Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Microgravity stress alters bacterial community assembly and co-occurrence networks during wheat seed germination

Sun, 21/05/2023 - 12:00
Sci Total Environ. 2023 May 19:164147. doi: 10.1016/j.scitotenv.2023.164147. Online ahead of print.ABSTRACTBacterial interactions occurring on and around seeds are integral to plant fitness, health and productivity. Although seed- and plant-associated bacteria are sensitive to environmental stress, the effects of microgravity, as present during plant cultivation in space, on microbial assembly during seed germination are not clear. Here, we characterized the bacterial microbiome assembly process and mechanisms during seed germination of two wheat varieties under simulated microgravity by 16S rRNA gene amplicon sequencing and metabolome analysis. We found that the bacterial community diversity, and network complexity and stability were significantly decreased under simulated microgravity. In addition, the effects of simulated microgravity on the plant bacteriome of the two wheat varieties tended to be consistent in seedlings. At this stage, the relative abundance of Oxalobacteraceae, Paenibacillaceae, Xanthomonadaceae, Lachnospiraceae, Sphingomonadaceae and Ruminococcaceae decreased, while the relative abundance of Enterobacteriales increased under simulated microgravity. Analysis of predicted microbial function revealed that simulated microgravity exposure leads to lower sphingolipid signaling and calcium signaling pathways. We also found that simulated microgravity drove the strengthening of deterministic processes in microbial community assembly. Importantly, some specific metabolites exhibited significant changes under simulated microgravity, suggesting that bacteriome assembly is mediated, at least in part, by metabolites altered by microgravity. The data we present here moves us closer to a holistic understanding of the plant bacteriome under microgravity stress at plant emergence, and provides a theoretical basis for the precise utilization of microorganisms in microgravity to improve plant adaptation to the challenge of cultivation in space.PMID:37211108 | DOI:10.1016/j.scitotenv.2023.164147

Bisphenol A induced hepatic steatosis by disturbing bile acid metabolism and FXR/TGR5 signaling pathways via remodeling the gut microbiota in CD-1 mice

Sun, 21/05/2023 - 12:00
Sci Total Environ. 2023 May 19:164307. doi: 10.1016/j.scitotenv.2023.164307. Online ahead of print.ABSTRACTDysregulation of gut microbiota-mediated bile acid (BA) metabolism plays an important role in the pathogenesis of hepatic steatosis and nonalcoholic fatty liver disease (NAFLD). Our previous studies found that bisphenol A (BPA) exposure induced hepatic steatosis and gut microbiota dysbiosis. However, whether the gut microbiota-dependent BA metabolism alterations were involved in BPA-induced hepatic steatosis remains unclear. Therefore, we explored the gut microbiota-related metabolic mechanisms of hepatic steatosis induced by BPA. Male CD-1 mice were exposed to low-dose BPA (50 μg/kg/day) for 6 months. Fecal microbiota transplantation (FMT) and broad-spectrum antibiotic cocktail (ABX) treatment were further adopted to test the role of gut microbiota in the adverse effects of BPA. We found that BPA induced hepatic steatosis in mice. Additionally, 16S rRNA gene sequencing showed that BPA reduced the relative abundance of Bacteroides, Parabacteroides and Akkermansia, which are associated with BA metabolism. Metabolomic analyses demonstrated that BPA significantly altered the ratio of conjugated to unconjugated BAs and increased the total level of taurine-α/β-muricholic acid while decreasing the level of chenodeoxycholic acid, thus inhibiting the activation of special receptors, including farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5), in the ileum and liver. The inhibition of FXR reduced short heterodimer partner and subsequently induced cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, which is related to hepatic BA synthesis and lipogenesis, eventually leading to liver cholestasis and steatosis. Furthermore, we found that mice that received FMT from BPA-exposed mice developed hepatic steatosis, and the influences of BPA on hepatic steatosis and FXR/TGR5 signaling could be eliminated by ABX treatment, confirming the role of gut microbiota in BPA effects. Collectively, our study illustrates that suppressed microbiota-BA-FXR/TGR signaling pathways may be a potential mechanism for hepatic steatosis induced by BPA, providing a new target for the prevention of BPA-induced NAFLD.PMID:37211107 | DOI:10.1016/j.scitotenv.2023.164307

Comprehensive microbiomes and fecal metabolomics combined with network pharmacology reveal the intervention effects of Jichuanjian on aged functional constipation

