Rep Med. 2023 Aug 9:101157. doi: 10.1016/j.xcrm.2023.101157. Online ahead of print.ABSTRACTTo evaluate whether nicotinamide adenine dinucleotide-positive (NAD+) boosting modulates adaptive immunity, primary CD4+ T cells from healthy control and psoriasis subjects were exposed to vehicle or nicotinamide riboside (NR) supplementation. NR blunts interferon γ (IFNγ) and interleukin (IL)-17 secretion with greater effects on T helper (Th) 17 polarization. RNA sequencing (RNA-seq) analysis implicates NR blunting of sequestosome 1 (sqstm1/p62)-coupled oxidative stress. NR administration increases sqstm1 and reduces reactive oxygen species (ROS) levels. Furthermore, NR activates nuclear factor erythroid 2-related factor 2 (Nrf2), and genetic knockdown of nrf2 and the Nrf2-dependent gene, sqstm1, diminishes NR amelioratory effects. Metabolomics analysis identifies that NAD+ boosting increases arginine and fumarate biosynthesis, and genetic knockdown of argininosuccinate lyase ameliorates NR effects on IL-17 production. Hence NR via amino acid metabolites orchestrates Nrf2 activation, augments CD4+ T cell antioxidant defenses, and attenuates Th17 responsiveness. Oral NR supplementation in healthy volunteers similarly increases serum arginine, sqstm1, and antioxidant enzyme gene expression and blunts Th17 immune responsiveness, supporting evaluation of NAD+ boosting in CD4+ T cell-linked inflammation.PMID:37586364 | DOI:10.1016/j.xcrm.2023.101157

Integrated transcriptomic and metabolomic analysis reveals the response of pearl oyster (Pinctada fucata martensii) to long-term hypoxia

Wed, 16/08/2023 - 12:00
Mar Environ Res. 2023 Aug 10;191:106133. doi: 10.1016/j.marenvres.2023.106133. Online ahead of print.ABSTRACTThe frequency at which organisms are exposed to hypoxic conditions in aquatic environments is increasing due to coastal eutrophication and global warming. To reveal the effects of long-term hypoxic stress on metabolic changes of pearl oyster, commonly known as Pinctada (Pinctada fucata martensii), the present study performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites following 25 days hypoxia challenge. Transcriptome analysis detected 1108 differentially expressed genes (DEGs) between the control group and the hypoxia group. The gene ontology (GO) analysis of DEGs revealed that they are significantly enriched in functions such as "microtubule-based process", "histone (H3-K4, H3-K27, and H4-K20) trimethylation", "histone H4 acetylation", "kinesin complex", and "ATPase activity", and KEGG pathway functions, such as "DNA replication", "Apoptosis", and "MAPK signaling pathways". Metabolome analysis identified 68 significantly different metabolites from all identified metabolites, and associated with 25 metabolic pathways between the control and hypoxia groups. These pathways included aminoacyl-tRNA biosynthesis, arginine and proline metabolism, and phenylalanine metabolism. Our integrated analysis suggested that pearl oysters were subject to oxidative stress, apoptosis, immune inhibition, and neuronal excitability reduction under long-term hypoxic conditions. We also found a remarkable depression in a variety of biological functions under long-term hypoxia, including metabolic rates, biomineralization activities, and the repression of reorganization of the cytoskeleton and cell metabolism. These findings provide a basis for elucidating the mechanisms used by marine bivalves to cope with long-term hypoxic stress.PMID:37586225 | DOI:10.1016/j.marenvres.2023.106133

Comparative stress response assessment of PFOS and its alternatives, F-53B and OBS, in wheat: An insight of toxic mechanisms and relative magnitudes

