Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

PubMed
NCBI: db=pubmed; Term=metabolomics
Updated: 1 hour 37 min ago

Systems biotechnology for protein production in Pichia pastoris.

4 hours 38 min ago
Related Articles Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res. 2017 Nov 01;17(7): Authors: Zahrl RJ, Peña DA, Mattanovich D, Gasser B Abstract The methylotrophic yeast Pichia pastoris (syn. Komagataella spp.) is one of the most important production systems for heterologous proteins. After the first genome sequences were published in 2009, tremendous effort was made to establish systems-level analytical methods. Methylotrophic lifestyle was one of the most thoroughly investigated topics, studied at the levels of transcriptome, proteome and metabolic flux. Also the responses of P. pastoris to environmental stress conditions experienced during high cell density production processes were studied. Metabolomics and flux analysis revealed the plasticity of the cellular metabolism in its adaption to the production of foreign proteins and served as blueprints for subsequent cell engineering and/or process design. The transcriptional response elicited by overexpression of heterologous proteins seems to depend on the nature and complexity of the recombinant product. Based on these data, novel targets for strain engineering could be deduced from transcriptomics and proteomics data mining and effectively enhanced protein secretion. Transcriptional regulation data also served as a valuable resource to identify novel promoters with the desired regulatory characteristics. This review aims to provide a comprehensive overview of systems biology applications in P. pastoris ranging from increased understanding of cell physiology to improving recombinant protein production in this cell factory. PMID: 28934418 [PubMed - in process]

Metabolomics and cognition in African American adults in midlife: the atherosclerosis risk in communities study.

4 hours 38 min ago
Related Articles Metabolomics and cognition in African American adults in midlife: the atherosclerosis risk in communities study. Transl Psychiatry. 2017 Jul 18;7(7):e1173 Authors: Bressler J, Yu B, Mosley TH, Knopman DS, Gottesman RF, Alonso A, Sharrett AR, Wruck LM, Boerwinkle E Abstract Clinical studies have shown alterations in metabolic profiles when patients with mild cognitive impairment and Alzheimer's disease dementia were compared to cognitively normal subjects. Associations between 204 serum metabolites measured at baseline (1987-1989) and cognitive change were investigated in 1035 middle-aged community-dwelling African American participants in the biracial Atherosclerosis Risk in Communities (ARIC) Study. Cognition was evaluated using the Delayed Word Recall Test (DWRT; verbal memory), the Digit Symbol Substitution Test (DSST; processing speed) and the Word Fluency Test (WFT; verbal fluency) at visits 2 (1990-1992) and 4 (1996-1998). In addition, Cox regression was used to analyze the metabolites as predictors of incident hospitalized dementia between baseline and 2011. There were 141 cases among 1534 participants over a median 17.1-year follow-up period. After adjustment for established risk factors, one standard deviation increase in N-acetyl-1-methylhistidine was significantly associated with greater 6-year change in DWRT scores (β=-0.66 words; P=3.65 × 10(-4)). Two metabolites (one unnamed and a long-chain omega-6 polyunsaturated fatty acid found in vegetable oils (docosapentaenoate (DPA, 22:5 n-6)) were significantly associated with less decline on the DSST (DPA: β=1.25 digit-symbol pairs, P=9.47 × 10(-5)). Two unnamed compounds and three sex steroid hormones were associated with an increased risk of dementia (all P<3.9 × 10(-4)). The association of 4-androstene-3beta, 17beta-diol disulfate 1 with dementia was replicated in European Americans. These results demonstrate that screening the metabolome in midlife can detect biologically plausible biomarkers that may improve risk stratification for cognitive impairment at older ages. PMID: 28934192 [PubMed - in process]

Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin.

4 hours 38 min ago
Related Articles Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin. Toxins (Basel). 2017 Sep 21;9(10): Authors: Toda K, Kokushi E, Uno S, Shiiba A, Hasunuma H, Fushimi Y, Wijayagunawardane MPB, Zhang C, Yamato O, Taniguchi M, Fink-Gremmels J, Takagi M Abstract The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals (n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550-600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550-600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle. PMID: 28934162 [PubMed - in process]

Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure.