Sun, 21/05/2023 - 12:00
Exp Gerontol. 2023 May 19:112216. doi: 10.1016/j.exger.2023.112216. Online ahead of print.ABSTRACTBACKGROUND: Functional constipation is an extremely common gastrointestinal disorder especially severely affecting the life quality of the aged. Jichuanjian (JCJ) has been widely used for aged functional constipation (AFC) in clinic. Yet, the mechanisms of JCJ merely scratch the surface with being studied at a single level, rather than from a systematic perspective of the whole.AIM: The purpose of this study was to explore the underlying mechanisms of JCJ in treating AFC from the perspectives of fecal metabolites and related pathways, gut microbiota, key gene targets and functional pathways, as well as "behaviors-microbiota-metabolites" relationships.METHODS: 16S rRNA analysis and fecal metabolomics combined with network pharmacology were applied to investigate the abnormal performances of AFC rats, as well as the regulatory effects of JCJ.RESULTS: JCJ significantly regulated the abnormalities of rats' behaviors, the microbial richness, and the metabolite profiles that were interrupted by AFC. 19 metabolites were found to be significantly associated with AFC involving in 15 metabolic pathways. Delightfully, JCJ significantly regulated 9 metabolites and 6 metabolic pathways. AFC significantly interrupted the levels of 4 differential bacteria while JCJ significantly regulated the level of SMB53. HSP90AA1 and TP53 were the key genes, and pathways in cancer was the most relevant signaling pathways involving in the mechanisms of JCJ.CONCLUSION: The current findings not only reveal that the occurrence of AFC is closely related to gut microbiota mediating amino acid and energy metabolism, but also demonstrate the effects and the underlying mechanisms of JCJ on AFC.PMID:37211069 | DOI:10.1016/j.exger.2023.112216

Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions

Sun, 21/05/2023 - 12:00
Ecotoxicol Environ Saf. 2023 May 19;259:115010. doi: 10.1016/j.ecoenv.2023.115010. Online ahead of print.ABSTRACTInorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer.PMID:37211000 | DOI:10.1016/j.ecoenv.2023.115010

Polystyrene micro- and nanoparticles exposure induced anxiety-like behaviors, gut microbiota dysbiosis and metabolism disorder in adult mice

Sun, 21/05/2023 - 12:00
Ecotoxicol Environ Saf. 2023 May 19;259:115000. doi: 10.1016/j.ecoenv.2023.115000. Online ahead of print.ABSTRACTPlastics have been proven to be a potential threat to the ecosystem, and their toxicity mechanism is still uncertain. In the ecological environment, plastics can be degraded into microplastics (MPs) and nanoplastics (NPs), which can be contaminated and ingested through the food chain. MPs and NPs are associated with severe intestinal injury, intestinal microbiota disorder, and neurotoxicity, but it is still unclear whether MPs- and NPs-induced intestinal microbiota dysbiosis will affect the brain through the gut-brain axis. In the current study, we determined the effects of exposure to polystyrene (PS)-MPs and PS-NPs on anxiety-like behaviors and explored the underlying mechanisms. This study explored the behavioral effects of 30-day and 60-day exposure to PS-NPs and PS-MPs using the open field test (OFT) and elevated plus maze (EPM) test. Behavioral tests showed PS-NPs and PS-MPs treatment remarkedly induced anxiety-like behaviors compared with the control group. Using 16 S rRNA gene sequencing and untargeted metabolomics analyses, we observed that PS-MPs and PS-NPs exposure reduced the beneficial gut microbiota expression level, such as Lachnoclostridium and Lactobacillus, and increased the conditionally pathogenic bacteria expressions level, such as Proteobacteria, Actinobacteria, and Desulfovibrio. In addition, PS-NPs and PS-MPs reduce intestinal mucus secretion and increase intestinal permeability. The results of serum metabonomics suggested that the metabolic pathways, such as ABC transporter pathways, aminoacyl-tRNA biosynthesis, biosynthesis of amino acids, and bile secretion were enriched after PS-NPs and PS-MPs treatment. Besides, neurotransmitter metabolites were also altered by PS-NPs and PS-MPs. It is noteworthy that the correlation analysis showed that the disorder of intestinal microbiota was related to anxiety-like behaviors and neurotransmitter metabolites disorder. The regulation of intestinal microbiota may be a promising treatment strategy for PS-MPs- and PS-NPs-induced anxiety disorder.PMID:37210994 | DOI:10.1016/j.ecoenv.2023.115000

Impact of exposure to per- and polyfluoroalkyl substances on fecal microbiota composition in mother-infant dyads

