Integrative Molecular Phenotyping

KI News

Updated: 1 hour 16 min ago

Similar changes in the brains of patients with ADHD and emotional instability

Fri, 31/08/2018 - 08:48
In both ADHD and emotional instability disorders (e.g. borderline and antisocial personality disorder as well as conduct disorder in children), the brain exhibits similar changes in overlapping areas, meaning that the two types of conditions should be seen as related and attention should be paid to both during diagnosis. This according to researchers at Karolinska Institutet behind a new study published in Molecular Psychiatry. The results can lead to a broader treatment for both conditions. Clinical attention has long been paid to the fact that individuals with ADHD also demonstrate emotional problems, such as chaotic emotional responses, anxiety and depression. Yet the relationship between ADHD and impaired emotional regulation has not been identified, even if theories have been proposed that both conditions are rooted in a dysfunction in how the brain controls its information processing. A new study by researchers at Karolinska Institutet in Sweden substantiated the hypothesis by showing how both ADHD and a form of emotional instability trait (conduct disorder trait in children) exhibit similar, overlapping changes in the brain. The study included more than 1 000 adolescents. Sibling conditions “We can call them sibling conditions, since they both involve partly overlapping underlying brain mechanisms, and therefore attention should be paid to both dimensions during diagnosis,” says Predrag Petrovic, associate professor at the Department of Clinical Neuroscience at Karolinska Institutet and consultant psychiatrist at North Stockholm Psychiatry. It was with the help of structural brain imagery (MR) that the team was able to show how both ADHD and conduct disorder traits in adolescents manifested themselves in the form of reduced brain volume and surface area in parts of the frontal lobe and nearby regions. The affected parts of the brain were generally overlapping, but the researchers also found changes that were specifically related to ADHD symptoms or symptoms seen in conduct disorder. The study also included behavioural experiments that demonstrated both conditions. “These results are important not least for the patients with emotional instability, since in many cases they are treated with scepticism and feel frustrated at not being taken seriously,” says Dr Petrovic. “We now show that this is related to changes in the brain that resemble those that have been observed in patients with ADHD, which can lead to a broader understanding and better diagnosis.” Broader treatment The study was part of the IMAGEN-project, an EU-funded collaboration amongst several European countries that aims towards a better understanding of how the brain and behaviour develop. The hope is that the study will not only lead to better diagnoses but also to better treatments, where people with an ADHD diagnosis can receive special therapy to help them better handle their emotions. “We also need to do more research to understand if central stimulant medication used for ADHD can also produce positive results for people with emotional instability disorders,” says Dr Petrovic. The study was financed with grants from several bodies, including the European Commission, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas), the Swedish Research Council, the National Institute for Health Research (NIHR), the Bundesministerium für Bildung und Forschung, the Swedish Society for Medical Research (SSMF) and Karolinska Institutet. Publication “Distinct brain structure and behavior related to ADHD and conduct disorder traits” Frida Bayard, Charlotte Nymberg Thunell, Christoph Abé, Rita Almeida, Tobias Banaschewski, Gareth Barker, Arun L. W. Bokde, Uli Bromberg, Christian Büchel, Erin Burke Quinlan, Sylvane Desrivières, Herta Flor, Vincent Frouin, Hugh Garavan, Penny Gowland, Andreas Heinz, Bernd Ittermann, Jean-Luc Martinot, Marie-Laure Paillère Martinot, Frauke Nees, Dimitri Papadopoulos Orfanos, Tomáš Paus, Luise Poustka, Patricia Conrod, Argyris Stringaris, Maren Struve, Jani Penttilä, Viola Kappel, Yvonne Grimmer, Tahmine Fadai, Betteke van Noort, Michael N. Smolka, Nora C. Vetter, Henrik Walter, Robert Whelan, Gunter Schumann and Predrag Petrovic. Molecular Psychiatry, online 14 August 2018, doi: 10.1038/s41380-018-0202-6

Lorelei Lingard is awarded the Karolinska Institutet Prize for Research in Medical Education

Tue, 28/08/2018 - 10:43
Professor Lorelei Lingard is awarded the 2018 Karolinska Institutet Prize for Research in Medical Education. Her research has contributed significantly to our understanding of how healthcare professionals interact and communicate with each other, which has led to new clinical practices and increased patient safety. Professor Lingard, Professor in the Department of Medicine at the Schulich School of Medicine & Dentistry and cross-appointed in the Faculty of Education at Western University in Canada, will receive the award and a prize amount of €50,000 at a ceremony in Stockholm, Sweden, on 11 October. This international prize is awarded for outstanding research in medical education. The purpose of the prize is to recognise and stimulate high-quality research in the field and to promote long-term improvements of educational practices in medical training. "Medical" includes all education and training for any health science profession. The prize is made possible through financial support from the Gunnar Höglund and Anna-Stina Malmborg Foundation. It is currently awarded every second year. Significant contributions “I’m happy to announce Professor Lingard as this year’s prize winner. She has contributed significantly to our understanding of how healthcare teams interact and communicate. Her research has been a major force in changing the way medical education views teamwork and has led to new clinical practices and increased patient safety,” says Professor Sari Ponzer, Chair of the Prize Committee. Since the late 1990s, Professor Lingard has been studying how healthcare teams function – both in providing patient care and during clinical training. She and her research team have studied expert and novice team members in settings as diverse as the operating room, the critical care unit, the heart function clinic, the organ transplantation team, the rehabilitation hospital, and the inpatient medicine ward. Communication is fundamental “My entry point into teamwork is always language. I’m interested in how teams communicate, because their communication is fundamental to how they collaborate and how they educate. My disciplinary training is in rhetoric – the study of how language works in social situations. Applying rhetoric to healthcare, I have worked to unravel what language does on teams. My research asks: what does language make possible in a team, and what does it constrain? As it turns out, language does many things that are critical for medical education and for care delivery. As a consequence of my research, we now pay systematic and critical attention to how clinical team members communicate with each other,” says Professor Lingard. My entry point into teamwork is always language. Her research has helped shape medical education policy in her native Canada as well as internationally. As a result, the role of language is today emphasised in clinical training, which was not previously the case. Her research has also inspired the recognition that teamwork is essential to how trainees learn. As clinical teams are the setting for most workplace-based learning in medicine, their structures and practices have a profound influence on that learning. Just a few decades ago, teamwork was not seen as important within medical education but today, thanks to Professor Lingard’s collaborative research programme, it’s recognised as a critically important aspect of what and how medical trainees learn. I’m very proud to be the first woman to win this prestigious prize Commenting on her Prize win, Professor Lingard says: “I’m deeply honoured to be recognised for this prize. Professionally, it’s a huge recognition of the work that I do together with my wonderful collaborative research teams, and the impact it has had. The field of team communication research didn’t exist 20 years ago and I’m enormously proud to have contributed to its development in our medical education community. From a more personal perspective, I’m very proud to be the first woman to win this prestigious prize.”    