Wed, 16/08/2023 - 12:00
Ecotoxicol Environ Saf. 2023 Aug 14;263:115333. doi: 10.1016/j.ecoenv.2023.115333. Online ahead of print.ABSTRACTEmerging alternatives to perfluorooctane sulfonate (PFOS), including 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and p-perfluorous nonenoxybenzene sulfonate (OBS), have been widely detected in the real environment as PFOS restriction. However, the toxicity in plants and the underlying mechanism of F-53B and OBS remain scarce, especially compared to PFOS. PFOS and their emerging alternatives pose significant potential risks to food, especially for crops, safety and human health with the great convenience of high chemical stability. Germination toxicity, oxidative stress biomarkers, and metabolomics were used to compare the relative magnitudes of toxicity of PFOS and its alternatives in wheat (Triticum aestivum L.). PFOS, F-53B, and OBS inhibited wheat germination compared to the control group, with germination inhibition rates of 45.6%, 53.5%, and 64.3% at 400 μM PFOS, F-53B, and OBS exposure, respectively. Moreover, oxidative stress biomarker changes were observed in PFOS, F-53B, and OBS, with OBS being more pronounced. The chlorophyll concentrations in wheat shoots increased, and the anthocyanin concentration decreased along with the increased exposure concentration. Superoxide dismutase (SOD) activity increased in wheat root but decreased in the shoot. Peroxidase (POD) activity and malondialdehyde (MDA) concentration increased, whereas catalase (CAT) activity decreased. Regarding metabolomics, PFOS, F-53B, and OBS exposure (10 μM) significantly altered 85, 133, and 134 metabolites, respectively. According to KEGG enrichment analysis, F-53B specifically affects lipid metabolism, whereas OBS causes an imbalance in amino acid and carbohydrate metabolism. These findings suggested that PFOS, F-53B, and OBS have distinct toxic mechanisms. Thus, our results indicated that the relative size of the toxicity in wheat is as follows: OBS > F-53B > PFOS, and this finding provides a new reference basis for the phytotoxicity assessment of F-53B and OBS.PMID:37586196 | DOI:10.1016/j.ecoenv.2023.115333

Identification of salivary metabolic biomarker signatures for oral tongue squamous cell carcinoma

Wed, 16/08/2023 - 12:00
Arch Oral Biol. 2023 Aug 3;155:105780. doi: 10.1016/j.archoralbio.2023.105780. Online ahead of print.ABSTRACTOBJECTIVE: To identify the salivary metabolites associated with squamous cell carcinoma of the tongue to develop easy and non-invasive potential biomarkers for disease diagnosis.DESIGN: Initially, the study utilized untargeted metabolomics to analyze 20 samples of tongue squamous cell carcinoma and 10 control samples. The objective was to determine the salivary metabolites that exhibited differential expression in tongue squamous cell carcinoma. Then the selected metabolites were validated using targeted metabolomics in saliva samples of 100 patients diagnosed with squamous cell carcinoma of the tongue, as well as 30 healthy control individuals.RESULTS: From the analysis of untargeted metabolomics, 10 metabolites were selected as potential biomarkers. In the subsequent targeted metabolomics study on these selected metabolites, it was observed that N-Acetyl-D-glucosamine, L-Pipecolic acid, L-Carnitine, Phosphorylcholine, and Deoxyguanosine exhibited significant differences. The receiver operating characteristic curve analysis indicates a combination of three important metabolites such as N-Acetyl-D-glucosamine, L-Pipecolic acid and L-Carnitine provided the best prediction with an area under the curve of 0.901.CONCLUSIONS: The present result reveals that the N-Acetyl-D-glucosamine, L-Pipecolic acid and L-Carnitine are the signature diagnostic biomarkers for oral tongue squamous cell carcinoma. These findings can be used to develop a rapid and non-invasive method for disease monitoring and prognosis in oral tongue cancer.PMID:37586141 | DOI:10.1016/j.archoralbio.2023.105780

Multilayer omics reveals the molecular mechanism of early infection of Clonorchis sinensis juvenile

