Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The effects of a hydrolyzed protein diet on the plasma, fecal and urine metabolome in cats with chronic enteropathy

Wed, 15/11/2023 - 12:00
Sci Rep. 2023 Nov 15;13(1):19979. doi: 10.1038/s41598-023-47334-y.ABSTRACTHydrolyzed protein diets are extensively used to treat chronic enteropathy (CE) in cats. However, the biochemical effects of such a diet on feline CE have not been characterized. In this study an untargeted 1H nuclear magnetic resonance spectroscopy-based metabolomic approach was used to compare the urinary, plasma, and fecal metabolic phenotypes of cats with CE to control cats with no gastrointestinal signs recruited at the Royal Veterinary College (RVC). In addition, the biomolecular consequences of a hydrolyzed protein diet in cats with CE was also separately determined in cats recruited from the RVC (n = 16) and the University of Bristol (n = 24) and whether these responses differed between dietary responders and non-responders. Here, plasma metabolites related to energy and amino acid metabolism significantly varied between CE and control cats in the RVC cohort. The hydrolyzed protein diet modulated the urinary metabolome of cats with CE (p = 0.005) in both the RVC and Bristol cohort. In the RVC cohort, the urinary excretion of phenylacetylglutamine, p-cresyl-sulfate, creatinine and taurine at diagnosis was predictive of dietary response (p = 0.025) although this was not observed in the Bristol cohort. Conversely, in the Bristol cohort plasma betaine, glycerol, glutamine and alanine at diagnosis was predictive of outcome (p = 0.001), but these same results were not observed in the RVC cohort. The biochemical signature of feline CE in the RVC cohort was consistent with that identified in human and animal models of inflammatory bowel disease. The hydrolyzed protein diet had the same effect on the urinary metabolome of cats with CE at both sites. However, biomarkers that were predictive of dietary response at diagnosis differed between the 2 sites. This may be due to differences in disease severity, disease heterogeneity, factors unrelated to the disease or small sample size at both sites. As such, further studies utilizing larger number of cats are needed to corroborate these findings.PMID:37968311 | DOI:10.1038/s41598-023-47334-y

Allocholic acid protects against α-naphthylisothiocyanate-induced cholestasis in mice by ameliorating disordered bile acid homeostasis

Wed, 15/11/2023 - 12:00
J Appl Toxicol. 2023 Nov 15. doi: 10.1002/jat.4562. Online ahead of print.ABSTRACTCholestasis is a pathological condition characterized by disruptions in bile flow, leading to the accumulation of bile acids (BAs) in hepatocytes. Allocholic acid (ACA), a unique fetal BA known for its potent choleretic effects, reappears during liver regeneration and carcinogenesis. In this research, we investigated the protective effects and underlying mechanisms of ACA against mice with cholestasis brought on by α-naphthylisothiocyanate (ANIT). To achieve this, we combined network pharmacology, targeted BA metabolomics, and molecular biology approaches. The results demonstrated that ACA treatment effectively reduced levels of serum AST, ALP, and DBIL, and ameliorated the pathological injury caused by cholestasis. Network pharmacology analysis suggested that ACA primarily regulated BA and salt transport, along with the signaling pathway associated with bile secretion, to improve cholestasis. Subsequently, we examined changes in BA metabolism using UPLC-MS/MS. The findings indicated that ACA pretreatment induced alterations in the size, distribution, and composition of the liver BA pool. Specifically, it reduced the excessive accumulation of BAs, especially cholic acid (CA), taurocholic acid (TCA), and β-muricholic acid (β-MCA), facilitating the restoration of BA homeostasis. Furthermore, ACA pretreatment significantly downregulated the expression of hepatic BA synthase Cyp8b1, while enhancing the expression of hepatic efflux transporter Mrp4, as well as the renal efflux transporters Mdr1 and Mrp2. These changes collectively contributed to improved BA efflux from the liver and enhanced renal elimination of BAs. In conclusion, ACA demonstrated its potential to ameliorate ANIT-induced liver damage by inhibiting BA synthesis and promoting both BA efflux and renal elimination pathways, thus, restoring BA homeostasis.PMID:37968239 | DOI:10.1002/jat.4562

Comprehensive metabolic profiling of Geotrichum candidum and comparison with Saccharomyces cerevisiae