Microvascular dysfunction: a common cause of heart failure with preserved pumping capacity

Mon, 27/08/2018 - 16:45
Microvascular dysfunction, or small vessel disease, can be an important cause of heart failure with preserved ejection fraction (preserved pumping capacity), an international team including researchers from Karolinska Institutet and AstraZeneca report in a study published in The European Heart Journal. The results can play a crucial part in identifying people in the risk zone for this type of heart failure and in the development of effective drugs. Heart failure is the most common reason for hospitalisation and causes much suffering. Heart failure with preserved ejection fraction, which is one of the two main types of heart failure, lacks scientifically proven treatments and more research is needed to understand how the disease develops and is to be treated. Scientists at Karolinska Institutet, along with colleagues from AstraZeneca and four other groups in Sweden, the USA, Finland and Singapore have now conducted a study of over 200 patients with this type of heart failure. An innovative coronary imaging protocol developed The study involved the use of an innovative coronary imaging protocol developed by Professor Li-Ming Gan’s research group in the IMED Biotech Unit in order to obtain a patient-friendly, cost-effective way to test coronary artery’s ability to increase its blood flow (Coronary Flow Reserve - CFR) in addition to the traditional imaging approach to generate overall picture of the heart’s structure and function. “Being able to identify patients with heart failure with preserved ejection fraction is not only key to improving patient outcomes through early diagnosis but also for us to understand the causal mechanisms underlying the disease so we can develop future targeted therapies”, says Professor Li-Ming Gan, Chief Scientist and Senior Medical Director, IMED Biotech Unit, AstraZeneca. Damage to the endothelium The results of the study, which is the first of its kind, show that 75 per cent of the patients had what is known as microvascular dysfunction. This is a disease in which the coronary artery shows no sign of narrowing or plaque in radiographs, but has damage to the endothelium that coats the inside of the blood vessels. The blood vessels do not work as they should, which can lead to adverse changes in the heart muscle. The researchers therefore draw the conclusion that microvascular dysfunction can be a critical underlying disease mechanism in patients with heart failure in which the ejection fraction is preserved. “The results will be useful in identifying patients at risk of developing the disease, but above all they’ll make an essential contribution to the development of drugs for patients with heart failure with preserved ejection fraction,” says Lars Lund, Senior Consultant and Professor at Karolinska Institutet’s Department of Medicine in Solna. The results will be presented at the European Society of Cardiology (ESC) congress in Munich and are published in The European Heart Journal. The project was financed by AstraZeneca and the researchers are in receipt of grants from the Swedish Research Council, the Swedish Heart and Lung Foundation, the U.S. National Institutes of Health, the American Heart Association, the National Medical Research Council of Singapore, and the Academy of Finland, Finnish Foundation for Cardiovascular Research. Publication “Prevalence Of Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: PROMIS-HFpEF” Sanjiv J. Shah, Carolyn S. P. Lam, Sara Svedlund, Antti Saraste, Camilla Hage, Ru-San Tan, Lauren Beussink-Nelson, Maria Lagerström Fermer, Malin A. Broberg, Li-Ming Gan and Lars H. Lund. European Heart Journal, online 27 August 2018, doi: XX

Karolinska Institutet returns remains to Australia

Mon, 27/08/2018 - 09:03
On 23 August, Karolinska Institutet handed the remains of seven indigenous Australians over to the Australian Government. The remains were part of Karolinska Institutet's anatomical collections from the mid- to late-1800s. They were transported to Sweden by a sea captain, a doctor and an exploratory zoologist, but have now been returned to Australia. The ceremony took place in Stockholm and was attended by representatives of Karolinska Institutet, the Australian Ambassador to Sweden, and Saami representatives. “It is very important for these communities that the remains of their ancestors will now rest in their homeland, in dignity and peace,” said Jonathan Kenna, Australia's Ambassador to Sweden, after the ceremony. The Australian Government's repatriation program supports the unconditional repatriation of the remains of indigenous peoples – Aboriginal and Torres Strait Islanders – from foreign collections and private owners, which contributes to reconciliation. “I would like to thank everyone from Karolinska Institutet and the Swedish State who worked long and hard so that this would come to pass,” said Jonathan Kenna. The President of Karolinska Institutet, Ole Petter Ottersen: “On behalf of KI, I am very pleased to be able to help restore the humanity and dignity of these seven individuals – it is our moral obligation to do so. There is nothing we can do to alter the mistakes of yesterday. What we can do is make sure that we get it right today,” he said. The President of the Sami Parliament Plenary Assembly, Paul Kuoljok, participated in the ceremony, in which a joik was sung directly to the seven individuals. The ceremony ended with a healing circle ritual, conducted by Johannes Vestly.

Oxygen therapy for patients suffering from a heart attack does not prevent heart failure

Sun, 26/08/2018 - 14:49
Oxygen therapy does not prevent the development of heart failure. Neither does it reduce the long-term risk of dying for patients with suspected heart attack. This has been proven for the first time by researchers at Karolinska Institutet as a result of a major Swedish study. The study is to be presented at the European Society of Cardiology’s (ESC) cardiology congress in Munich and published at the same time in the journal Circulation. The researchers expect their results to have a global impact on recommended healthcare for treating heart attacks. Oxygen has been used to treat patients suffering a heart attack for more than a century, despite the fact that such treatment has not had any scientifically proven effect on patients who have normal oxygen levels in their blood. Since the turn of the millennium, researchers worldwide have started to question whether oxygen therapy for heart attacks is ineffective – or may even be harmful. “Our new study has filled a central gap in knowledge regarding how to treat patients suffering a heart attack. One year ago, we were able to confirm that oxygen therapy does not appear to reduce the risk of dying up to one year after the heart attack. We can now substantiate these findings for a long-term perspective and show that oxygen therapy does not reduce the development of heart failure, the most worrying complication of heart attacks. On this basis, the routine use of oxygen can now be eliminated, and healthcare personnel can concentrate on more efficient measures and rapid transport to hospital,” confirms Robin Hofmann, senior consultant cardiologist and researcher at the Department of clinical science and education, Södersjukhuset, at Karolinska Institutet. The DETO2X-AMI study was conducted at 35 Swedish hospitals, involving random treatment with or without oxygen of 6,629 patients with suspected heart attack. The result shows that oxygen therapy in a moderate dose is not harmful but does not increase the survival rates or reduce complications, such as the development of heart failure or new heart attacks. The research project was financed by the Swedish Heart-Lung Foundation and the Swedish Research Council. Publication ”Long-term effects of oxygen therapy on death or hospitalization for heart failure in patients with suspected acute myocardial infarction” Tomas Jernberg, Robin Hofmann, et al for the DETO2X-SWEDEHEART investigators. Circulation, 26 August, 2018, doi: 10.1161/CIRCULATIONAHA.118.036220