4 hours 38 min ago
Related Articles Metabolomic Analysis of N-acetylcysteine Protection of Injury from Gadolinium-DTPA Contrast Agent in Rats with Chronic Renal Failure. OMICS. 2017 Sep;21(9):540-549 Authors: Wan C, Xue R, Zhan Y, Wu Y, Li X, Pei F Abstract Gadolinium-based contrast agents (GBCAs) are frequently used to enhance the diagnostic efficacy of magnetic resonance imaging. On the other hand, the association between GBCA administration in patients with advanced renal disease and nephrogenic systemic fibrosis (NSF) was also noted. NSF is a systemic disorder characterized by widespread tissue fibrosis that may lead to death. N-acetylcysteine (NAC) protects rats from injury induced by gadolinium-based contrast agents, but the underlying mechanisms remain unclear. In this study, a nuclear magnetic resonance-based metabolomic approach was used to systematically investigate the protective effects of NAC on Gd-DTPA-induced injury. Thirty-two male Sprague-Dawley rats were given adenine (200 mg·kg(-1) body weight) by oral gavage once a day for 3 weeks to induce chronic renal failure (CRF). NAC (600 mg/L in drinking water for 9 days) pretreatment was initiated 2 days before Gd-DTPA injection (a single tail vein injection, 2 mmol/kg body weight). Serum and liver samples were collected on day 7 after Gd-DTPA injection. By study design, the serum and hepatic metabolic changes of rats were measured in four groups of eight each: CRF, CRF-Gd, CRF-Gd-NAC, and CRF-NAC. Gd-DTPA administration to rats with CRF resulted in disturbances of several metabolic pathways, including glucose, lipid, glutamate, choline, gut microbiota, one-carbon, and purine metabolism. NAC pretreatment reversed the abundance changes of high-density lipoprotein, low-density lipoprotein, very low-density lipoprotein, glutamate, glutamine, oxidized glutathione, choline, phosphocholine, glycerophosphocholine, trimethylamine, and trimethylamine-N-oxide induced by Gd-DTPA. It is noteworthy, however, that the ameliorating effects of NAC on the disturbance of glutamate, choline, and gut microbiota metabolism may be specific to Gd-DTPA. In all, these findings could be potentially useful to decipher the underlying mechanisms of NAC protective effects from the injury induced by gadolinium-based contrast agents. PMID: 28934030 [PubMed - in process]

Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A (13)C Stable Isotope-Resolved Metabolomic Study.

4 hours 38 min ago
Related Articles Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A (13)C Stable Isotope-Resolved Metabolomic Study. Int J Mol Sci. 2017 Jul 26;18(8): Authors: Hevia D, Gonzalez-Menendez P, Fernandez-Fernandez M, Cueto S, Rodriguez-Gonzalez P, Garcia-Alonso JI, Mayo JC, Sainz RM Abstract The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, (13)C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite (13)C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers (13)C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate (13)C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type. PMID: 28933733 [PubMed - in process]

Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential.

4 hours 38 min ago
Related Articles Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chem Soc Rev. 2017 Sep 21;: Authors: Pluskal T, Weng JK Abstract Humans perceive physical information about the surrounding environment through their senses. This physical information is registered by a collection of highly evolved and finely tuned molecular sensory receptors. A multitude of bioactive, structurally diverse ligands have evolved in nature that bind these molecular receptors. The complex, dynamic interactions between the ligands and the receptors lead to changes in our sensory perception or mood. Here, we review our current knowledge of natural products and their derived analogues that interact specifically with human G protein-coupled receptors, ion channels, and nuclear hormone receptors to modulate the sensations of taste, smell, temperature, pain, and itch, as well as mood and its associated behaviour. We discuss the molecular and structural mechanisms underlying such interactions and highlight cases where subtle differences in natural product chemistry produce drastic changes in functional outcome. We also discuss cases where a single compound triggers complex sensory or behavioural changes in humans through multiple mechanistic targets. Finally, we comment on the therapeutic potential of the reviewed area of research and draw attention to recent technological developments in genomics, metabolomics, and metabolic engineering that allow us to tap the medicinal properties of natural product chemistry without taxing nature. PMID: 28933478 [PubMed - as supplied by publisher]

Biomarkers and Imaging Findings of Anderson-Fabry Disease-What We Know Now.