Wed, 15/11/2023 - 12:00
J Biosci Bioeng. 2023 Nov 13:S1389-1723(23)00322-5. doi: 10.1016/j.jbiosc.2023.10.004. Online ahead of print.ABSTRACTGeotrichum candidum is a dimorphic yeast used in cheese processing. To our knowledge, no major metabolites have been identified to date in G. candidum except for some amino acid and fatty acid metabolites. This has limited research on the commercial use of G. candidum. In this study, we aimed to analyze temporal changes in the intra- and extra-cellular metabolites of G. candidum and Saccharomyces cerevisiae cultured in YM medium as reference. As a result of metabolite analysis, it was observed that G. candidum tends to accumulate pentose phosphate pathway compounds, which are involved in nucleic acid synthesis, after 48 h of cultivation when compared to S. cerevisiae. In addition, G. candidum accumulated higher amounts of the antioxidant glutathione in the medium than did S. cerevisiae. In addition, G. candidum accumulated large amounts of B vitamins such as pantothenic acid and nicotinic acid in the medium. Finally, we examined the potential of G. candidum as a host for the production of useful compounds such as pantothenic acid. When cultured in medium supplemented with the pantothenic acid precursor β-alanine, G. candidum produced 12-fold higher amounts of pantothenic acid (30 μM) than that by S. cerevisiae. This study indicates that G. candidum accumulates various useful compounds that are dissimilar to those produced by S. cerevisiae. Furthermore, G. candidum has the potential to produce useful chemicals under appropriate culture conditions.PMID:37968228 | DOI:10.1016/j.jbiosc.2023.10.004

Dahuang zhechong pill ameliorates hepatic fibrosis by regulating gut microbiota and metabolites

Wed, 15/11/2023 - 12:00
J Ethnopharmacol. 2023 Nov 13:117402. doi: 10.1016/j.jep.2023.117402. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: DHZCP is a traditional Chinese medicinal formula in "The Synopsis of Prescriptions of the Golden Chamber" that has been often used in the treatment of hepatic disorders, gynecopathy and atherosclerosis. However, its underlying mechanisms in preventing hepatic fibrosis remain incompletely understood.AIM OF THE STUDY: This study aims to explore the therapeutic efficacy and potential mechanism of DHZCP in a CCL4-induced experimental hepatic fibrosis rat model.MATERIALS AND METHODS: DHZCP was orally administered at doses of 0.168, 0.084 and 0.042 g⋅kg-1⋅d-1 in a CCL4-induced hepatic fibrosis model using SD rats. Histopathology, immunohistochemistry and biochemical analysis, ELISA, Flow cytometry, WB, RT-PCR, 16 S rRNA, and untargeted metabolomic analysis were used to determine the therapeutic effects and mechanisms of DHZCP in the treatment of CCL4-induced hepatic fibrosis.RESULTS: Pharmacodynamically, DHZCP inhibited ALT and AST, improved liver function, decreased NF-κB, TNF-α and IL-6 in liver tissue, indicating its role in inhibiting CCL4-induced liver inflammation. Most importantly, it reduces the level of fibrosis in serum and liver tissue. Histological analysis also showed that DHZCP could effectively inhibit inflammatory cytokine infiltration and excessive collagen deposition. Mechanistically, DHZCP regulates gut microbiota, improves the proportion of firmicutes and bacteroidota at the phylum level, and increases the abundance of beneficial bacteria at the genus level, such as muribagulaceae unclassified, prevotella, alloprevotella, closteriales unclassified, lachnospiraceae unclassified and phascolarctobacterium. Instead, it reduced the abundance of two harmful bacteria, desulfovibrio and colidextribacter. Four types of metabolites such as hydrocarbons, organic nitrogen compounds, organic oxygen compounds, and organosulfur compounds were added. Furthermore, DHZCP was found to reduce the damage of intestinal barrier caused by changes in gut microbiota and metabolites.CONCLUSION: DHZCP is an effective inhibitor of hepatic fibrosis by regulating gut microbiota and metabolites, improving the integrity of the intestinal barrier.PMID:37967779 | DOI:10.1016/j.jep.2023.117402

Total alditols from Cistanche deserticola attenuate functional constipation by regulating bile acid metabolism