Treatment for severe heartburn prevents cancer

Thu, 23/08/2018 - 17:00
Medical or surgical treatment of severe heartburn prevents cancer of the oesophagus, a study from Karolinska Institutet with almost one million Nordic patients reveals. The results will be published in the scientific journal JAMA Oncology. Pathological heartburn and acid reflux affects 10-20 per cent of the adult population. Long and severe reflux is the strongest risk factor for cancer of the oesophagus (type adenocarcinoma), an aggressive cancer that is difficult to treat. Reflux is usually treated with medicine to make the stomach contents less acidic, which usually eliminates or reduces symptoms. One alternative is to have an operation (anti-reflux surgery) which prevents the stomach contents from coming up into the oesophagus. Previous studies have not conclusively demonstrated that these treatments prevent oesophageal cancer, but the studies have not been sufficiently large or had enough follow-up time to ensure that conclusions can be drawn on any long-term cancer-preventive effects. 940,000 patients with reflux included in the study In the present study, researchers used health data records from 1964 to 2014 from the five Nordic countries. Of the more than 940,000 patients with reflux in the study, about 895,000 received medical treatment and of those nearly 2,370 patients (0.3 per cent) developed cancer of the oesophagus during the follow-up period. The risk of cancer of the oesophagus decreased over time following treatment and was similar to that of the corresponding population after 15 years or more in those who received medication. Of the more than 48,400 patients who had anti-reflux surgery, 177 (0.4 per cent) developed cancer of the oesophagus during the follow-up period. The risk of oesophageal cancer clearly fell also in this group and was at the same level as in the corresponding population 15 years or more after the operation. When the patients with reflux who had an operation were compared with those with reflux who received medication, the patients who had been operated on had a slightly higher risk of oesophageal cancer during the entire follow-up period, but the risk did not increase over time. This is probably caused by the fact that the operated patients had more serious reflux from the beginning. “The results show that effective medical or surgical treatment of reflux prevents cancer of the oesophagus. But because the individual’s risk of developing oesophageal cancer is low, even in those with reflux disease, the results do not justify treating reflux solely as a cancer-preventive measure. The symptoms and complications of reflux disease should continue to govern treatment,” says John Maret-Ouda, physician and scientist at the Department of Molecular Medicine and Surgery at Karolinska Institutet and the first author of the study. However, he points out that for the small percentage of people with severe reflux in combination with other risk factors for oesophageal cancer, such as obesity, male gender and mature age, effective and continuous medical treatment or an operation to treat reflux is recommended. Statistically significant results “Previous research results have shown poor cancer-preventive effects from anti-reflux surgery. The difference now is that for the first time we can show statistically significant results because we have a sufficiently large study with a long follow-up period of over 15 years following the operation,” says Jesper Lagergren, consultant surgeon and professor at the Department of Molecular Medicine and Surgery, Karolinska Institutet, who led the study. The research is funded by the Nordic Cancer Union, the Swedish Research Council and the Swedish Cancer Society. Publication ”The risk of esophageal adenocarcinoma following antireflux surgery in the five Nordic countries” John Maret-Ouda, Karl Wahlin, Miia Artama, Nele Brusselaers, Martti Färkkilä, Elsebeth Lynge, Fredrik Mattsson, Eero Pukkala, Pål Romundstad, Laufey Tryggvadóttir, My von Euler-Chelpin and Jesper Lagergren. JAMA Oncology, online 23 August, 2018, doi:

Dramatic development of immune system after birth

Thu, 23/08/2018 - 17:00
As soon as a baby is born, its immune system starts to change dramatically in response to the bacteria, viruses and so forth in its new environment, a phenomenon that is common to all babies, researchers from Karolinska Institutet in Sweden write in a paper published in Cell. The study was made possible using new techniques of immune cell analysis. Examining how the neonatal immune system changes has been difficult since the analyses are made from samples taken from the umbilical cord directly after delivery. Researchers have now exploited a new technique of immune cell analysis to monitor how babies develop for the first few weeks of life outside the womb. “This is the first time we’ve pinned down how the human immune system adapts itself to birth and the new environment,” says Petter Brodin, doctor and researcher at the Science for Life Laboratory (SciLifeLab) and the Department of Women’s and Children’s Health, Karolinska Institutet. “We saw drastic changes in the babies’ immune system between each sampling, which shows that it is highly dynamic early in life.” The study compared blood samples from 100 babies, both premature and full-term, taken during the first, fourth and twelfth week. The comparison was achieved using an advanced technique of immune cell analysis: mass cytometry in combination with extensive plasma protein analyses. Only small amounts of blood, just a few drops from each baby, are needed to analyse all the white blood cells and hundreds of proteins circulating in the blood. The researchers were also able to show that the babies who had abnormal development of the gut flora during the first weeks also demonstrated a disorder of the immune system. “Our results are important for better understanding the infection-sensitivity of newborn babies and the risks of premature birth,” says Dr Brodin. “If we can monitor the development of the immune system and steer it in different directions, we make it possible to prevent autoimmune diseases and allergies, which are partly related to the development of the immune system, and to even develop better vaccines, tailored to the neonatal immune system.” The adaptation of the immune system is thought to be triggered by the microbes, bacteria, fungi and so forth that the baby encounters outside the womb. The process begins primarily in the lungs, gut, skin and mucosa, which is to say the body’s points of contact with the outside world. “What surprised us was how similar the changes were amongst babies,” says Dr Brodin. “It seems as if all babies follow one and the same pattern, with their immune systems responding with exactly the same sequence of dramatic changes. It’s almost like a well-choreographed dance, a practised routine.” The researchers will now be broadening out the study to encompass more babies, all of whom will be monitored into childhood. This will enable the team to see which of them develop diabetes, allergies, asthma and inflammatory bowel disease. “Many of these diseases can definitely be traced back to how a baby is born and how its immune system adapts to the external environment,” explains Dr Brodin. “What we’re bringing to the table is the specific changes in the immune system that underlie this. It’s a piece of the puzzle that was formerly missing.” The study was made possible through the close collaboration of Karolinska University Hospital. “For ethical, practical and logical reasons it’s difficult to put together a study like this,” says Dr Brodin. “The key to our success is that those of us leading the study also work as doctors and when we manage to combine patient-end work with the most advanced techniques, we make wonderful discoveries.” The researchers who conducted the study are active at the Science for Life Laboratory, Karolinska Institutet, and Karolinska University Hospital. The study was financed with grants from the European Research Council (ERC), the Swedish Research Council, Karolinska Institutet and the Swedish Society for Medical Research (SSMF). Publication:  “Stereotypic immune system development in newborn children”, Axel Olin, Ewa Henckel, Yang Chen, Tadepally Lakshmikanth, Christian Pou, Jaromir Mikes, Anna Gustafsson, Anna Karin Bernhardsson, Cheng Zhang, Kajsa Bohlin, Petter Brodin. Cell, online 23 August 2018, doi: 10.1016/j.cell.2018.06.045.    