Wed, 16/08/2023 - 12:00
Parasit Vectors. 2023 Aug 16;16(1):285. doi: 10.1186/s13071-023-05891-1.ABSTRACTBACKGROUND: Clonorchiasis remains a non-negligible global zoonosis, causing serious socioeconomic burdens in endemic areas. Clonorchis sinensis infection typically elicits Th1/Th2 mixed immune responses during the course of biliary injury and periductal fibrosis. However, the molecular mechanism by which C. sinensis juvenile initially infects the host remains poorly understood.METHODS: The BALB/c mouse model was established to study early infection (within 7 days) with C. sinensis juveniles. Liver pathology staining and observation as well as determination of biochemical enzymes, blood routine and cytokines in blood were conducted. Furthermore, analysis of liver transcriptome, proteome and metabolome changes was performed using multi-omics techniques. Statistical analyses were performed using Student's t-test.RESULTS: Histopathological analysis revealed that liver injury, characterized by collagen deposition and inflammatory cell infiltration, occurred as early as 24 h of infection. Blood indicators including ALT, AST, WBC, CRP and IL-6 indicated that both liver injury and systemic inflammation worsened as the infection progressed. Proteomic data showed that apoptosis and junction-related pathways were enriched within 3 days of infection, indicating the occurrence of liver injury. Furthermore, proteomic and transcriptomic analysis jointly verified that the detoxification and antioxidant defense system was activated by enrichment of glutathione metabolism and cytochrome P450-related pathways in response to acute liver injury. Proteomic-based GO analysis demonstrated that biological processes such as cell deformation, proliferation, migration and wound healing occurred in the liver during the early infection. Correspondingly, transcriptomic results showed significant enrichment of cell cycle pathway on day 3 and 7. In addition, the KEGG analysis of multi-omics data demonstrated that numerous pathways related to immunity, inflammation, tumorigenesis and metabolism were enriched in the liver. Besides, metabolomic screening identified several metabolites that could promote inflammation and hepatobiliary periductal fibrosis, such as CA7S.CONCLUSIONS: This study revealed that acute inflammatory injury was rapidly triggered by initial infection by C. sinensis juveniles in the host, accompanied by the enrichment of detoxification, inflammation, fibrosis, tumor and metabolism-related pathways in the liver, which provides a new perspective for the early intervention and therapy of clonorchiasis.PMID:37587524 | DOI:10.1186/s13071-023-05891-1

Sickle Cell Disease Treatment with Arginine Therapy (STArT): study protocol for a phase 3 randomized controlled trial

Wed, 16/08/2023 - 12:00
Trials. 2023 Aug 17;24(1):538. doi: 10.1186/s13063-023-07538-z.ABSTRACTBACKGROUND: Despite substantial illness burden and healthcare utilization conferred by pain from vaso-occlusive episodes (VOE) in children with sickle cell disease (SCD), disease-modifying therapies to effectively treat SCD-VOE are lacking. The aim of the Sickle Cell Disease Treatment with Arginine Therapy (STArT) Trial is to provide definitive evidence regarding the efficacy of intravenous arginine as a treatment for acute SCD-VOE among children, adolescents, and young adults.METHODS: STArT is a double-blind, placebo-controlled, randomized, phase 3, multicenter trial of intravenous arginine therapy in 360 children, adolescents, and young adults who present with SCD-VOE. The STArT Trial is being conducted at 10 sites in the USA through the Pediatric Emergency Care Applied Research Network (PECARN). Enrollment began in 2021 and will continue for 5 years. Within 12 h of receiving their first dose of intravenous opioids, enrolled participants are randomized 1:1 to receive either (1) a one-time loading dose of L-arginine (200 mg/kg with a maximum of 20 g) administered intravenously followed by a standard dose of 100 mg/kg (maximum 10 g) three times a day or (2) a one-time placebo loading dose of normal saline followed by normal saline three times per day at equivalent volumes and duration as the study drug. Participants, research staff, and investigators are blinded to the participant's randomization. All clinical care is provided in accordance with the institution-specific standard of care for SCD-VOE based on the 2014 National Heart, Lung, and Blood Institute guidelines. The primary outcome is time to SCD-VOE pain crisis resolution, defined as the time (in hours) from study drug delivery to the last dose of parenteral opioid delivery. Secondary outcomes include total parental opioid use and patient-reported outcomes. In addition, the trial will characterize alterations in the arginine metabolome and mitochondrial function in children with SCD-VOE.DISCUSSION: Building on the foundation of established relationships between emergency medicine providers and hematologists in a multicenter research network to ensure adequate participant accrual, the STArT Trial will provide definitive information about the efficacy of intravenous arginine for the treatment of SCD-VOE for children.TRIAL REGISTRATION: The STArT Trial was registered in ClinicalTrials.gov on April 9, 2021, and enrollment began on June 21, 2021 (NCT04839354).PMID:37587492 | DOI:10.1186/s13063-023-07538-z