Wed, 15/11/2023 - 12:00
J Ethnopharmacol. 2023 Nov 13:117420. doi: 10.1016/j.jep.2023.117420. Online ahead of print.ABSTRACTHEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Functional constipation (FC), characterized by chronic constipation, significantly impacts physiological function and induces psychological stress in patients. However, current clinical treatment options for FC are currently limited. Cistanche deserticola, a traditional Chinese medicine that promotes intestinal moisture and bowel relaxation, contains cistanche total alditol extract (CTAE) as its primary active extract. However, the production of CTAE, its overall efficacy, and potential mechanisms for treating FC have yet to been investigated.AIM OF THE STUDY: This study aimed to reveal the overall efficacy and potential mechanism of action of CTAE in rats with FC using a combination of stable preparation, pharmacodynamics, non-targeted metabolomics, bile acid metabolomics, and western blotting.MATERIALS AND METHODS: Fourteen batches of CTAE underwent quality testing. A rat model of FC was developed using diphenoxylate tablets. The comprehensive pharmacodynamic effects of CTAE on FC were evaluated using fecal characteristics (wet weight, dry weight, and water content), intestinal transmission (colonic EMG amplitude, colonic EMG frequency, propulsion length, and propulsion rate), serum and colon biochemical indicators, distribution of interstitial cells of Cajal (ICC), and pathological examination. Non-targeted metabolomics was performed to assess the changes in endogenous metabolite profiles induced by CTAE. Bile acid metabolomics and western blotting analyses were employed to validate the potential mechanisms of action of CTAE.RESULTS: CTAE, with a total content of betaine, mannitol, D-fructose, glucose, and sucrose of (75.94 ± 3.82) %, significantly enhanced intestinal transit, regulated neurotransmitters, increased the expression of c-kit in ICC, and alleviated intestinal inflammation in rats with FC. Non-targeted metabolomics revealed that CTAE significantly alleviated FC-induced metabolic disorders, mainly the biosynthesis of primary bile acids. Targeted metabolomic analysis confirmed that CTAE regulated FC-induced bile acid disorders. Western-blotting results confirmed that CTAE increased the expression of CYP8B1, FGF15, TGR5, and FXR, thereby modulating bile acid synthesis and enterohepatic circulation.CONCLUSION: CTAE demonstrates significant therapeutic effects on FC, primarily through the regulation of bile acid synthesis and enterohepatic circulation. These findings provide a promising foundation for the development and clinical application of novel CATE-based drugs.PMID:37967778 | DOI:10.1016/j.jep.2023.117420

PCSK7: A novel regulator of apolipoprotein B and a potential target against non-alcoholic fatty liver disease

Wed, 15/11/2023 - 12:00
Metabolism. 2023 Nov 13:155736. doi: 10.1016/j.metabol.2023.155736. Online ahead of print.ABSTRACTBACKGROUND: Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7.METHODS: We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7.RESULTS: Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and β-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results.CONCLUSIONS: Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.PMID:37967646 | DOI:10.1016/j.metabol.2023.155736

A prediction model for classifying maternal pregnancy smoking using California state birth certificate information

Wed, 15/11/2023 - 12:00
Paediatr Perinat Epidemiol. 2023 Nov 15. doi: 10.1111/ppe.13021. Online ahead of print.ABSTRACTBACKGROUND: Systematically recorded smoking data are not always available in vital statistics records, and even when available it can underestimate true smoking rates.OBJECTIVE: To develop a prediction model for maternal tobacco smoking in late pregnancy based on birth certificate information using a combination of self- or provider-reported smoking and biomarkers (smoking metabolites) in neonatal blood spots as the alloyed gold standard.METHODS: We designed a case-control study where childhood cancer cases were identified from the California Cancer Registry and controls were from the California birth rolls between 1983 and 2011 who were cancer-free by the age of six. In this analysis, we included 894 control participants and performed high-resolution metabolomics analyses in their neonatal dried blood spots, where we extracted cotinine [mass-to-charge ratio (m/z) = 177.1023] and hydroxycotinine (m/z = 193.0973). Potential predictors of smoking were selected from California birth certificates. Logistic regression with stepwise backward selection was used to build a prediction model. Model performance was evaluated in a training sample, a bootstrapped sample, and an external validation sample.RESULTS: Out of seven predictor variables entered into the logistic model, five were selected by the stepwise procedure: maternal race/ethnicity, maternal education, child's birth year, parity, and child's birth weight. We calculated an overall discrimination accuracy of 0.72 and an area under the receiver operating characteristic curve (AUC) of 0.81 (95% confidence interval [CI] 0.77, 0.84) in the training set. Similar accuracies were achieved in the internal (AUC 0.81, 95% CI 0.77, 0.84) and external (AUC 0.69, 95% CI 0.64, 0.74) validation sets.CONCLUSIONS: This easy-to-apply model may benefit future birth registry-based studies when there is missing maternal smoking information; however, some smoking status misclassification remains a concern when only variables from the birth certificate are used to predict maternal smoking.PMID:37967567 | DOI:10.1111/ppe.13021