Cleverly located surface proteins make some pneumococcal strains especially dangerous

Thu, 23/08/2018 - 11:12
Successful pathogenic strains of pneumococci have two proteins that, owing to their location on the surface of the bacteria, enhance their survival and ability to cause disease, a study from Karolinska Institutet in Sweden published in Nature Communications, reports. Pneumococcal infections are one of the most common causes of disease and death in the world. One reason for the pathogenic potential of these bacteria is that they produce a sugar casing. This capsule prevents the important immune component C3b from attaching to and attacking the bacteria. Researchers at Karolinska Institutet and the Royal Institute of Technology in Sweden have now studied in detail how pneumococci interact with the part of the immune system called the “complement system”, which includes C3b. The complement system often works as the first line of defence against foreign substances and cells, triggering a number of immune reactions in the body. The researchers show that the capsule is weak at the bacteria’s point of division, which therefore presents an opening for C3b. By using super-resolution microscopy (STED) they found that C3b accumulates under the capsule primarily at the division sites. This accumulation can continue and cover the entire bacteria unless the pneumococcus can find a strategy to prevent it happening. The study also shows that a common surface protein on pneumococci called PspC1 is located right at the division site, where it recruits another protein called Factor H, which negatively regulates the complement system by, amongst other mechanisms, inactivating C3b. Some especially successful and pathogenic pneumococcal strains also express a closely related protein, PspC2, which is mainly localised at the bacterial poles. This separate location on the surface of the bacteria affects the two surface proteins’ functions. Unlike PspC1, which binds Factor H, PspC2 affects the bacteria’s ability to adhere to epithelial cells, which can be found in the respiratory tract, in mucus membranes and elsewhere. “Our study shows that the precise localisation of bacterial surface proteins in relation to the capsule layer affects the role they will have in the disease development,” says Birgitta Henriques-Normark, professor at the Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet. “This is an important piece of the puzzle to understand how pneumococci avoid the immune system and cause everything from otitis and sinusitis to severe pneumonia and septicaemia.” The study was financed by the Swedish Research Council, Stockholm County Council (ALF funding), the Swedish Foundation for Strategic Research and the Knut and Alice Wallenberg Foundation. Publication “Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification”. Anuj Pathak, Jan Bergstrand, Vicky Sender, Laura Spelmink, Marie-Stephanie Aschtgen, Sandra Muschiol, Jerker Widengren & Birgitta Henriques-Normark. Nature Communications, online 23 August 2018, doi: 10.1038/s41467-018-05494-w.

New scientific model reveals interaction between blood vessels and neurons in the brain

Mon, 20/08/2018 - 17:01
Micro-flow models of the blood-brain barrier and the brain reveal for the first time complex metabolic interactions between the brain’s blood vessels and nerve cells. The findings are published by an international team of researchers, including from Karolinska Institutet and the Royal Institute of Technology, in the journal Nature Biotechnology. Interaction and regulation between blood vessels and nerve cells in the brain are essential to its function, but how this interaction takes place has been difficult to pin down. Classic cell-culture models of nerve cells and blood vessel cells are too simplified to show interactions, and studies on brain tissue and animals are too complicated.   In order to understand how blood vessels and surrounding brain tissue interact, the team built up a so-called “organ-on-chip”-model, which is a micro-flow model with living cells. Using the model, the researchers were able to analyse all the smaller molecules issued by the cells and identify a previously undescribed link for how blood vessel cells metabolise glucose and how these metabolites influence the production of neurotransmitters by the neurons. The team is now working on using these systems to obtain new insights on the brain and to build models of brain diseases. The study was financed by the Wyss Institute for Biologically Inspired Engineering at Harvard University, Defense Advanced Research Projects Agency (DARPA), the Sweden-America Foundation, the Carl Trygger Foundation and the Erik and Edith Fernström Foundation. Publication “A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells” Ben M Maoz, Anna Herland, Edward A FitzGerald, Thomas Grevesse, Charles Vidoudez, Alan R Pacheco, Sean P Sheehy, Tae-Eun Park, Stephanie Dauth, Robert Mannix, Nikita Budnik, Kevin Shores, Alexander Cho, Janna C Nawroth, Daniel Segrè, Bogdan Budnik, Donald E Ingber and Kevin Kit Parker Nature Biotechnology, online 20 August 2018, doi: 10.1038/nbt.4226

Karolinska Institutet keeps a leading position

Thu, 16/08/2018 - 11:14
The recently published Shanghai ranking (ARWU – Academic Ranking of World Universities) shows that Karolinska Institutet keeps a leading position as one of the world's strongest universities and the highest-ranked university in Sweden. KI has place 44 in the global list, which includes ”all fields and subjects”, which is the same as 2017 and 2016. In addition, more specific areas such as ”Pharmacy & pharmaceutical sciences”, ”Public health” and ”Nursing” is KI among the world's top five universities. The two USA universities Harvard and Stanford are in the top of the list. British University of Cambridge is number three in the ranking. Two further Swedish universities are featured at the top 100: Uppsala University (place 63) and Stockholm University (77).

Prestigious grant for research on ALS

Wed, 15/08/2018 - 15:07
KI researcher Fang Fang has been awarded the prestigious ERC Starting Grant for her research about the human gut microbiome and the development of the neurodegenerative disease ALS. In all, the European Research Council this year invests EUR 603 million in 403 talanted early career researchers. The purpose of the ERC Starting Grants is to support talented early-career scientist, who have already produced excellent supervised work, into becoming independent researchers and the research leaders of tomorrow. Dr Fang Fang, Principal Investigator at Karolinska Institutet’s Department of Medical Epidemiology and Biostatistics, receives EUR 1.5 million, distributed over five years for her project MegaALS. ”I think the grant provides a unique opportunity to do something different, in terms of how others have done previously in the specific research area and how myself has done as a researcher in the past”, comments Fang Fang. “It is certainly challenging, but mostly exciting and fun.” Full project title: Unravelling the Interplay between Metabolism, Gut Microbiome and Adaptive Immunity in Amyotrophic Lateral Sclerosis (MegaALS) Short description: Amyotrophic lateral sclerosis (ALS) is a rare but devastating neurodegenerative disorder that in lack of effective treatment leads to death within a few years of diagnosis. ALS is increasingly being recognized as a systemic disease affecting not only the central nervous system but also other physiological aspects. In the project now funded by the ERC, Fang Fang and her team intend to investigate the disease-specific interplay between metabolism, gut microbiome and adaptive immunity, which may substantially contribute to the development of ALS. The project also includes the assessment of a treatment that targets this interplay, conducted in mice. The researchers will use both epidemiological and experimental methods in their work.