Warburg effect enhanced by AKR1B10 promotes acquired resistance to pemetrexed in lung cancer-derived brain metastasis

Wed, 16/08/2023 - 12:00
J Transl Med. 2023 Aug 16;21(1):547. doi: 10.1186/s12967-023-04403-0.ABSTRACTBACKGROUND: Resistance to pemetrexed (PEM), a rare chemotherapeutic agent that can efficiently cross the blood-brain barrier, limits the therapeutic efficacy for patients with lung cancer brain metastasis (BM). Aldo-keto reductase family 1 B10 (AKR1B10) was recently found to be elevated in lung cancer BM. The link between AKR1B10 and BM-acquired PEM is unknown.METHODS: PEM drug-sensitivity was assessed in the preclinical BM model of PC9 lung adenocarcinoma cells and the BM cells with or without AKR1B10 interference in vitro and in vivo. Metabolic reprogramming of BM attributed to AKR1B10 was identified by chromatography-mass spectrometry (GC-MS) metabolomics, and the mechanism of how AKR1B10 mediates PEM chemoresistance via a way of modified metabolism was revealed by RNA sequencing as well as further molecular biology experimental approaches.RESULTS: The lung cancer brain metastatic subpopulation cells (PC9-BrM3) exhibited significant resistance to PEM and silencing AKR1B10 in PC9-BrM3 increased the PEM sensitivity in vitro and in vivo. Metabolic profiling revealed that AKR1B10 prominently facilitated the Warburg metabolism characterized by the overproduction of lactate. Glycolysis regulated by AKR1B10 is vital for the resistance to PEM. In mechanism, AKR1B10 promoted glycolysis by regulating the expression of lactate dehydrogenase (LDHA) and the increased lactate, acts as a precursor that stimulates histone lactylation (H4K12la), activated the transcription of CCNB1 and accelerated the DNA replication and cell cycle.CONCLUSIONS: Our finding demonstrates that AKR1B10/glycolysis/H4K12la/CCNB1 promotes acquired PEM chemoresistance in lung cancer BM, providing novel strategies to sensitize PEM response in the treatment of lung cancer patients suffering from BM.PMID:37587486 | DOI:10.1186/s12967-023-04403-0

Metabolomics-directed nanotechnology in viral diseases management: COVID-19 a case study

Wed, 16/08/2023 - 12:00
Pharmacol Rep. 2023 Aug 16. doi: 10.1007/s43440-023-00517-w. Online ahead of print.ABSTRACTThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently regarded as the twenty-first century's plague accounting for coronavirus disease 2019 (COVID-19). Besides its reported symptoms affecting the respiratory tract, it was found to alter several metabolic pathways inside the body. Nanoparticles proved to combat viral infections including COVID-19 to demonstrate great success in developing vaccines based on mRNA technology. However, various types of nanoparticles can affect the host metabolome. Considering the increasing proportion of nano-based vaccines, this review compiles and analyses how COVID-19 and nanoparticles affect lipids, amino acids, and carbohydrates metabolism. A search was conducted on PubMed, ScienceDirect, Web of Science for available information on the interrelationship between metabolomics and immunity in the context of SARS-CoV-2 infection and the effect of nanoparticles on metabolite levels. It was clear that SARS-CoV-2 disrupted several pathways to ensure a sufficient supply of its building blocks to facilitate its replication. Such information can help in developing treatment strategies against viral infections and COVID-19 based on interventions that overcome these metabolic changes. Furthermore, it showed that even drug-free nanoparticles can exert an influence on biological systems as evidenced by metabolomics.PMID:37587394 | DOI:10.1007/s43440-023-00517-w