Corrigendum to 'Regulatory mechanisms of submerged macrophyte on bacterial community recovery in decabromodiphenyl ether contaminated sediment: Microbiological and metabolomic perspectives' [Environ. Pollut. 337 (2023) 122616]

Wed, 15/11/2023 - 12:00
Environ Pollut. 2023 Nov 13;341:122870. doi: 10.1016/j.envpol.2023.122870. Online ahead of print.NO ABSTRACTPMID:37967506 | DOI:10.1016/j.envpol.2023.122870

Higher plasma levels of endocannabinoids and analogues correlate with a worse cardiometabolic profile in young adults

Wed, 15/11/2023 - 12:00
J Clin Endocrinol Metab. 2023 Nov 15:dgad668. doi: 10.1210/clinem/dgad668. Online ahead of print.ABSTRACTBACKGROUND AND AIM: The endocannabinoid system is a signalling system composed of endocannabinoids (eCBs), their receptors, and the enzymes involved in their synthesis and metabolism. Alterations in the ECS are linked to the development of cardiometabolic diseases. Here, we investigated the relationship between plasma levels of eCBs and their analogues with body composition and cardiometabolic risk factors.METHODS: The study included 133 young adults (age 22.1 ± 2.2 years, 67% women). Fasting plasma levels of eCBs and their analogues were measured using liquid chromatography-tandem mass spectrometry. Body composition, brown adipose tissue (BAT) volume, glucose uptake, and traditional cardiometabolic risk factors were measured.RESULTS: Plasma levels of eCBs and several eCB analogues were positively correlated with adiposity and traditional cardiometabolic risk factors (e.g., serum insulin and triacylglycerides levels, all r ≥ 0.17 and p ≤ 0.045). Plasma levels of 2-AG and PDEA were negatively correlated with BAT volume and glucose uptake (all r ≤ -0.17 and P ≤ 0.047). We observed that the plasma levels of eCBs and their analogues were higher in metabolically unhealthy overweight-obese participants than in metabolically healthy overweight-obese participants.CONCLUSION: Our findings show that the plasma levels of eCBs and their analogues are related to higher levels of adiposity and worse cardiometabolic profile.PMID:37967236 | DOI:10.1210/clinem/dgad668

Signs of Glucagon Resistance After a Two-Week Hypercaloric Diet Intervention

Wed, 15/11/2023 - 12:00
J Clin Endocrinol Metab. 2023 Nov 15:dgad666. doi: 10.1210/clinem/dgad666. Online ahead of print.ABSTRACTCONTEXT: Hyperglucagonemia is observed in individuals with obesity and contributes to the hyperglycemia of patients with type 2 diabetes. Hyperglucagonemia may develop due to steatosis-induced hepatic glucagon resistance resulting in impaired hepatic amino acid turnover and ensuing elevations of circulating glucagonotropic amino acids.OBJECTIVE: We evaluated whether glucagon resistance could be induced in healthy individuals by a hypercaloric diet intervention designed to increase hepatic fat content.METHODS: We recruited 20 healthy, male individuals to follow a hypercaloric diet and a sedentary lifestyle for two weeks. Amino acid concentrations in response to infusion of glucagon were assessed during a pancreatic clamp with somatostatin and basal insulin. The reversibility of any metabolic changes was assessed eight weeks after the intervention. Hepatic steatosis was assessed by magnetic resonance spectroscopy.RESULTS: The intervention led to increased hepatic fat content (382 [206; 705]%, P < 0.01). Glucagon infusion led to a decrease in the concentration of total amino acids on all experimental days, but the percentage change in total amino acids was reduced (-2.5 ± 0.5 vs. -0.2 ± 0.7%, P = 0.015) and the average slope of the decline in the total amino acid concentration was less steep (-2.0 ± 1.2 vs. -1.2 ± 0.3 μM/min, P = 0.016) after the intervention compared to baseline. The changes were normalized at follow-up.CONCLUSION: Our results indicate that short-term unhealthy behavior, which increases hepatic fat content, causes a reversible resistance to the effect of glucagon on amino acid concentrations in healthy individuals, which may explain the hyperglucagonemia associated with obesity and diabetes.PMID:37967235 | DOI:10.1210/clinem/dgad666

Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses and their breeding applications in maize and other crops

Wed, 15/11/2023 - 12:00
Plant J. 2023 Nov 15. doi: 10.1111/tpj.16550. Online ahead of print.ABSTRACTNitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.PMID:37967146 | DOI:10.1111/tpj.16550

EISA-EXPOSOME: One Highly Sensitive and Autonomous Exposomic Platform with Enhanced in-Source Fragmentation/Annotation

Wed, 15/11/2023 - 12:00
Anal Chem. 2023 Nov 15. doi: 10.1021/acs.analchem.3c02697. Online ahead of print.ABSTRACTLacking a highly sensitive exposome screening technique is one of the biggest challenges in moving exposomic research forward. Enhanced in-source fragmentation/annotation (EISA) has been developed to facilitate molecular identification in untargeted metabolomics and proteomics. In this work, with a mixture of 50 pesticides at three concentration levels (20, 4, and 0.8 ppb), we investigated the analytical performance of the EISA technique over the well-accepted targeted MS/MS mode (TMM) in the detection and identification of chemicals at low levels using a quadrupole time-of-flight (qTOF) instrument. Compared with the TMM method, the EISA technique can recognize additional 1, 20, and 23 chemicals, respectively, at the three concentration levels (20, 4, and 0.8 ppb, respectively) investigated. At the 0.8 ppb level, intensities of precursor ions and fragments observed using the EISA technique are 30-1,154 and 3-80 times higher, respectively, than those observed at the TMM mode. A higher matched fragment ratio (MFR) between the EISA technique and the TMM method was recognized for most chemicals. We further developed a chemical annotation informatics algorithm, EISA-EXPOSOME, which can automatically search each precursor ion (m/z) in the MS/MS library against the EISA MS1 spectra. This algorithm then calculated a weighted score to rank the candidate features by comparing the experimental fragment spectra to those in the library. The peak intensity, zigzag index, and retention time prediction model as well as the peak correlation coefficient were further adopted in the algorithm to filter false positives. The performance of EISA-EXPOSOME was demonstrated using a pooled dust extract with a pesticide mixture (n = 200) spiked at 5 ppb. One urine sample spiked with a contaminant mixture (n = 50) at the 5 ppb level was also used for the validation of the pipeline. Proof-of-principal application of EISA-EXPOSOME in the real sample was further evaluated on the pooled dust sample with a modified T3DB database (n = 1650). Our results show that the EISA-EXPOSOME algorithm can remarkably improve the detection and annotation coverage at trace levels beyond the traditional approach as well as facilitate the high throughput screening of suspected chemicals.PMID:37967119 | DOI:10.1021/acs.analchem.3c02697

Integrative proteomics and metabolomics study reveal enhanced immune responses by COVID-19 vaccine booster shot against Omicron SARS-CoV-2 infection

Wed, 15/11/2023 - 12:00
J Med Virol. 2023 Nov;95(11):e29219. doi: 10.1002/jmv.29219.ABSTRACTSince its outbreak in late 2021, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely reported to be able to evade neutralizing antibodies, becoming more transmissible while causing milder symptoms than previous SARS-CoV-2 strains. Understanding the underlying molecular changes of Omicron SARS-CoV-2 infection and corresponding host responses are important to the control of Omicron COVID-19 pandemic. In this study, we report an integrative proteomics and metabolomics investigation of serum samples from 80 COVID-19 patients infected with Omicron SARS-CoV-2, as well as 160 control serum samples from 80 healthy individuals and 80 patients who had flu-like symptoms but were negative for SARS-CoV-2 infection. The multiomics results indicated that Omicron SARS-CoV-2 infection caused significant changes to host serum proteome and metabolome comparing to the healthy controls and patients who had flu-like symptoms without COVID-19. Protein and metabolite changes also pointed to liver dysfunctions and potential damage to other host organs by Omicron SARS-CoV-2 infection. The Omicron COVID-19 patients could be roughly divided into two subgroups based on their proteome differences. Interestingly, the subgroup who mostly had received full vaccination with booster shot had fewer coughing symptom, changed sphingomyelin lipid metabolism, and stronger immune responses including higher numbers of lymphocytes, monocytes, neutrophils, and upregulated proteins related to CD4+ T cells, CD8+ effector memory T cells (Tem), and conventional dendritic cells, revealing beneficial effects of full COVID-19 vaccination against Omicron SARS-CoV-2 infection through molecular changes.PMID:37966997 | DOI:10.1002/jmv.29219