Sun, 21/05/2023 - 12:00
Environ Int. 2023 May 11;176:107965. doi: 10.1016/j.envint.2023.107965. Online ahead of print.ABSTRACTThere is growing evidence suggesting that chemical exposure alters gut microbiota composition. However, not much is known about the impact of per- and polyfluoroalkyl substances (PFAS) on the gut microbial community. Here, in a mother-infant study, we set out to identify the gut bacterial species that associate with chemical exposure before (maternal) and after (maternal, infant) birth. Paired serum and stool samples were collected from mother-infant dyads (n = 30) in a longitudinal setting. PFAS were quantified in maternal serum to examine their associations with the microbial compositions (determined by shotgun metagenomic sequencing) in mothers and infants. High maternal exposure to PFAS was consistently associated with increased abundance of Methanobrevibacter smithii in maternal stool. Among individual PFAS compounds, PFOS and PFHpS showed the strongest association with M. smithii. However, maternal total PFAS exposure associated only weakly with the infant microbiome. Our findings suggest that PFAS exposure affects the composition of the adult gut microbiome.PMID:37210808 | DOI:10.1016/j.envint.2023.107965

Dietary Supplementation of Brevibacillus laterosporus S62-9 Improves Broiler Growth and Immunity by Regulating Cecal Microbiota and Metabolites

Sun, 21/05/2023 - 12:00
Probiotics Antimicrob Proteins. 2023 May 22. doi: 10.1007/s12602-023-10088-0. Online ahead of print.ABSTRACTBrevibacillus laterosporus has been added as a direct-fed microbiota to chicken. Yet, few studies have reported the effects of B. laterosporus on broiler growth and gut microbiota. The aim of this study was to evaluate the effects of B. laterosporus S62-9 on growth performance, immunity, cecal microbiota, and metabolites in broilers. A total of 160 1-day-old broilers were randomly divided into S62-9 and control groups, with or without 106 CFU/g B. laterosporus S62-9 supplementation, respectively. During the 42 days feeding, body weight and feed intake were recorded weekly. Serum was collected for immunoglobulin determination, and cecal contents were taken for 16S rDNA analysis and metabolome at Day 42. Results indicated that the broilers in S62-9 group showed an increase in body weight of 7.2% and 5.19% improvement in feed conversion ratio compared to the control group. The B. laterosporus S62-9 supplementation promoted the maturation of immune organs and increased the concentration of serum immunoglobulins. Furthermore, the α-diversity of cecal microbiota was improved in the S62-9 group. B. laterosporus S62-9 supplementation increased the relative abundance of beneficial bacteria including Akkermansia, Bifidobacterium, and Lactobacillus, while decreased the relative abundance of pathogens including Klebsiella and Pseudomonas. Untargeted metabolomics revealed that 53 differential metabolites between the two groups. The differential metabolites were enriched in 4 amino acid metabolic pathways, including arginine biosynthesis and glutathione metabolism. In summary, B. laterosporus S62-9 supplementation could improve the growth performance and immunity through the regulation of gut microbiota and metabolome in broilers.PMID:37211578 | DOI:10.1007/s12602-023-10088-0

Chemical Modification of a Bacterial Siderophore by a Competitor in Dual-Species Biofilms

Sun, 21/05/2023 - 12:00
Angew Chem Int Ed Engl. 2023 May 21:e202300585. doi: 10.1002/anie.202300585. Online ahead of print.ABSTRACTChemical communication between competing bacteria in multi-species environments often enables both species to adapt and survive, and perhaps even thrive. P. aeruginosa and S. aureus are two bacterial pathogens found in natural biofilms, especially in the lungs of cystic fibrosis (CF) patients, where recent studies showed that there is often cooperation between the two species, leading to increased disease severity and antibiotic resistance. However, the mechanisms behind this cooperation are poorly understood. In this study, we analyzed co-cultured biofilms in various settings, and we applied untargeted mass spectrometry-based metabolomics analyses, combined with synthetic validation of candidate compounds. We unexpectedly discovered that S. aureus can convert pyochelin into pyochelin methyl ester, an analogue of pyochelin with reduced affinity for iron (III). This conversion allows S. aureus to coexist more readily with P. aeruginosa and unveils a mechanism underlying the formation of robust dual-species biofilms.PMID:37211536 | DOI:10.1002/anie.202300585

Serum lipidomics reveals phosphatidylethanolamine and phosphatidylcholine disorders in patients with myocardial infarction and post-myocardial infarction-heart failure