Detection of botanical adulterants in saffron powder

Wed, 16/08/2023 - 12:00
Anal Bioanal Chem. 2023 Aug 17. doi: 10.1007/s00216-023-04853-x. Online ahead of print.ABSTRACTSaffron is a unique spice obtained by drying stigmas of saffron flowers (Crocus sativus L.). Due to its high price, economically motivated adulteration occurs relatively often. The presented study aimed to develop an effective strategy for the detection of the following potential botanical adulterants used for a saffron substitution or dilution: safflower (Carthamus tinctorius L.), calendula (Calendula officinalis L.), turmeric (Curcuma longa L.), achiote (Bixa orellana L.), red pepper (Capsicum spp.), mountain arnica (Arnica montana L.), beet (Beta vulgaris L.), and pomegranate (Punica granatum L.). A non-target screening strategy based on ultra-high performance reverse-phase liquid chromatography coupled to tandem high-resolution mass spectrometry (UHPLC-HRMS/MS) was employed for the analysis of an aqueous ethanol plant extract. By using multivariate statistical methods, principal components analysis (PCA), and partial least squares discriminant analysis (PLS-DA), for processing the generated "chemical fingerprints," metabolites unique to the investigated plants could be identified. To enable routine saffron authenticity control by target screening, an internal spectral database was developed; currently, it involves 82 unique markers. In this way, the detection addition as low as 1% (w/w) of all analyzed botanical adulterants in admixture with saffron was possible. The developed method was used to control 7 saffron powder samples from the Czech market, and none of the monitored adulterants were confirmed.PMID:37587313 | DOI:10.1007/s00216-023-04853-x

Linking MS1 and MS2 signals in positive and negative modes of LC-HRMS in untargeted metabolomics using the ROIMCR approach

Wed, 16/08/2023 - 12:00
Anal Bioanal Chem. 2023 Aug 17. doi: 10.1007/s00216-023-04893-3. Online ahead of print.ABSTRACTData-independent acquisition (DIA) mode in liquid chromatography (LC) high-resolution mass spectrometry (HRMS) has emerged as a powerful strategy in untargeted metabolomics for detecting a broad range of metabolites. However, the use of this approach also represents a challenge in the analysis of the large datasets generated. The regions of interest (ROI) multivariate curve resolution (MCR) approach can help in the identification and characterization of unknown metabolites in their mixtures by linking their MS1 and MS2 DIA spectral signals. In this study, it is proposed for the first time the analysis of MS1 and MS2 DIA signals in positive and negative electrospray ionization modes simultaneously to increase the coverage of possible metabolites present in biological systems. In this work, this approach has been tested for the detection and identification of the amino acids present in a standard mixture solution and in fish embryo samples. The ROIMCR analysis allowed for the identification of all amino acids present in the analyzed mixtures in both positive and negative modes. The methodology allowed for the direct linking and correspondence between the MS signals in their different acquisition modes. Overall, this approach confirmed the advantages and possibilities of performing the proposed ROIMCR simultaneous analysis of mass spectrometry signals in their differing acquisition modes in untargeted metabolomics studies.PMID:37587312 | DOI:10.1007/s00216-023-04893-3

In vitro antineoplastic effects of MK0752 in HPV-positive head and neck squamous cell carcinoma

Wed, 16/08/2023 - 12:00
J Cancer Res Clin Oncol. 2023 Aug 16. doi: 10.1007/s00432-023-05269-x. Online ahead of print.ABSTRACTPURPOSE: Gamma-secretase inhibitor MK0752 has shown a high therapeutic potential in different solid malignant tumors. Up to now, its antineoplastic effects were not investigated in head and neck squamous cell carcinoma (HNSCC) and particularly in human-papillomavirus (HPV)-positive tumors.METHODS: We conducted cytotoxic, migration, and clonogenic assays in two HPV-negative HNSCC cell lines (Cal27 and FaDu) and one HPV-positive cell line (SCC154). Furthermore, in order to assess the pro-apoptotic effects of MK0752, a Caspase 3/7 Glo assay was performed.RESULTS: Our experiments revealed antineoplastic effects of MK0752 in all three cell lines. Strong cytotoxic and antimigratory potential was shown in all cell lines, with strongest effects observed in the HPV-positive cell line. Meanwhile, anticlonogenic effects were only shown in Cal27 and SCC154. Most importantly, MK0752 induced apoptosis solely in HPV-positive SCC154.CONCLUSIONS: Our novel findings indicate a therapeutic potential of MK0752 in HPV-positive HNSCC. Indeed, further investigation is needed for validation of our results and for the assessment of the mechanistic background.PMID:37587308 | DOI:10.1007/s00432-023-05269-x