Evaluation of Neural Regulation and Microglial Responses to Brain Injury in Larval Zebrafish Exposed to Perfluorooctane Sulfonate

Wed, 15/11/2023 - 12:00
Environ Health Perspect. 2023 Nov;131(11):117008. doi: 10.1289/EHP12861. Epub 2023 Nov 15.ABSTRACTBACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are biopersistent, global pollutants. Although some in vitro and epidemiological studies have explored the neurotoxic potential of perfluorooctane sulfonate (PFOS), a prevalent PFAS congener, it is unknown how developmental PFOS exposure affects neuronal signaling, microglia development, and microglial-neuron communication.OBJECTIVES: We sought to determine the extent to which PFOS exposure disrupts brain health, neuronal activity, and microglia-neuron communication during development. In addition, although PFOS impairs humoral immunity, its impact on innate immune cells, including resident microglia, is unclear. As such, we investigated whether microglia are cellular targets of PFOS, and, if so, whether disrupted microglial development or function could contribute to or is influenced by PFOS-induced neural dysfunction.METHODS: Zebrafish were chronically exposed to either a control solution [0.1% dimethyl sulfoxide (DMSO)], 7μM PFOS, 14μM PFOS, 28μM PFOS, or 64μM perfluorooctanoic acid (PFOA). We used in vivo imaging and gene expression analysis to assess microglial populations in the developing brain and to determine shifts in the microglia state. We functionally challenged microglia state using a brain injury model and, to assess the neuronal signaling environment, performed functional neuroimaging experiments using the photoconvertible calcium indicator calcium-modulated photoactivatable ratiometric integrator (CaMPARI). These studies were paired with optogenetic manipulations of neurons and microglia, an untargeted metabolome-wide association study (MWAS), and behavioral assays.RESULTS: Developmental PFOS exposure resulted in a shift away from the homeostatic microglia state, as determined by functional and morphological differences in exposed larvae, as well as up-regulation of the microglia activation gene p2ry12. PFOS-induced effects on microglia state exacerbated microglia responses to brain injury in the absence of increased cell death or inflammation. PFOS exposure also heightened neural activity, and optogenetic silencing of neurons or microglia independently was sufficient to normalize microglial responses to injury. An untargeted MWAS of larval brains revealed PFOS-exposed larvae had neurochemical signatures of excitatory-inhibitory imbalance. Behaviorally, PFOS-exposed larvae also exhibited anxiety-like thigmotaxis. To test whether the neuronal and microglial phenotypes were specific to PFOS, we exposed embryos to PFOA, a known immunotoxic PFAS. PFOA did not alter thigmotaxis, neuronal activity, or microglial responses, further supporting a role for neuronal activity as a critical modifier of microglial function following PFOS exposure.DISCUSSION: Together, this study provides, to our knowledge, the first detailed account of the effects of PFOS exposure on neural cell types in the developing brain in vivo and adds neuronal hyperactivity as an important end point to assess when studying the impact of toxicant exposures on microglia function. https://doi.org/10.1289/EHP12861.PMID:37966802 | DOI:10.1289/EHP12861

Towards Allograft Longevity: Leveraging Omics Technologies to Improve Heart Transplant Outcomes

Wed, 15/11/2023 - 12:00
Curr Heart Fail Rep. 2023 Nov 15. doi: 10.1007/s11897-023-00631-z. Online ahead of print.ABSTRACTPURPOSE OF REVIEW: Heart transplantation (HT) remains the optimal therapy for patients living with end-stage heart disease. Despite recent improvements in peri-transplant management, the median survival after HT has remained relatively static, and complications of HT, including infection, rejection, and allograft dysfunction, continue to impact quality of life and long-term survival.RECENT FINDINGS: Omics technologies are becoming increasingly accessible and can identify novel biomarkers for, and reveal the underlying biology of, several disease states. While some technologies, such as gene expression profiling (GEP) and donor-derived cell-free DNA (dd-cfDNA), are routinely used in the clinical care of HT recipients, a number of emerging platforms, including pharmacogenomics, proteomics, and metabolomics, hold great potential for identifying biomarkers to aid in the diagnosis and management of post-transplant complications. Omics-based assays can improve patient and allograft longevity by facilitating a personalized and precision approach to post-HT care. The following article is a contemporary review of the current and future opportunities to leverage omics technologies, including genomics, transcriptomics, proteomics, and metabolomics in the field of HT.PMID:37966542 | DOI:10.1007/s11897-023-00631-z