Detailed atlas of the nervous system

Thu, 09/08/2018 - 11:30
Researchers at Karolinska Institutet have created a systematic and detailed map of the cell types of the mouse nervous system. The map, which can provide new clues about the origin of neurological diseases, is presented in the journal Cell. The researchers will now use the same methods to map out the human brain on a detailed level. The nervous system consists of hundreds, perhaps thousands, of different neurons, but also immune cells, supporting glia cells and cells that constitute vessels and membranes. Our knowledge of these cell types mainly stems from microscopy, which provides information about the shape of cells and can detect certain proteins, and from electrophysiology, where cells are distinguished based on their electrical properties. However, these methods are limited, and there is currently no systematic atlas of the various cell types that make up the mammalian nervous system. In recent years, Sten Linnarson’s research group, and others, have developed methods to map cell types of the brain more systematically in much greater detail than ever before, by measuring gene activity in individual cells. “You can compare it to the difference between a medieval map and a satellite image: thousands of details that were previously invisible become visible with the use of these new techniques, and the entire map becomes more reliable, explains Sten Linnarson, professor at the Department of Medical Biochemistry and Biophysics at Karolinska Institute. Largest study of the architecture of the mammalian nervous system to date His research group now publishes the largest study of the architecture and composition of the mammalian nervous system to date, using the mouse as a model system. The researchers identified 265 different types of cells, and found that neurons had the greatest diversity with over 200 different types.  "What surprised us most was that we discovered several different types of astrocytes that were specialised in different parts of the brain. This suggests that astrocytes have specific functions in different parts of the brain, and that they play more of a key role in the functions of the brain than previously understood", says Sten Linnarson. The knowledge of the cell types of the brain can be used to understand the origin of different diseases. Roughly one third of all neurological diseases arise during embryonic development. In the past fifteen years a large number of genetic studies have identified the genes that contribute to diseases such as schizophrenia, multiple sclerosis, autism, Alzheimer’s and Parkinson’s disease. However, diseases originate from a specific type of cells, in a specific location and at a specific time depending on where and when the relevant genes are active. Atlas of the nervous system gives clues as to how the disease occurs —With the help of our new atlas of the nervous system, researchers are now able to place disease-causing genes in specific cell types, which provides us with clues as to how the disease occurs. In the long run this might contribute to the development of new drugs or other therapies, says Sten Linnarson. The mapping of the mouse nervous system is an important first step in a larger project where researchers are now mapping the human brain by using the same methods. The current study was funded by the Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research and the Wellcome Trust. Publication ”Molecular Architecture of the Mouse Nervous System”. Amit Zeisel, Hannah Hochgerner, Peter Lönnerberg, Anna Johnsson, Fatima Memic, Job van der Zwan, Martin Häring, Emelie Braun, Lars Borm, Gioele La Manno, Simone Codeluppi, Alessandro Furlan, Kawai Lee, Nathan Skene, Kenneth D. Harris, Jens Hjerling Leffler, Ernest Arenas, Patrik Ernfors, Ulrika Marklund, Sten Linnarsson. Cell, online Aug 9, 2018, doi: xxx.

New method reveals cell development

Wed, 08/08/2018 - 19:05
Researchers at Karolinska Institutet and Harvard Medical School report in the journal Nature that they have developed a technique for capturing dynamic processes in individual cells. Apart from studying disease processes, the method can be used to observe in detail how specialised cells are formed during embryonic development. The body is composed of specialised cells that give each organ its unique function. The brain, for instance, is made up of hundreds of different kinds of neurons, while the kidneys have specialised cells for filtering blood and the heart muscle cells have a built-in pacemaker function. Organs are formed as the embryo develops through a process of gradual specialisation. The fertilised egg divides and as more cells are formed they start to take on more specific functions. Similar processes are also found in tumours, which gradually develop into a kind of organ with blood vessels and supporting cells that help the tumour grow. Difficult to study dynamic processes What determines the unique function of each cell is the specific genes that are active within it. In neurons, for example, genes are activated that control electrical signals, while muscle cells use genes for motor proteins. In recent years, Swedish and international researchers have developed methods for mapping the cellular composition of complex tissues by studying the gene activity of individual cells. The downside of these methods is that they are destructive. Measuring gene activity of individual cells involves destroying the cells so that their content can be analysed, which makes it difficult to study dynamic processes. “It’s like a photograph in which all movement is frozen in time,” explains Professor Sten Linnarsson at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, and one of the researchers who led the study. “We’ve now developed a new method that measures not only genetic activity but also changes in this activity in individual cells. You can compare this to a photo captured with a long exposure, which results in motion blur: stationary objects are sharp while objects in motion are blurred. Objects moving quickly are blurrier, and the direction of movement is revealed by the direction of blur.” Method to be used to study tumour formation, wound healing and the immune system The new method exploits the fact that when genes are activated, a series of RNA molecules are formed in a certain order. By separating out these molecules, the researchers can work out if a gene has just been activated or if, for example, it is about to be switched off. “This new method allows us to observe in detail how specialised cell types are formed in the embryo, including the human embryo,” says Professor Linnarsson. “It can also be used to study dynamic disease processes, such as tumour formation, wound healing and the immune system.” The study was conducted in close collaboration with Peter Kharchenko from Harvard Medical School in the USA, and with contributions from several other groups. It was financed with grants from the Swedish Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg Foundation, the Erling-Persson Family Foundation, the Wellcome Trust, the Centre for Innovative Medicine (CIMED), the Swedish Research Council, the European Research Council, the Swedish Brain Fund, the Ming Wai Lau Centre for Reparative Medicine, the Swedish Cancer Society, Karolinska Institutet and the USA’s National Institutes of Health (NIH) and National Science Foundation (NSF). Publication “RNA velocity of single cells”, Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja Lidschreiber, Maria E. Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Lars E. Borm, Zehua Liu, David van Bruggen, Jimin Guo, Erik Sundström, Gonçalo Castelo-Branco, Patrick Cramer, Igor Adameyko, Sten Linnarsson, Peter V. Kharchenko. Nature, online Aug 8 2018, doi: xxx

Mice with access to soil have greater resistance to allergies

Tue, 07/08/2018 - 14:30
When mice live in cages with an added earthen floor, it increases their resistance towards allergic inflammations. Close contact with micro-organisms in the soil triggers anti-inflammatory genes in the mice and stimulates their gut microbiota. Researchers from Karolinska Institutet have performed the study, which was published in the Journal of Allergy and Clinical Immunology. Earlier research has shown that the past decade’s dramatic increase of chronic, inflammatory illnesses is due partly to a decrease in contact with natural micro-organisms. The researchers at Karolinska Institutet have now mapped the connection in more detail, by comparing mice that live in cages with an added earthen floor with those that live in clean cages with sawdust. "Our hypothesis was that the microbes in the soil help to develop our immune system, and that it is when we lose contact with these that inflammatory diseases and allergies increase. We observed that mice with soil in their cages had an improved expression of anti-inflammatory genes and more active regulatory T-cells in the small intestine," says Noora Ottman, a researcher at the Institute of Environmental Medicine at Karolinska Institutet. Milder inflamation with earthern floor  When the mice were subjected to allergic lung inflammation, the researchers noticed that the mice that lived with an earthen floor developed a considerably milder inflammation compared with the mice in the clean cages; something that can be explained by the fact that the higher degree of active regulatory T-cells in the mice suppresses the immune system's allergic reaction. "Even if both groups of mice developed allergic inflammations, the mice that lived with soil in their cages were able to handle their response better," says Noora Ottman. Allergic inflammation affects gut flora   The allergic inflammations in turn affected the composition of microbes in the intestinal tract of mice, which suggests a direct communication in both directions between the individual anatomical sections. If a change in the immune system and microbial composition occurs in one place, then the other is also affected. The results continue to build on the realisation that close contact with nature increases our physical and psychological well-being. "By allowing more greenery into our daily environment, such as in offices, schools and homes, we could positively affect our health. We now need to look closer at the microbes we have found; several of them are not very well characterised yet, as well as the soil in which they live. Another important aspect is to examine in more detail which mechanisms the microbes use in order to calibrate the immune system and increase immune tolerance, both locally and systematically," Noora Ottman explains. The study has been conducted by Karolinska Institutet and the University of Helsinki. The research was financed by the Jane & Aatos Erkko Foundation, The Swedish Cultural Foundation in Finland and the Academy of Finland. Publications ”Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model”. Noora Ottman, Lasse Ruokolainen, Alina Suomalainen, Hanna Sinkko, Piia Karisola, Jenni Lehtimäki, Maili Lehto, Ilkka Hanski, Harri Alenius and Nanna Fyhrquist. Journal of Allergy and Clinical Immunology, online 7 augusti 2018, doi:10.1016/j.jaci.2018.06.024.