4 hours 38 min ago
Related Articles Biomarkers and Imaging Findings of Anderson-Fabry Disease-What We Know Now. Diseases. 2017 Jun 11;5(2): Authors: Beirão I, Cabrita A, Torres M, Silva F, Aguiar P, Laranjeira F, Gomes AM Abstract Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder, caused by deficiency or absence of the alpha-galactosidase A activity, with a consequent glycosphingolipid accumulation. Biomarkers and imaging findings may be useful for diagnosis, identification of an organ involvement, therapy monitoring and prognosis. The aim of this article is to review the current available literature on biomarkers and imaging findings of AFD patients. An extensive bibliographic review from PubMed, Medline and Clinical Key databases was performed by a group of experts from nephrology, neurology, genetics, cardiology and internal medicine, aiming for consensus. Lyso-GB3 is a valuable biomarker to establish the diagnosis. Proteinuria and creatinine are the most valuable to detect renal damage. Troponin I and high-sensitivity assays for cardiac troponin T can identify patients with cardiac lesions, but new techniques of cardiac imaging are essential to detect incipient damage. Specific cerebrovascular imaging findings are present in AFD patients. Techniques as metabolomics and proteomics have been developed in order to find an AFD fingerprint. Lyso-GB3 is important for evaluating the pathogenic mutations and monitoring the response to treatment. Many biomarkers can detect renal, cardiac and cerebrovascular involvement, but none of these have proved to be important to monitoring the response to treatment. Imaging features are preferred in order to find cardiac and cerebrovascular compromise in AFD patients. PMID: 28933368 [PubMed]

Mass spectrometry methods to study protein-metabolite interactions.

4 hours 38 min ago
Related Articles Mass spectrometry methods to study protein-metabolite interactions. Expert Opin Drug Discov. 2017 Sep 21;:1-10 Authors: Guo H, Peng H, Emili A Abstract INTRODUCTION: To ​​​​understand and manipulate biochemical processes and signaling pathways, the knowledge of endogenous protein-metabolite interactions would be extremely helpful. Recent developments in precision mass spectrometry, high-throughput proteomics and sensitive metabolomic profiling are beginning to converge on a possible solution, heralding a new era of global metabolome-proteome 'interactome' studies that promise to change biomedical research and drug discovery. Areas covered: Here, we review innovative mass spectrometry-based methods and recent pioneering studies aimed at elucidating the physical associations of small molecule ligands with cellular proteins. The technologies covered belong to two main categories: tag-based and tag-free methods. We emphasize the latter in this review, and outline promising experimental workflows and key data analysis considerations involved. Expert opinion: Recent ground-breaking advances in chemical-proteomics technology and allied computational methods now make the global detection of protein-ligand engagement an increasingly attractive research problem. Despite ongoing challenges, rapid progress in the field is expected these coming next few years, leading to a refreshed systems biology research paradigm and much needed new opportunities for improving sparse drug discovery pipelines. PMID: 28933205 [PubMed - as supplied by publisher]

[Metabolomics research of medicinal plants].

4 hours 38 min ago
Related Articles [Metabolomics research of medicinal plants]. Zhongguo Zhong Yao Za Zhi. 2016 Nov;41(22):4090-4095 Authors: Duan LX, Dai YT, Sun C, Chen SL Abstract Metabolomics is the comprehensively study of chemical processes involving small molecule metabolites. It is an important part of systems biology, and is widely applied in complex traditional Chinese medicine(TCM)system. Metabolites biosynthesized by medicinal plants are the effective basis for TCM. Metabolomics studies of medicinal plants will usher in a new period of vigorous development with the implementation of Herb Genome Program and the development of TCM synthetic biology. This manuscript introduces the recent research progresses of metabolomics technology and the main research contents of metabolomics studies for medicinal plants, including identification and quality evaluation for medicinal plants, cultivars breeding, stress resistance, metabolic pathways, metabolic network, metabolic engineering and synthetic biology researches. The integration of genomics, transcriptomics and metabolomics approaches will finally lay foundation for breeding of medicinal plants, R&D, quality and safety evaluation of innovative drug. PMID: 28933072 [PubMed - in process]

Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations.

4 hours 38 min ago
Related Articles Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations. Arch Toxicol. 2017 Sep 20;: Authors: Gorgulho R, Jacinto R, Lopes SS, Pereira SA, Tranfield EM, Martins GG, Gualda EJ, Derks RJE, Correia AC, Steenvoorden E, Pintado P, Mayboroda OA, Monteiro EC, Morello J Abstract Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes ("donuts", "pancakes" and "rods"), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI. PMID: 28932931 [PubMed - as supplied by publisher]

A Metabolomics-Based Strategy for the Mechanism Exploration of Traditional Chinese Medicine: Descurainia sophia Seeds Extract and Fractions as a Case Study.