Chronic alcohol and nicotine consumption as catalyst for systemic inflammatory storm and bone destruction in apical periodontitis

Wed, 15/11/2023 - 12:00
Int Endod J. 2023 Nov 15. doi: 10.1111/iej.13994. Online ahead of print.ABSTRACTAIM: To assess the periapical alveolar bone pattern and the serum levels of proinflammatory cytokines, biochemical markers and metabolites in rats subjected to chronic alcohol and nicotine consumption and induced apical periodontitis.METHODOLOGY: Twenty-eight male Wistar rats were divided into four groups: Control, Alcohol, Nicotine and Alcohol+Nicotine. The alcohol groups were exposed to self-administration of a 25% alcohol solution, while the other groups were given only filtered water. The nicotine groups received daily intraperitoneal injections of a nicotine solution (0.19 μL of nicotine/mL), whereas the other groups received saline solution. Periapical lesions were induced by exposing the pulps of the left mandibular first molars for 28 days. After euthanasia, the mandibles were removed and the percentage bone volume, bone mineral density, trabecular thickness, trabecular separation and trabecular number of the periapical bone were measured using micro-computed tomography images. Serum samples were collected for analysis of proinflammatory cytokines (IL-1β, IL-4, IL-6 and TNF-α), biochemical and metabolomic analysis. Statistical analysis was performed with a significance level of 5%. Nonparametric data were analysed using the Kruskal-Wallis test followed by Dunn's test, while one-way anova followed by Tukey's test was performed for parametric data.RESULTS: The groups exposed to alcohol or nicotine consumption exhibited an altered bone pattern indicating lower bone density and higher levels of IL-1β, IL-6 and TNF-α compared to the Control group (p < .05). Significant differences were observed among the groups in the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, cholesterol, triglycerides, urea, creatinine, albumin, uric acid, bilirubin and calcium. Metabolomic analysis revealed significant differences in glycine, phosphocholine, lysine, lactate, valine, pyruvate and lipids (CH2 CH2 CO), n(CH2 ) and n(CH3 ). Most of these parameters were even more altered in the simultaneous consumption of both substances compared to single consumption.CONCLUSION: Alcohol and nicotine chronic consumption altered several metabolic markers, impaired liver and kidney function, increased the production of systemic proinflammatory mediators and harmed the periapical bone microarchitecture in the presence of apical periodontitis. The simultaneous consumption of alcohol and nicotine intensified these detrimental effects.PMID:37966374 | DOI:10.1111/iej.13994

Integrated Transcriptomics and Metabolomics Analyses Provide Insights into Qingke in Response to Cold Stress

Wed, 15/11/2023 - 12:00
J Agric Food Chem. 2023 Nov 15. doi: 10.1021/acs.jafc.3c07005. Online ahead of print.ABSTRACTThe survival and productivity of qingke in high altitude (>4300 m, average yearly temperature <0 °C) of the Tibetan Plateau are significantly impacted by low-temperature stress. Uncovering the mechanisms underlying low-temperature stress response in cold-tolerant qingke varieties is crucial for qingke breeding. Herein, we conducted a comprehensive transcriptomic and metabolomic analysis on cold-sensitive (ZQ) and cold-tolerant (XL) qingke varieties under chilling and freezing treatments and identified lipid metabolism pathways as enriched in response to freezing treatment. Additionally, a significant positive correlation was observed between the expression of C-repeat (CRT) binding factor 10A (HvCBF10A) and Gly-Asp-Ser-Leu-motif lipase (HvGDSL) and the accumulation of multiple lipids. Functional analysis confirmed that HvCBF10A directly binds to HvGDSL, and silencing HvCBF10A resulted in a significant decrease in both HvGDSL and lipid levels, consequently impairing the cold tolerance. Overall, HvCBF10A and HvGDSL are functional units in actively regulating lipid metabolism to enhance freezing stress tolerance in qingke.PMID:37966343 | DOI:10.1021/acs.jafc.3c07005

A Plasma Exosomal Metabolic Profiling of Nonalcoholic Fatty Liver Disease Patients Complicated with Impaired Fasting Glucose