Sat, 20/05/2023 - 12:00
Lipids Health Dis. 2023 May 20;22(1):66. doi: 10.1186/s12944-023-01832-0.ABSTRACTBACKGROUND: Myocardial infarction (MI) and post-MI-heart failure (pMIHF) are a major cause of death worldwide, however, the underlying mechanisms of pMIHF from MI are not well understood. This study sought to characterize early lipid biomarkers for the development of pMIHF disease.METHODS: Serum samples from 18 MI and 24 pMIHF patients were collected from the Affiliated Hospital of Zunyi Medical University and analyzed using lipidomics with Ultra High Performance Liquid Chromatography and Q-Exactive High Resolution Mass Spectrometer. The serum samples were tested by the official partial least squares discriminant analysis (OPLS-DA) to find the differential expression of metabolites between the two groups. Furthermore, the metabolic biomarkers of pMIHF were screened using the subject operating characteristic (ROC) curve and correlation analysis.RESULTS: The average age of the 18 MI and 24 pMIHF participants was 57.83 ± 9.28 and 64.38 ± 10.89 years, respectively. The B-type natriuretic peptide (BNP) level was 328.5 ± 299.842 and 3535.96 ± 3025 pg/mL, total cholesterol(TC) was 5.59 ± 1.51 and 4.69 ± 1.13 mmol/L, and blood urea nitrogen (BUN) was 5.24 ± 2.15 and 7.20 ± 3.49 mmol/L, respectively. In addition, 88 lipids, including 76 (86.36%) down-regulated lipids, were identified between the patients with MI and pMIHF. ROC analysis showed that phosphatidylethanolamine (PE) (12:1e_22:0) (area under the curve [AUC] = 0.9306) and phosphatidylcholine (PC) (22:4_14:1) (AUC = 0.8380) could be potential biomarkers for the development of pMIHF. Correlation analysis showed that PE (12:1e_22:0) was inversely correlated with BNP and BUN, but positively correlated with TC. In contrast, PC (22:4_14:1) was positively associated with both BNP and BUN, and was negatively associated with TC.CONCLUSIONS: Several lipid biomarkers were identified that could potentially be used to predict and diagnose patients with pMIHF. PE (12:1e_22:0) and PC (22:4_14:1) could sufficiently differentiate between patients with MI and pMIHF.PMID:37210547 | DOI:10.1186/s12944-023-01832-0

Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss

Sat, 20/05/2023 - 12:00
Nat Commun. 2023 May 20;14(1):2894. doi: 10.1038/s41467-023-38594-3.ABSTRACTSMARCA4 (BRG1) and SMARCA2 (BRM) are the two paralogous ATPases of the SWI/SNF chromatin remodeling complexes frequently inactivated in cancers. Cells deficient in either ATPase have been shown to depend on the remaining counterpart for survival. Contrary to this paralog synthetic lethality, concomitant loss of SMARCA4/2 occurs in a subset of cancers associated with very poor outcomes. Here, we uncover that SMARCA4/2-loss represses expression of the glucose transporter GLUT1, causing reduced glucose uptake and glycolysis accompanied with increased dependency on oxidative phosphorylation (OXPHOS); adapting to this, these SMARCA4/2-deficient cells rely on elevated SLC38A2, an amino acid transporter, to increase glutamine import for fueling OXPHOS. Consequently, SMARCA4/2-deficient cells and tumors are highly sensitive to inhibitors targeting OXPHOS or glutamine metabolism. Furthermore, supplementation of alanine, also imported by SLC38A2, restricts glutamine uptake through competition and selectively induces death in SMARCA4/2-deficient cancer cells. At a clinically relevant dose, alanine supplementation synergizes with OXPHOS inhibition or conventional chemotherapy eliciting marked antitumor activity in patient-derived xenografts. Our findings reveal multiple druggable vulnerabilities of SMARCA4/2-loss exploiting a GLUT1/SLC38A2-mediated metabolic shift. Particularly, unlike dietary deprivation approaches, alanine supplementation can be readily applied to current regimens for better treatment of these aggressive cancers.PMID:37210563 | DOI:10.1038/s41467-023-38594-3

Serum metabolomic signatures of fatty acid oxidation defects differentiate host-response subphenotypes of acute respiratory distress syndrome

Sat, 20/05/2023 - 12:00
Respir Res. 2023 May 20;24(1):136. doi: 10.1186/s12931-023-02447-w.ABSTRACTBACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure.METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data.RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively).CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.PMID:37210531 | DOI:10.1186/s12931-023-02447-w

Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics

Sat, 20/05/2023 - 12:00
Cell Mol Biol Lett. 2023 May 20;28(1):43. doi: 10.1186/s11658-023-00452-x.ABSTRACTBACKGROUND: Although metabolomics continues to expand in many domains of research, methodological issues such as sample type, extraction and analytical protocols have not been standardized, impeding proper comparison between studies and future research.METHODS: In the present study, five solvent-based and solid-phase extraction methods were investigated in both plasma and serum. All these extracts were analyzed using four liquid chromatography coupled with high resolution mass spectrometry (LC-MS) protocols, either in reversed or normal-phase and with both types of ionization. The performances of each method were compared according to putative metabolite coverage, method repeatability and also extraction parameters such as overlap, linearity and matrix effect; in both untargeted (global) and targeted approaches using fifty standard spiked analytes.RESULTS: Our results verified the broad specificity and outstanding accuracy of solvent precipitation, namely methanol and methanol/acetonitrile. We also reveal high orthogonality between methanol-based methods and SPE, providing the possibility of increased metabolome coverage, however we highlight that such potential benefits must be weighed against time constrains, sample consumption and the risk of low reproducibility of SPE method. Furthermore, we highlighted the careful consideration about matrix choice. Plasma showed the most suitable in this metabolomics approach combined with methanol-based methods.CONCLUSIONS: Our work proposes to facilitate rational design of protocols towards standardization of these approaches to improve the impact of metabolomics research.PMID:37210499 | DOI:10.1186/s11658-023-00452-x

Protective effect of L-pipecolic acid on constipation in C57BL/6 mice based on gut microbiome and serum metabolomic

Sat, 20/05/2023 - 12:00
BMC Microbiol. 2023 May 20;23(1):144. doi: 10.1186/s12866-023-02880-3.ABSTRACTBACKGROUND: Functional constipation (FC) in children affects their growth, development and quality of life. L-pipecolic acid (L-PA) was decreased in FC children based on gut microbiome and serum metabolomic. In this study, loperamide-induced constipation in mice was used to evaluate the effects of L-PA on constipated mice.METHOD: 26 FC and 28 healthy children were recruited. Stool samples and serum samples were subjected to 16S rDNA sequencing and ultra-performance liquid chromatography/quadrupole time of flight (UPLC-Q/TOF-MS) approach, respectively. A loperamide-induced mouse constipation model was developed, and all mice were randomly divided into control (Con), loperamide (Lop) and L-PA (Lop + L-PA) treatment groups (6 mice per group). The mice in the Lop + L-PA group were given L-PA (250 mg/kg, once a day) and loperamide; the Lop group was given loperamide for 1 week, and the Con group was given saline. The fecal parameters and intestinal motility of mice in each group were detected. serum 5-HT levels and colon 5-HT expression were detected by ELISA and immunohistochemistry, respectively; qRT-PCR was used to detect the expression of AQP3 and 5-HT4R mRNA in each group.RESULTS: 45 differential metabolites and 18 significantly different microbiota were found in FC children. The α and β diversity of gut microbiota in FC children was significantly reduced. Importantly, serum L-PA was significantly reduced in FC children. The KEGG pathway enrichment were mainly enriched in fatty acid biosynthesis, lysine degradation, and choline metabolism. L-PA was negatively associated with Ochrobactrum, and N6, N6, N6-trimethyl-l-lysine was positively associated with Phascolarcrobacterium. In addition, L-PA improved the fecal water content, intestinal transit rate, and increased the serum 5-HT levels in constipated mice. Moreover, L-PA increased the expression of 5-HT4R, reduced AQP3, and regulated constipation-associated genes.CONCLUSIONS: Gut microbiota and serum metabolites were significantly altered in children with FC. The abundance of Phascolarctobacterium and Ochrobactrum and serum L-PA content were decreased in FC children. L-PA was found to alleviate the fecal water content, increase intestinal transit rate and the first black stool defecation time. L-PA improved constipation by increasing 5-HT and 5-HT4R expression while down-regulating AQP3 expression.PMID:37210496 | DOI:10.1186/s12866-023-02880-3

Network pharmacology and molecular docking study for biological pathway detection of cytotoxicity of the yellow jasmine flowers