Comparison of the relative impacts of acute consumption of an inulin-enriched diet, milk kefir or a commercial probiotic product on the human gut microbiome and metabolome

Wed, 16/08/2023 - 12:00
NPJ Sci Food. 2023 Aug 16;7(1):41. doi: 10.1038/s41538-023-00216-z.ABSTRACTIt has been established that the human gut microbiota is central to health, and, consequently, there has been a growing desire to positively modulate its composition and/or function through, for example, the use of fermented foods, prebiotics or probiotics. Here, we compare the relative impact of the daily consumption of an inulin-enriched diet (n = 10), a commercial probiotic-containing fermented milk product (FMP) (n = 10), or a traditional kefir FMP (n = 9), over a 28-day period on the gut microbiome and urine metabolome of healthy human adults. None of the treatments resulted in significant changes to clinical parameters or biomarkers tested. However, shotgun metagenomic analysis revealed that kefir consumption resulted in a significant change in taxonomy, in the form of an increased abundance of the sub-dominant FMP-associated species Lactococcus raffinolactis, which further corresponded to shifts in the urine metabolome. Overall, our results indicated that daily consumption of a single portion of kefir alone resulted in detectable changes to the gut microbiota and metabolome of consumers.PMID:37587110 | DOI:10.1038/s41538-023-00216-z

High expression of VARS promotes the growth of multiple myeloma cells by causing imbalance in valine metabolism