4 hours 38 min ago
Related Articles A Metabolomics-Based Strategy for the Mechanism Exploration of Traditional Chinese Medicine: Descurainia sophia Seeds Extract and Fractions as a Case Study. Evid Based Complement Alternat Med. 2017;2017:2845173 Authors: Zhou N, Sun YP, Zheng XK, Wang QH, Yang YY, Bai ZY, Kuang HX, Feng WS Abstract A UPLC-QTOF-MS based metabolomics research was conducted to explore potential biomarkers which would increase our understanding of the model and to assess the integral efficacy of Descurainia sophia seeds extract (DS-A). Additionally, DS-A was split into five fractions in descending order of polarity, which were utilized to illustrate the mechanism together. The 26 identified biomarkers were mainly related to disturbances in phenylalanine, tyrosine, tryptophan, purine, arginine, and proline metabolism. Furthermore, heat map, hierarchical cluster analysis (HCA), and correlation network diagram of biomarkers perturbed by modeling were all conducted. The results of heat map and HCA suggested that fat oil fraction could reverse the abnormal metabolism in the model to some extent; meanwhile the metabolic inhibitory effect produced by the other four fractions helped to relieve cardiac load and compensate the insufficient energy supplement induced by the existing heart and lung injury in model rats. Briefly, the split fractions interfered with the model from different aspects and ultimately constituted the overall effects of extract. In conclusion, the metabolomics method, combined with split fractions of extract, is a powerful approach for illustrating pathologic changes of Chinese medicine syndrome and action mechanisms of traditional Chinese medicine. PMID: 28932251 [PubMed]

Non-invasive real time monitoring of yeast volatilome by PTR-ToF-MS.

4 hours 38 min ago
Related Articles Non-invasive real time monitoring of yeast volatilome by PTR-ToF-MS. Metabolomics. 2017;13(10):118 Authors: Khomenko I, Stefanini I, Cappellin L, Cappelletti V, Franceschi P, Cavalieri D, Märk TD, Biasioli F Abstract INTRODUCTION: Producing a wide range of volatile secondary metabolites Saccharomyces cerevisiae influences wine, beer, and bread sensory quality and hence selection of strains based on their volatilome becomes pivotal. A rapid on-line method for volatilome assessing of strains growing on standard solid media is still missing. OBJECTIVES: Methodologically, the aim of this study was to demonstrate the automatic, real-time, direct, and non-invasive monitoring of yeast volatilome in order to rapidly produce a robust large data set encompassing measurements relative to many strains, replicates and time points. The fundamental scope was to differentiate volatilomes of genetically similar strains of oenological relevance during the whole growing process. METHOD: Six different S. cerevisiae strains (four meiotic segregants of a natural strain and two laboratory strains) inoculated onto a solid medium have been monitored on-line by Proton Transfer Reaction-Time-of-Flight-Mass Spectrometry for 11 days every 4 h (3540 time points). FastGC PTR-ToF-MS was performed during the stationary phase on the 5th day. RESULTS: More than 300 peaks have been extracted from the average spectra associated to each time point, 70 have been tentatively identified. Univariate and multivariate analyses have been performed on the data matrix (3640 measurements × 70 peaks) highlighting the volatilome evolution and strain-specific features. Laboratory strains with opposite mating type, and meiotic segregants of the same natural strain showed significantly different profiles. CONCLUSIONS: The described set-up allows the on-line high-throughput screening of yeast volatilome of S. cerevisiae strains and the identification of strain specific features and new metabolic pathways, discriminating also genetically similar strains, thus revealing a novel method for strain phenotyping, identification, and quality control. PMID: 28932179 [PubMed]

Identification of sequence variants influencing immunoglobulin levels.

4 hours 38 min ago
Related Articles Identification of sequence variants influencing immunoglobulin levels. Nat Genet. 2017 Aug;49(8):1182-1191 Authors: Jonsson S, Sveinbjornsson G, de Lapuente Portilla AL, Swaminathan B, Plomp R, Dekkers G, Ajore R, Ali M, Bentlage AEH, Elmér E, Eyjolfsson GI, Gudjonsson SA, Gullberg U, Gylfason A, Halldorsson BV, Hansson M, Holm H, Johansson Å, Johnsson E, Jonasdottir A, Ludviksson BR, Oddsson A, Olafsson I, Olafsson S, Sigurdardottir O, Sigurdsson A, Stefansdottir L, Masson G, Sulem P, Wuhrer M, Wihlborg AK, Thorleifsson G, Gudbjartsson DF, Thorsteinsdottir U, Vidarsson G, Jonsdottir I, Nilsson B, Stefansson K Abstract Immunoglobulins are the effector molecules of the adaptive humoral immune system. In a genome-wide association study of 19,219 individuals, we found 38 new variants and replicated 5 known variants associating with IgA, IgG or IgM levels or with composite immunoglobulin traits, accounted for by 32 loci. Variants at these loci also affect the risk of autoimmune diseases and blood malignancies and influence blood cell development. Notable associations include a rare variant at RUNX3 decreasing IgA levels by shifting isoform proportions (rs188468174[C>T]: P = 8.3 × 10(-55), β = -0.90 s.d.), a rare in-frame deletion in FCGR2B abolishing IgG binding to the encoded receptor (p.Asn106del: P = 4.2 × 10(-8), β = 1.03 s.d.), four IGH locus variants influencing class switching, and ten new associations with the HLA region. Our results provide new insight into the regulation of humoral immunity. PMID: 28628107 [PubMed - indexed for MEDLINE]