Sat, 20/05/2023 - 12:00
BMC Complement Med Ther. 2023 May 20;23(1):164. doi: 10.1186/s12906-023-03987-w.ABSTRACTBACKGROUND: The yellow jasmine flower (Jasminum humile L.) is a fragrant plant belonging to the Oleaceae family with promising phytoconstituents and interesting medicinal uses. The purpose of this study was to characterize the plant metabolome to identify the potential bioactive agents with cytotoxic effects and the underlying mechanism of cytotoxic activity.METHODS: First, HPLC-PDA-MS/MS was used to identify the potential bioactive compounds in the flowers. Furthermore, we assessed the cytotoxic activity of the flower extract against breast cancer (MCF-7) cell line using MTT assay followed by the cell cycle, DNA-flow cytometry, and Annexin V-FITC analyses alongside the effect on reactive oxygen species (ROS). Finally, Network pharmacology followed by a molecular docking study was performed to predict the pathways involved in anti-breast cancer activity.RESULTS: HPLC-PDA-MS/MS tentatively identified 33 compounds, mainly secoiridoids. J. humile extract showed a cytotoxic effect on MCF-7 breast cancer cell line with IC50 value of 9.3 ± 1.2 µg/mL. Studying the apoptotic effect of J. humile extract revealed that it disrupts G2/M phase in the cell cycle, increases the percentage of early and late apoptosis in Annexin V-FTIC, and affects the oxidative stress markers (CAT, SOD, and GSH-R). Network analysis revealed that out of 33 compounds, 24 displayed interaction with 52 human target genes. Relationship between compounds, target genes, and pathways revealed that J. humile exerts its effect on breast cancer by altering, Estrogen signaling pathway, HER2, and EGFR overexpression. To further verify the results of network pharmacology, molecular docking was performed with the five key compounds and the topmost target, EGFR. The results of molecular docking were consistent with those of network pharmacology.CONCLUSION: Our findings suggest that J. humile suppresses breast cancer proliferation and induces cell cycle arrest and apoptosis partly by EGFR signaling pathway, highlighting J. humile as a potential therapeutic candidate against breast cancer.PMID:37210476 | DOI:10.1186/s12906-023-03987-w

Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves

Sat, 20/05/2023 - 12:00
Sci Rep. 2023 May 20;13(1):8176. doi: 10.1038/s41598-023-35383-2.ABSTRACT1H NMR-based metabolomics was used to study the effect of abrupt weaning on the blood metabolome of beef calves. Twenty Angus calves (258 ± 5 kg BW; 5 to 6 months old) were randomly assigned to a non-weaned (NW) group that remained grazing with their dam or a weaned (W) group that underwent abrupt separation from their dam to a separate paddock on d 0 of the study. Body weight, behaviour, and blood samples for cortisol and metabolomics were measured at d 0, 1, 2, 7, and 14 of the study. On d 1 and 2, W calves spent less time grazing and ruminating, and more time vocalising and walking, had a greater concentration of cortisol, NEFA, 3-hydroxybutyrate, betaine, creatine, and phenylalanine, and lesser abundance of tyrosine (P < 0.05) compared to NW calves. Compared to NW calves at d 14, W calves had greater (P < 0.01) relative abundance of acetate, glucose, allantoin, creatinine, creatine, creatine phosphate, glutamate, 3-hydroxybutyrate, 3-hydroxyisobutyrate, and seven AA (alanine, glutamate, leucine, lysine, phenylalanine, threonine and valine) but lesser (P < 0.05) relative abundance of low density and very low-density lipids, and unsaturated lipids. Both PCA and OPLS-DA showed no clustering or discrimination between groups at d 0 and increasing divergence to d 14. Blood metabolomics is a useful tool to quantify the acute effects of stress in calves during the first 2 days after abrupt weaning, and longer-term changes in carbohydrate, lipid and protein metabolism due to nutritional changes from cessation of milk intake and greater reliance on forage intake.PMID:37210395 | DOI:10.1038/s41598-023-35383-2

Exhaled volatile fatty acids, ruminal methane emission and their diurnal patterns in lactating dairy cows