Wed, 16/08/2023 - 12:00
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Jun 28;48(6):795-808. doi: 10.11817/j.issn.1672-7347.2023.220602.ABSTRACTOBJECTIVES: Multiple myeloma (MM) is a plasma cell malignancy occurring in middle and old age. MM is still an incurable disease due to its frequent recurrence and drug resistance. However, its pathogenesis is still unclear. Abnormal amino acid metabolism is one of the important characteristics of MM, and the important metabolic pathway of amino acids participates in protein synthesis as basic raw materials. Aminoacyl transfer ribonucleic acid synthetase (ARS) gene is a key regulatory gene in protein synthesis. This study aims to explore the molecular mechanism for ARS, a key factor of amino acid metabolism, in regulating amino acid metabolism in MM and affecting MM growth.METHODS: The corresponding gene number was combined with the gene expression profile GSE5900 dataset and GSE2658 dataset in Gene Expression Omnibus (GEO) database to standardize the gene expression data of ARS. GSEA_4.2.0 software was used to analyze the difference of gene enrichment between healthy donors (HD) and MM patients in GEO database. GraphPad Prism 7 was used to draw heat maps and perform data analysis. Kaplan-Meier and Cox regression model were used to analyze the expression of ARS gene and the prognosis of MM patients, respectively. Bone marrow samples from 7 newly diagnosed MM patients were collected, CD138+ and CD138- cells were obtained by using CD138 antibody magnetic beads, and the expression of ARS in MM clinical samples was analyzed by real-time RT-PCR. Human B lymphocyte GM12878 cells and human MM cell lines ARP1, NCI-H929, OCI-MY5, U266, RPMI 8266, OPM-2, JJN-3, KMS11, MM1.s cells were selected as the study objects. The expression of ARS in MM cell lines was analyzed by real-time RT-PCR and Western blotting. Short hairpin RNA (shRNA) lentiviruses were used to construct gene knock-out plasmids (VARS-sh group). No-load plasmids (scramble group) and gene knock-out plasmids (VARS-sh group) were transfected into HEK 293T cells with for virus packaging, respectively. Stable expression cell lines were established by infecting ARP1 and OCI-MY5 cells, and the effects of knockout valyl-tRNA synthetase (VARS) gene on proliferation and apoptosis of MM cells were detected by cell counting and flow cytometry, respectively. GEO data were divided into a high expression group and a low expression group according to the expression of VARS. Bioinformatics analysis was performed to explore the downstream pathways affected by VARS. Gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) and high performance liquid chromatography (HPLC) were used to detect the valine content in CD138+ cells and ARP1, OCI-MY5 cells and supernatant of knockdown VARS gene in bone marrow samples from patients, respectively.RESULTS: Gene enrichment analysis showed that tRNA processing related genes were significantly enriched in MM compared with HD (P<0.0001). Further screening of tRNA processing-pathway related subsets revealed that cytoplasmic aminoacyl tRNA synthetase family genes were significantly enriched in MM (P<0.0001). The results of gene expression heat map showed that the ARS family genes except alanyl-tRNA synthetase (AARS), arginyl-tRNA synthetase (RARS), seryl-tRNA synthetase (SARS) in GEO data were highly expressed in MM (all P<0.01). With the development of monoclonal gammopathy of undetermined significance (MGUS) to MM, the gene expression level was increased gradually. Kaplan-Meier univariate analysis of survival results showed that there were significant differences in the prognosis of MM patients in methionyl-tRNA synthetase (MARS), asparaginyl-tRNA synthetase (NARS) and VARS between the high expression group and the low expression group (all P<0.05). Cox regression model multivariate analysis showed that the high expression of VARS was associated with abnormal overall survival time of MM (HR=1.83, 95% CI 1.10 to 3.06, P=0.021). The high expression of NARS (HR=0.90, 95% CI 0.34 to 2.38) and MARS (HR=1.59, 95% CI 0.73 to 3.50) had no effect on the overall survival time of MM patients (both P>0.05). Real-time RT-PCR and Western blotting showed that VARS, MARS and NARS were highly expressed in CD138+ MM cells and MM cell lines of clinical patients (all P<0.05). Cell counting and flow cytometry results showed that the proliferation of MM cells by knockout VARS was significantly inhibited (P<0.01), the proportion of apoptosis was significantly increased (P<0.05). Bioinformatics analysis showed that in addition to several pathways including the cell cycle regulated by VARS, the valine, leucine and isoleucine catabolic pathways were upregulated. Non-targeted metabolomics data showed reduced valine content in CD138+ tumor cells in MM patients compared to HD (P<0.05). HPLC results showed that compared with the scramble group, the intracellular and medium supernatant content of ARP1 cells and the medium supernatant of OCI-MY5 in the VARS-shRNA group was increased (all P<0.05).CONCLUSIONS: MM patients with abnormal high expression of VARS have a poor prognosis. VARS promotes the malignant growth of MM cells by affecting the regulation of valine metabolism.PMID:37587064 | DOI:10.11817/j.issn.1672-7347.2023.220602

Domestication shapes the endophytic microbiome and metabolome of Salicornia europaea

Wed, 16/08/2023 - 12:00
J Appl Microbiol. 2023 Aug 16:lxad178. doi: 10.1093/jambio/lxad178. Online ahead of print.ABSTRACTAIM: We aim at understanding the effect of domestication on the endophytic microbiome and metabolome of Salicornia europaea and collecting evidence on the potential role of microbial populations and metabolites in the adaptation of plants to different ecological contexts (wild vs crops).METHODS AND RESULTS: Samples were collected from a natural salt marsh (wild) and an intensive crop field (crop). High-throughput sequencing of the 16S rRNA gene, gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) were used to analyze the endophytic bacterial communities and the metabolite profiles of S. europaea roots, respectively. The elemental analysis of the plant shoots was performed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).Overall, significant differences were found between the microbiome of wild and cultivated plants. The later showed a higher relative abundance of genera Erythrobacter, Rhodomicrobium and Ilumatobacter than wild plants. The microbiome of wild plants was enriched in Marinobacter, Marixanthomonas and Thalassospira. The metabolite profile of crop plants revealed higher amounts of saturated and non-saturated fatty acids and acylglycerols. In contrast, wild plants contained comparatively more carbohydrates and most macroelements (i.e. Na, K, Mg and Ca).CONCLUSIONS: There is a strong correlation between plant metabolites and the endosphere microbiome of S. europaea. In wild populations, plants were enriched in carbohydrates and the associated bacterial community was enriched in genes related to primary metabolic pathways such as nitrogen metabolism and carbon fixation. The endosphere microbiome of crop plants was predicted to have higher gene counts related to pathogenesis. Crop plants also exhibited higher amounts of azelaic acid, an indicator of exposure to phytopathogens.PMID:37587019 | DOI:10.1093/jambio/lxad178