A university for diversity at the EuroPride parade

Tue, 07/08/2018 - 10:59
Under the motto A university for diversity, KI and Medicinska Föreningen's HBTQ section Queerolinska participated for the fifth consecutive year in Stockholm's Pride parade. From the KI management, KI's Vice President Karin Dahlman-Wright participated, who has the overall responsibility for equal rights and opportunities at KI, Dean Anders Gustafsson and one or our heads of departments Mats Olsson. "The Pride parade is not just an opportunity to gather and stand for equal rights but is part of a continuous work throughout the year," says Karin Dahlman-Wright. The theme of this year's Pride parade was "Two cities, one country - for a united Europe, open to the world" as it was the EuroPride and this inspired the universities in the Stockholm area to participate together as Academic Pride. Photos: Erik Flyg

Red blood cells cause cardiovascular injury in type 2 diabetes

Mon, 06/08/2018 - 20:05
Harmful effects of substances secreted from red blood cells could explain the increased risk of cardiovascular diseases in patients with type 2 diabetes, the results of two new studies conducted at Karolinska Institutet in Sweden indicate. It is a known fact that patients with diabetes are at considerable risk of developing cardiovascular diseases caused by organ-vessel damage that leads to heart attack, stroke, kidney disease, eye damage etc. Patients with diabetes also have a worse prognosis following a heart attack. However, the underlying causes of cardiovascular injury in diabetes are largely unknown, and there is no specific treatment to prevent it. Research suggests that the red blood cells that transport oxygen to the body’s tissues are more inclined to adhere to the vessel wall in diabetes. Researchers at Karolinska Institutet have now studied how red blood cells change in type 2 diabetes and if they contribute to the cardiovascular injury occurring. Their results are presented in The Journal of the American College of Cardiology and JACC: Basic to Translational Science. “We found that healthy blood vessels exposed to red blood cells from patients with type 2 diabetes suffer damage to their innermost cell layers, the endothelial cells,” says Professor John Pernow at Karolinska Institutet’s Department of Medicine in Solna who led both the studies. “This phenomenon, which is called endothelial dysfunction, appears early on in the development of diabetes-related vessel injury and greatly reduces the ability of the vessels to dilate while aggravating the inflammation.” Using an experimental model, the team was also able to show that red blood cells from diabetic patients or diabetic mice impair heart function and cause greater myocardial injury in the event of a heart attack than red blood cells from healthy individuals. Their detailed analyses of rat and human blood vessels also demonstrate that the harmful effects are caused by elevated activity of the enzyme arginase, reduced production of the vasodilating molecule nitric oxide and increased formation of harmful oxygen-derived free radicals in the red blood cells. “We also found that treatment that targeted arginase or oxygen-derived free radicals normalised red blood cell function, which meant that their harmful effect on cardiovascular function could be prevented,” explains Professor Pernow. “Our hope is that this knowledge will give rise to new treatments, specifically targeted at red blood cells, that prevent vascular injury and protect the heart in the event of heart attack in patients with type 2 diabetes.” The studies were financed by the Swedish Research Council, the Swedish Heart and Lung Foundation, Stockholm County Council’s ALF project fund, the Torsten Söderberg Foundation, the Novo Nordisk Foundation and the Diabetes Wellness Research Foundation. Publications “Red blood cells from patients with type 2 diabetes induce endothelial dysfunction via arginase I”, Zhou Z, Mahdi A, Tratsiakovich Y, Zahorán S, Kövamees O, Nordin F, Gonzalez AEU, Alvarsson M, Östenson CG, Andersson DC, Hedin U, Hermesz E, Lundberg JO, Yang J, Pernow J. Journal of the American College of Cardiology, online Aug 6 2018, doi: xxx “Red blood cells in type 2 diabetes impair cardiac post-ischemic recovery through an arginase-dependent modulation of nitric oxide synthase and reactive oxygen species”, Yang J, Zheng X, Mahdi A, Zhou Z, Tratsiakovich Y, Jiao T, Kiss A, Kövamees O, Alvarsson M, Catrina CB, Lundberg JO, Brismar K, Pernow J. JACC: Basic to Translational Science, online 18 July 2018, doi: xxx