Sat, 20/05/2023 - 12:00
J Dairy Sci. 2023 May 18:S0022-0302(23)00259-X. doi: 10.3168/jds.2023-23301. Online ahead of print.ABSTRACTTo date, the commonly used methods to assess rumen fermentation are invasive. Exhaled breath contains hundreds of volatile organic compounds (VOC) that can reflect animal physiological processes. In the present study, for the first time, we aimed to use a non-invasive metabolomics approach based on high-resolution mass spectrometry to identify rumen fermentation parameters in dairy cows. Enteric methane (CH4) production from 7 lactating cows was measured 8 times over 2 consecutive days using the GreenFeed system. Simultaneously, exhalome samples were collected in Tedlar gas sampling bags and analyzed offline using a secondary electrospray ionization high-resolution mass spectrometry (SESI-HRMS) system. In total, 1,298 features were detected, among them targeted exhaled volatile fatty acids (eVFA, i.e., acetate, propionate, butyrate), which were putatively annotated using their exact mass-to-charge ratio. The intensity of eVFA, in particular acetate, increased immediately after feeding and followed a similar pattern observed for ruminal CH4 production. The average total eVFA concentration was 35.4 count-per-second (CPS), and among the individual eVFA, acetate had the greatest concentration, averaging 21.0 CPS followed by propionate at 11.5 CPS, and butyrate at 2.82 CPS. Further, exhaled acetate was on average the most abundant of the individual eVFA at around 59.3%, followed by 32.5 and 7.9% of the total eVFA for propionate and butyrate, respectively. This corresponds well with the previously reported proportions of these VFA in the rumen. The diurnal patterns of ruminal CH4 emission and individual eVFA were characterized using a linear mixed model with cosine function fit. The model characterized similar diurnal patterns for eVFA and ruminal CH4 and H2 production. Regarding the diurnal patterns of eVFA, the phase (time of peak) of butyrate occurred first, followed by that of acetate and propionate. Importantly, the phase of total eVFA occurred around 1 h before that of ruminal CH4. This corresponds well with existing data on the relationship between rumen VFA production and CH4 formation. Results from the present study revealed a great potential to assess the rumen fermentation of dairy cows using exhaled metabolites as a non-invasive proxy for rumen VFA. Further validation, with comparisons to rumen fluid, and establishment of the proposed method are required.PMID:37210352 | DOI:10.3168/jds.2023-23301

The markers and risk stratification model of intracranial aneurysm instability in a large Chinese cohort

Sat, 20/05/2023 - 12:00
Sci Bull (Beijing). 2023 May 10:S2095-9273(23)00308-0. doi: 10.1016/j.scib.2023.05.001. Online ahead of print.ABSTRACTIntracranial aneurysm is the leading cause of nontraumatic subarachnoid hemorrhage. Evaluating the unstable (rupture and growth) risk of aneurysms is helpful to guild decision-making for unruptured intracranial aneurysms (UIA). This study aimed to develop a model for risk stratification of UIA instability. The UIA patients from two prospective, longitudinal multicenter Chinese cohorts recruited from January 2017 to January 2022 were set as the derivation cohort and validation cohort. The primary endpoint was UIA instability, comprising aneurysm rupture, growth, or morphology change, during a 2-year follow-up. Intracranial aneurysm samples and corresponding serums from 20 patients were also collected. Metabolomics and cytokine profiling analysis were performed on the derivation cohort (758 single-UIA patients harboring 676 stable UIAs and 82 unstable UIAs). Oleic acid (OA), arachidonic acid (AA), interleukin 1β (IL-1β), and tumor necrosis factor-α (TNF-α) were significantly dysregulated between stable and unstable UIAs. OA and AA exhibited the same dysregulated trends in serums and aneurysm tissues. The feature selection process demonstrated size ratio, irregular shape, OA, AA, IL-1β, and TNF-α as features of UIA instability. A machine-learning stratification model (instability classifier) was constructed based on radiological features and biomarkers, with high accuracy to evaluate UIA instability risk (area under curve (AUC), 0.94). Within the validation cohort (492 single-UIA patients harboring 414 stable UIAs and 78 unstable UIAs), the instability classifier performed well to evaluate the risk of UIA instability (AUC, 0.89). Supplementation of OA and pharmacological inhibition of IL-1β and TNF-α could prevent intracranial aneurysms from rupturing in rat models. This study revealed the markers of UIA instability and provided a risk stratification model, which may guide treatment decision-making for UIAs.PMID:37210332 | DOI:10.1016/j.scib.2023.05.001

Impact of environmental characteristics on children's gut microbiota - A pilot study in assessing the role of indoor microbiome and metabolites