Zinc deficiency disrupts pain signaling promoting nociceptive but not inflammatory pain in mice

Wed, 16/08/2023 - 12:00
An Acad Bras Cienc. 2023 Aug 14;95(suppl 1):e20220914. doi: 10.1590/0001-3765202320220914. eCollection 2023.ABSTRACTZinc (Zn) is an essential micronutrient involved in the physiology of nervous system and pain modulation. There is little evidence for the role of nutritional Zn alternations to the onset and progression of neuropathic (NP) and inflammatory pain. The study investigated the effects of a zinc restricted diet on the development of pain. Weaned mice were submitted to a regular (38 mg/kg of Zn) or Zn deficient (11 mg/kg of Zn) diets for four weeks, pain responses evaluated (mechanical, cold and heat allodynia; formalin- and carrageenan-induced inflammatory hypernociception), plasma and tissues collected for biochemical and metabolomic analysis. Zn deficient diet inhibited animal growth (37%) and changed mice sensitivity pattern, inducing an intense allodynia evoked by mechanical, cold and heat stimulus for four weeks. The inflammatory pain behavior of formalin test was drastically reduced or absent when challenged by an inflammatory stimulus. Zn restriction also reduce plasma TNF, increase neuronal activation, oxidative stress, indicating a disruption of the immune response. Liver metabolomic analyses suggest a downregulation of lipid metabolism of arachidonic acid. Zn restriction since weaned disrupts pain signaling considerably and reduce inflammatory pain. Zn could be considered a predisposing factor for the onset of chronic pain such as painful neuropathies.PMID:37585970 | DOI:10.1590/0001-3765202320220914

The gut microbiota contributes to changes in the host immune response induced by Trichinella spiralis

Wed, 16/08/2023 - 12:00
PLoS Negl Trop Dis. 2023 Aug 16;17(8):e0011479. doi: 10.1371/journal.pntd.0011479. eCollection 2023 Aug.ABSTRACTThe gut microbiota plays an important role in parasite-host interactions and the induction of immune defense responses. Trichinella spiralis is an important zoonotic parasite that can directly or indirectly interact with the host in the gut. Changes in the gut microbiota following infection with T. spiralis and the role of the gut microbiota in host immune defense against T. spiralis infection were investigated in our study. 16S rRNA sequencing analysis revealed that infection with T. spiralis can reduce the diversity of the gut microbiota and alter the structure of the gut microbiota during early infection, which was restored when the worm left the gut. Antibiotic treatment (ABX) and fecal bacterial transplantation (FMT) were used to investigate the role of the gut microbiota in the host expulsion response during infection with T. spiralis. We found that ABX mice had a higher burden of parasites, and the burden of parasites decreased after fecal bacterial transplantation. The results of flow cytometry and qPCR revealed that the disturbance of the gut microbiota affects the proportion of CD4+ T cells and the production of IL-4, which weakens Th2 responses and makes expulsion difficult. In addition, as the inflammatory response decreased with the changes of the microbiota, the Th1 response also decreased. The metabolomic results were in good agreement with these findings, as the levels of inflammatory metabolites such as ceramides were reduced in the ABX group. In general, T. spiralis infection can cause changes in the gut microbiota, and the presence or absence of microbes may also weaken intestinal inflammation and the expulsion of T. spiralis by affecting the immune response of the host.PMID:37585413 | DOI:10.1371/journal.pntd.0011479

Pages