New potential target for treatment of diabetes

Tue, 24/07/2018 - 17:00
Researchers at Karolinska Institutet have discovered that one of the building blocks in the calcium channels in the pancreatic beta cells play an important role in regulating our blood glucose values. Treatments aimed at this building block may be a new way to combat diabetes the researchers suggest in an article in the scientific journal Cell Reports. Beta cells in the pancreas produce the hormone insulin, which regulates the blood glucose level in our bodies. In diabetes, the beta cells have lost part or all of their function. Calcium ions (Ca2+) act as an important signal for the release of insulin. When blood glucose increases, this causes the levels of Ca2+ in the beta cells to increase, triggering the release of insulin. Under normal conditions the Ca2+ signal displays a specific regular pattern when the cells are stimulated by glucose. When, on the other hand, the beta cells are not able to release normal amounts of insulin, as in diabetes, this pattern changes. Identified cause of reduced release of insulin The level of Ca2+ increases in the beta cell when a specific calcium channel, made up of several different building blocks, opens in the beta cell’s wall. Per-Olof Berggren’s research group at Karolinska Institutet has previously shown that one of the building blocks in the channel, the so-called β3 subunit, plays an important regulatory role. “In our new study, we are able to show that beta cells from diabetic mice have an increased amount of the β3 subunit and that this causes an altered Ca2+ pattern, a reduced release of insulin, and thereby impaired blood glucose regulation,” says Per-Olof Berggren, Professor at the Rolf Luft Research Centre for Diabetes and Endocrinology at the Department of Molecular Medicine and Surgery at Karolinska Institutet, who led the study. Better regulation of the blood glucose levels When the researchers reduced the amount of the β3 subunit in the beta cells in the diabetic mice, the Ca2+ signal normalised and thereby the release of insulin, resulting in better regulation of the blood glucose levels. They also saw that mice that totally lacked the β3 subunit demonstrated a better beta cell function and blood glucose regulation when they were given a diabetogenic diet. When the researchers tried transplanting beta cells without the β3 subunit into mice with diabetes, the blood glucose regulation of the mice improved. Experiments with human beta cells showed that the release of insulin deteriorates with increased amounts of the β3 subunit. “Our findings indicate that just this building block in the calcium channel can be a new target for treating diabetes,” says Per-Olof Berggren. The research was financed by the National Research Foundation of Korea (NRF), the Korea-Sweden Research Cooperation Programme, the Swedish Foundation for Strategic Research, the Swedish Diabetes Association, Karolinska Institutet’s Foundations and Funds, the Swedish Research Council, the Novo Nordisk Foundation, the Erling-Persson Family Foundation, the Strategic Research Programme in Diabetes at Karolinska Institutet, the European Research Council (ERC), the Knut and Alice Wallenberg Foundation, Skandia insurance company Ltd, the Diabetes and Wellness Foundation, the Berth von Kantzow Foundation, and the Stichting af Jochnick Foundation. Per-Olof Berggren is managing director of the bioetech company Biocrine AB, and co-authors Martin Köhler and Shao-Nian Yang are consultants at the company. No other corporate interests have been reported. Publication Blocking Ca2+-channel β3 subunit reverses diabetes Kayoung Lee, Jaeyoon Kim, Martin Köhler, Jia Yu, Yue Shi, Shao-Nian Yang, Sung Ho Ryu, and Per-Olof Berggren Cell Reports, online 24 July 2018

Three questions to Paulina Nowicka, coordinator of KI’s participation in Europe’s biggest research project on childhood obesity

Mon, 23/07/2018 - 11:23
STOP, the most comprehensive European project in the field of childhood obesity, has just begun. It involves 31 organisations from 16 countries. Karolinska Institutet is present as the sole Swedish partner. Paulina Nowicka, associate professor in paediatric science at the Department of Clinical Science, Intervention and Technology (CLINTEC), is in charge of the STOP project at Karolinska Institutet. STOP stands for Science and Technology in childhood Obesity Policy. Her research fields include childhood obesity, eating habits and effective early-year interventions. There is a trend towards more people being overweight from childhood onwards. This may result in over one third of adults in certain European countries being overweight by 2025. How will the STOP project turn this tide? “As it has proved very difficult to treat obesity in adults, teenagers and school-age children, we should offer early-year intervention,” comments Paulina Nowicka. “By meticulously evaluating the efficiency of measures in early childhood (up to 5 years old), this study will fill current gaps in what we know about evidence-based obesity treatment. Only a few studies have done this” she adds. The project will be investigating early signs of biological changes caused by behaviour that leads to obesity. A pilot study in Sweden, Spain and Romania is to test if, especially in areas with few resources, digital technology can help very young obese children and their families achieve sustainable improvements in body weight. The project will involve the food industry and other commercial bodies in preventive activities. In this connection, it will also investigate the opportunities for European governments to use, for example, taxes, nutritional value statements and marketing restrictions in respect of foodstuffs and drinks. The proportion of children with obesity has more than doubled in ten years. How is research tracing the causes of this? “The answer to how we are to tackle the childhood obesity epidemic lies in, for example: our ability to identify the obesogenic exposure that has the greatest impact; employing effective measures and incentives to counteract such exposure; and, improving children’s ability to deal with said exposure,” relates Paulina. Finding the causes of childhood obesity entails investigating behavioural changes in environments where there is a trend towards increased incidence of obesity (i.e. obesogenic environments). Descriptions of such environments include: building and transport patterns; access to foodstuffs; foodstuff prices and nutritional content; exposure to advertising; and, technologies used in children’s schoolwork and play (as also in adults’ work and leisure).  The STOP method sees external obesogenic influences as the ones that have most impact on children’s behaviour and their resultant health. Obesity is spreading rapidly amongst the children who are most exposed and vulnerable to these influences.  What shape has the collaboration between the parties in the research project taken and what is Karolinska Institutet’s role? "The STOP project is coordinated by a group at Imperial College Business School in London. Karolinska Institutet is one of the project’s partner organisations. These latter include: other universities; research bodies; public authorities; international organisations (WHO and OECD); civil society organisations that deal with issues involving health and children," says Paulina Nowicka.  European consortia promoting innovation in the foodstuffs and health sectors are also invloved. Karolinska Institutet will be leading the part of the project dealing with healthcare.  Above all else, the aim is to carry out systematic analyses to establish best practice in health and medical care. There is to be special focus on: initiatives such as recruitment, compliance and monitoring; and, socioeconomically disadvantaged households and immigrant groups. Working from an earlier study (the More and Less Study) that proved effective in reducing Body Mass Index (BMI) or the risk of obesity, we also want to generate new evidence about interventions.  STOP (Science and Technology in childhood Obesity Policy) is financed by the EU’s Horizon 2020 programme for “Healthy and safe foods and diets for all” (grant no. 774548).  In total, the project is receiving SEK 100,000 million.