Sat, 20/05/2023 - 12:00
Environ Res. 2023 May 18:116114. doi: 10.1016/j.envres.2023.116114. Online ahead of print.ABSTRACTBACKGROUND: A diverse and balanced human gut microbiota is crucial for maintaining normal human physiological functions. However, the impact of indoor microbiome and metabolites on gut microbiota is not well understood.METHODS: A self-administered questionnaire was used to collect information on more than 40 personal and environmental characteristics and dietary habits from 56 children in Shanghai, China. Shotgun metagenomics and untargeted liquid chromatography-mass spectrometry (LC-MS) were used to characterize the indoor microbiome and metabolomic/chemical exposure in children's living rooms. PacBio full-length 16 S rRNA sequencing was used to characterize children's gut microbiota. Associations between environmental characteristics and gut microbiota diversity/composition were assessed using PERMANOVA and regression.RESULTS: In total, 6247 and 318 indoor and gut microbial species and 1442 indoor metabolites were characterized. Age of children (R2 = 0.033, p = 0.008), age start kindergarten (R2 = 0.029, p = 0.03), living adjacent to heavy traffic (R2 = 0.031, p = 0.01) and drinking soft drinks (R2 = 0.028, p = 0.04) significantly impacted overall gut microbial composition, consistent with previous studies. Having pets/plants and frequent vegetable intake were positively associated with gut microbiota diversity and the Gut Microbiome Health Index (GMHI), while frequent juice and fries intake decreased gut microbiota diversity (p < 0.05). The abundance of indoor Clostridia and Bacilli was positively associated with gut microbial diversity and GMHI (p < 0.01). Total indoor indole derivatives and 6 indole metabolites (L-tryptophan, indole, 3-methylindole, indole-3-acetate, 5-hydroxy-L-tryptophan and indolelactic acid, p < 0.05) were positively associated with the abundance of total protective gut bacteria, suggesting a potential role in promoting gut health. Neural network analysis revealed that these indole derivatives were derived from indoor microorganisms.CONCLUSIONS: The study is the first to report associations between indoor microbiome/metabolites and gut microbiota, highlighting the potential role of indoor microbiome in shaping human gut microbiota.PMID:37209986 | DOI:10.1016/j.envres.2023.116114

Investigation of the metabolomic crosstalk between liver sinusoidal endothelial cells and hepatocytes exposed to paracetamol using organ-on-chip technology

Sat, 20/05/2023 - 12:00
Toxicology. 2023 May 18:153550. doi: 10.1016/j.tox.2023.153550. Online ahead of print.ABSTRACTOrgan-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology. To reproduce the physiology of the sinusoidal barrier, LSECs were separated from hepatocytes by a membrane (culture insert integrated organ-on-chip platform). The tissues were exposed to acetaminophen (APAP), an analgesic drug widely used as a xenobiotic model in liver and HepG2/C3a studies. The differences between the SK-HEP-1, HepG2/C3a monocultures and SK-HEP-1/HepG2/C3a cocultures, treated or not with APAP, were identified from metabolomic profiles using supervised multivariate analysis. The pathway enrichment coupled with metabolite analysis of the corresponding metabolic fingerprints contributed to extracting the specificity of each type of culture and condition. In addition, we analysed the responses to APAP treatment by mapping the signatures with significant modulation of the biological processes of the SK-HEP-1 APAP, HepG2/C3a APAP and SK-HEP-1/HepG2/C3a APAP conditions. Furthermore, our model shows how the presence of the LSECs barrier and APAP first pass can modify the metabolism of HepG2/C3a. Altogether, this study demonstrates the potential of a "metabolomic-on-chip" strategy for pharmaco-metabolomic applications predicting individual response to drugs.PMID:37209942 | DOI:10.1016/j.tox.2023.153550

Omics data for sampling thermodynamically feasible kinetic models

Sat, 20/05/2023 - 12:00
Metab Eng. 2023 May 18:S1096-7176(23)00068-X. doi: 10.1016/j.ymben.2023.05.002. Online ahead of print.ABSTRACTKinetic models are key to understanding and predicting the dynamic behaviour of metabolic systems. Traditional models require kinetic parameters which are not always available and are often estimated in vitro. Ensemble models overcome this challenge by sampling thermodynamically feasible models around a measured reference point. However, it is unclear if the convenient distributions used to generate the ensemble produce a natural distribution of model parameters and hence if the model predictions are reasonable. In this paper, we produced a detailed kinetic model for the central carbon metabolism of Escherichia coli. The model consists of 82 reactions (including 13 reactions with allosteric regulation) and 79 metabolites. To sample the model, we used metabolomic and fluxomic data from a single steady-state time point for E.coli K-12 MG1655 growing on glucose minimal M9 medium (average sampling time for 1000 models: 11.21 ± 0.14 min). Afterwards, in order to examine whether our sampled models are biologically sound, we calculated the Km, Vmax and kcat for the reactions and compared them to previously published values. Finally, we used metabolic control analysis to identify enzymes with high control over the fluxes in the central carbon metabolism. Our analyses demonstrate that our platform samples thermodynamically feasible kinetic models, which are in agreement with previously published experimental results and can be used to investigate metabolic control patterns within cells. This renders it a valuable tool for the study of cellular metabolism and the design of metabolic pathways.PMID:37209863 | DOI:10.1016/j.ymben.2023.05.002

Pages