Wed, 15/11/2023 - 12:00
Turk J Gastroenterol. 2023 Nov 15. doi: 10.5152/tjg.2023.22739. Online ahead of print.ABSTRACTBACKGROUND/AIMS: Nonalcoholic fatty liver disease is considered as the hepatic manifestation of metabolic syndrome. Detection of circulating exosomes together with metabolomic analysis of their cargo would provide early signals for metabolic derangements and complications associated with nonalcoholic fatty liver disease. Therefore, this study profiled exosomal metabolome of patients with nonalcoholic fatty liver disease and impaired fasting glucose.MATERIALS AND METHODS: Plasma exosomes were extracted from nonalcoholic fatty liver disease patients with or without impaired fasting glucose through differential ultracentrifugation. Their metabolite profiles were examined by ultrahigh-performance liquid chrom atography-quadrupole time-of-flight mass spectrometry. Pathway analysis was carried out on platform MetaboAnalyst 4.0.RESULTS: Thirty-nine patients were enrolled, including nonalcoholic fatty liver disease-alone group (n = 26) and age-and gender-comparable nonalcoholic fatty liver disease plus impaired fasting glucose group (n = 13). Although less than and different from their plasma counterparts, a total of 10 significantly differential exosomal metabolites were identified. Nonalcoholic fatty liver disease plus impaired fasting glucose group had higher concentrations of linoleic acid, palmitamide, stearamide, and oleamide, as well as a lower concentration of phosphatidylethanolamine [20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)]. Pathway analysis showed an obviously changed metabolism of linoleic acid.CONCLUSIONS: Metabolomic analysis of plasma exosomes revealed a distinct change in fatty acids and related pathways in nonalcoholic fatty liver disease patients with impaired fasting glucose. These preliminary results provide a metabolomic snapshot and basis for further investigation of exosome biology for these patients.PMID:37966266 | DOI:10.5152/tjg.2023.22739

CD8+ T Cell-Dependent Antitumor Activity In Vivo of a Mass Spectrometry-Identified Neoepitope despite Undetectable CD8+ Immunogenicity In Vitro

Wed, 15/11/2023 - 12:00
J Immunol. 2023 Nov 15:ji2300356. doi: 10.4049/jimmunol.2300356. Online ahead of print.ABSTRACTIdentification of neoepitopes that can control tumor growth in vivo remains a challenge even 10 y after the first genomics-defined cancer neoepitopes were identified. In this study, we identify a neoepitope, resulting from a mutation in the junction plakoglobin (Jup) gene (chromosome 11), from the mouse colon cancer line MC38-FABF (C57BL/6). This neoepitope, Jup mutant (JupMUT), was detected during mass spectrometry of MHC class I-eluted peptides from the tumor. JupMUT has a predicted binding affinity of 564 nM for the Kb molecule and a higher predicted affinity of 82 nM for Db. However, whereas structural modeling of JupMUT and its unmutated counterpart Jup wild-type indicates that there are little conformational differences between the two epitopes bound to Db, large structural divergences are predicted between the two epitopes bound to Kb. Together with in vitro binding data with RMA-S cells, these data suggest that Kb rather than Db is the relevant MHC class I molecule of JupMUT. Immunization of naive C57BL/6 mice with JupMUT elicits CD8-dependent tumor control of a MC38-FABF challenge. Despite the CD8 dependence of JupMUT-mediated tumor control in vivo, CD8+ T cells from JupMUT-immunized mice do not produce higher levels of IFN-γ than do naive mice. The structural and immunological characteristics of JupMUT are substantially different from those of many other neoepitopes that have been shown to mediate tumor control.PMID:37966257 | DOI:10.4049/jimmunol.2300356

Alleviation of DSS-induced colitis via bovine colostrum-derived extracellular vesicles with microRNA <em>let-7a-5p</em> is mediated by regulating <em>Akkermansia</em> and β-hydroxybutyrate in gut environments

Wed, 15/11/2023 - 12:00
Microbiol Spectr. 2023 Nov 15:e0012123. doi: 10.1128/spectrum.00121-23. Online ahead of print.ABSTRACTEven though studying on the possible involvement of extracellular vesicles (EVs) in host-microbe interactions, how these relationships mediate host physiology has not clarified yet. Our current findings provide insights into the encouraging benefits of dietary source-derived EVs and microRNAs (miRNAs) on organic acid production and ultimately stimulating gut microbiome for human health, suggesting that supplementation of dietary colostrum EVs and miRNAs is a novel preventive strategy for the treatment of inflammatory bowel disease.PMID:37966243 | DOI:10.1128/spectrum.00121-23

Pages