Sleep disturbances linked to increased dementia risk

Tue, 17/07/2018 - 08:00
Researchers at Karolinska Institutet in Sweden report that sleep disturbances in midlife or in late life are associated with a higher risk for developing dementia in old age. The results are published in Alzheimer’s & Dementia: The Journal of the Alzheimer's Association. The results show that in midlife, when participants were in their 40s or 50s, insomnia was associated with a 24 per cent increased risk for dementia later in life. In late life, when participants were in their 60s or 70s, terminal insomnia (waking up too early) was associated with a doubled risk for later dementia, while long sleep duration (more than 9 hours of sleep per night) was associated with a fourfold increased risk for later dementia. The latter finding among this older population may be due to already existing (undiagnosed) dementia-related pathology, as dementia is often linked with sleep disturbances, including increased sleep duration. “Our findings have direct clinical implications, and combined with previous studies they indicate that different stages in the life course are sensitive to sleep disturbances, which in turn increase the risk for dementia. These sleep disturbances necessitate closer clinical attention and the implementation of tailored interventions,” says lead author Shireen Sindi, postdoctoral researcher at Karolinska Institutet’s Department of Neurobiology, Care Sciences and Society. Assessment of multiple sleep parametres The analysis included three population-based studies from Sweden and Finland with large sample sizes of men and women (more than 2 000), long follow-up durations, assessment of multiple sleep parameters, and standardised dementia diagnoses, adjusting for potential influencing factors such as levels of physical activity, genetics and sleep medications. Dr. Sindi works within the Nordic Brain Network team (led by Professor Miia Kivipelto at Karolinska Institutet), focusing on lifestyle interventions for dementia. They published the landmark Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (Finger) trial, which showed that a ‘multidomain intervention’ including diet, exercise, cognitive training and management of vascular risk factors has a positive impact on cognitive functioning. More recently, many countries are adapting the Finger model to their local settings (e.g. USA, China, Singapore, Canada), within the World-Wide Fingers platform. Interventions to improve sleep “It is promising that lifestyle changes can positively impact cognition. So far, there has been insufficient evidence regarding the role of sleep disturbances as a risk factor for dementia. Our current study indicates that future interventions to prevent dementia may benefit from also including interventions to improve sleep,” says Dr. Sindi. The team will now continue investigating the association between sleep disturbances and cognitive performance and dementia among different populations, including memory clinic patients. They will also examine the role of underlying biological mechanisms. The study was done in collaboration with researchers at Karolinska Institutet’s Aging Research Center (Sweden), Centre for Ageing and Health - University of Gothenburg (Sweden), the National Institute for Health and Welfare in Helsinki (Finland), the University of Eastern Finland (Finland), and Stockholm University - Stress Research Institute (Sweden). The research was financed by Alzheimerfonden, the Swedish Research Council, the Swedish Research Council for Health, Working Life and Welfare, Cimed (Karolinska Institutet), Le Fonds de recherche du Québec – Santé, Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, the Knut and Alice Wallenberg Foundation, the Swedish Brain Foundation, and Swedish Brain Power. Publication “Sleep disturbances and dementia risk: a multi-centre study”. Shireen Sindi, Ingemar Kåreholt, Lena Johansson, Johan Skoog, Linnea Sjöberg, Hui-Xin Wang, Boo Johansson, Laura Fratiglioni, Hilkka Soininen, Alina Solomon, Ingmar Skoog, and Miia Kivipelto. Alzheimer’s & Dementia: The Journal of the Alzheimer's Association, online 17 July 2018, doi: 10.1016/j.jalz.2018.05.012

KI hosted a discussion concerning world health in Almedalen

Thu, 12/07/2018 - 10:12
Only four out of ten Swedes are aware of the 17 global objectives that the UN set for sustainable development by 2030. An increase in awareness of these objectives and why they are necessary, is a first step in increasing commitment across parts of society. This was noted at KI's seminar in Almedalen. Do you know the world’s PIN code? It is 1114. The code was an educational device created by former KI professor Hans Rosling, with the idea being that the code would symbolise the geographical distribution of the world’s population. Approximately one billion people live in America, one billion in Europe, one billion in Africa and four billion in Asia: 1114. But the population is still increasing in Africa and Asia. By 2100, the pin code is expected to read as 1145 instead. The majority of these people will be between 15 and 74 years old.  Knowing what the world looks like is important for health improvement work. This was the opening message at Tuesday’s KI seminar in Almedalen. In some places, health has improved dramatically in the past few decades. For example, the average life span today is as high as 72 years. Many no longer die from infections such as HIV, malaria or pregnancy and birth-related ailments, and instead die from non-infectious diseases which affect people far later on in life. Although large parts of the world have improved considerably, others have changed very little. In countries with lower incomes, women still give birth to five children on average, and child and mother morality is very high. A vision for a better world “Without a clear map of the world we cannot work on these important issues,” said Tobias Alfvén, researcher for Public Health Sciences at KI. He and his colleague Helena Nordenstedt introduced the seminar, which had the title “Who takes responsibility for world health”. The aim was to discuss how the 17 objectives of the 2030 Agenda, a vision for a better world, as assumed in 2015 by the United Nations General Assembly, should be achieved. And the challenges facing the future naturally contain a range of clean health issues such as antibiotic resistance and new infections, among other problems.  “Climate change deems large areas inhabitable and war and nationalism leads to poverty and depletion of resources. Ten years ago, Syria was a middle-income country with good health and medical care accessible for the vast majority, however today it is a low-income country where child mortality is on the rise. Poverty is perhaps the most important objective to combat, if we are to progress further”, said Tobias Alfvén.   Unexpected alliances The final objective concerns working together in order to achieve the objectives. And it is going to be crucial, according to Ole Petter Ottersen, President of KI.  “According to the declaration, responsibility rests not only with the UN and governing politicians, but also with civil society, entrepreneurs and indeed everyone else. And this is what is so fantastic about the 2030 Agenda – that it gives us all responsibility for doing something. However giving everyone responsibility also risks resulting in nobody taking responsibility”, he said. In the subsequent panel discussion, participants were invited to discuss how unexpected alliances could increase opportunities for creating a sustainable world. Ingrid Petersson, Chairman of the government’s 2030 Agenda delegation, said that this requires both profound expertise, a horizontal thinking and a holistic approach. She wants to see increased partnership within higher education. “Humanities, social science, natural science, technology and medicine: United for a better world!” she said. Highlighting the economic aspects of health problems could be a way of getting politicians to engage in these issues according to Sofia Arkelsten, Moderate MP.  “It can be a matter of addressing finance ministers and prime ministers and also discussing the economic gains, instead of talking with health ministers”, she said.  Niklas Adalberth, founder of Klarna and the Norrsken foundation, said that economic growth is necessary in order to counteract poverty.  “Today, many entrepreneurs invest in the technology industry. However, it would be great if we could persuade more of these enthusiasts and risk takers to focus on technologies that can solve real societal problems, instead of developing a new image sharing app”, he said.  As an example, he mentioned Matsmart, an app that reduces food wastage. “By turning community entrepreneurs into tomorrow's rock stars, we are taking a step in the right direction”, he said.  Future markets The opportunity to create future markets could be a way of motivating companies to invest in long-term projects in low-income countries, which simultaneously leads to health benefits. One example was provided by Suzanne Håkansson, manager of social affairs at AstraZeneca. The company has worked in Kenya together with an American aid organisation which focuses on HIV and Aids and has set-up clinics for simultaneous blood pressure measurements and HIV tests.  She explained that many do not come to HIV testing because the disease is very stigmatised, but they do come to have their blood pressure measured, and you can take the opportunity to take an HIV test as well.   Stefan Swartling Peterson, Chief of Health at UNICEF, New York, also emphasised that these issues are not limited to the field of healthcare and medicine.  “Health is about food, water, homes and schools, and to a small, small extent about healthcare. We must spread this message”, he said. Create a movement Pernilla Bergström, Project Manager of the 2030 Agenda of the United Nations Association of Sweden agreed that the dissemination of knowledge is important.  “It does not matter how much we stand here and talk about responsibility and ownership if people are not aware that the global objectives exist. Today, approximately four out of ten Swedish people are aware of the objectives. We want to create a movement to increase awareness of the objectives, why they exist and why they are important, even for us in Sweden. But also to discuss the consequences of not working with the objectives, as well as what everybody can do within their organisations”, she said. When asked who their ideal partner would be for working on the global objectives, researchers, the food industry and the world’s private pension capital were all brought up. For KI’s President Ole Petter Ottersen, it is the students. “They are future leaders and it is our mission to make sure they are prepared”. The seminar’s moderator was Carl Johan Sundberg, Professor at the Department of Physiology and Pharmacology at Karolinska Institutet.