An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice.

4 hours 38 min ago
Related Articles An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice. PLoS One. 2017;12(5):e0177513 Authors: Ghosh S, Forney LA, Wanders D, Stone KP, Gettys TW Abstract Dietary methionine restriction (MR) produces a coordinated series of transcriptional responses in peripheral tissues that limit fat accretion, remodel lipid metabolism in liver and adipose tissue, and improve overall insulin sensitivity. Hepatic sensing of reduced methionine leads to induction and release of fibroblast growth factor 21 (FGF21), which acts centrally to increase sympathetic tone and activate thermogenesis in adipose tissue. FGF21 also has direct effects in adipose to enhance glucose uptake and oxidation. However, an understanding of how the liver senses and translates reduced dietary methionine into these transcriptional programs remains elusive. A comprehensive systems biology approach integrating transcriptomic and metabolomic readouts in MR-treated mice confirmed that three interconnected mechanisms (fatty acid transport and oxidation, tricarboxylic acid cycle, and oxidative phosphorylation) were activated in MR-treated inguinal adipose tissue. In contrast, the effects of MR in liver involved up-regulation of anti-oxidant responses driven by the nuclear factor, erythroid 2 like 2 transcription factor, NFE2L2. Metabolomic analysis provided evidence for redox imbalance, stemming from large reductions in the master anti-oxidant molecule glutathione coupled with disproportionate increases in ophthalmate and its precursors, glutamate and 2-aminobutyrate. Thus, cysteine and its downstream product, glutathione, emerge as key early hepatic signaling molecules linking dietary MR to its metabolic phenotype. PMID: 28520765 [PubMed - indexed for MEDLINE]

TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics.

4 hours 38 min ago
Related Articles TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: pharmacometabolomics-informed pharmacogenomics. Mol Psychiatry. 2016 Dec;21(12):1717-1725 Authors: Gupta M, Neavin D, Liu D, Biernacka J, Hall-Flavin D, Bobo WV, Frye MA, Skime M, Jenkins GD, Batzler A, Kalari K, Matson W, Bhasin SS, Zhu H, Mushiroda T, Nakamura Y, Kubo M, Wang L, Kaddurah-Daouk R, Weinshilboum RM Abstract Millions of patients suffer from major depressive disorder (MDD), but many do not respond to selective serotonin reuptake inhibitor (SSRI) therapy. We used a pharmacometabolomics-informed pharmacogenomics research strategy to identify genes associated with metabolites that were related to SSRI response. Specifically, 306 MDD patients were treated with citalopram or escitalopram and blood was drawn at baseline, 4 and 8 weeks for blood drug levels, genome-wide single nucleotide polymorphism (SNP) genotyping and metabolomic analyses. SSRI treatment decreased plasma serotonin concentrations (P<0.0001). Baseline and plasma serotonin concentration changes were associated with clinical outcomes (P<0.05). Therefore, baseline and serotonin concentration changes were used as phenotypes for genome-wide association studies (GWAS). GWAS for baseline plasma serotonin concentrations revealed a genome-wide significant (P=7.84E-09) SNP cluster on chromosome four 5' of TSPAN5 and a cluster across ERICH3 on chromosome one (P=9.28E-08) that were also observed during GWAS for change in serotonin at 4 (P=5.6E-08 and P=7.54E-07, respectively) and 8 weeks (P=1.25E-06 and P=3.99E-07, respectively). The SNPs on chromosome four were expression quantitative trait loci for TSPAN5. Knockdown (KD) and overexpression (OE) of TSPAN5 in a neuroblastoma cell line significantly altered the expression of serotonin pathway genes (TPH1, TPH2, DDC and MAOA). Chromosome one SNPs included two ERICH3 nonsynonymous SNPs that resulted in accelerated proteasome-mediated degradation. In addition, ERICH3 and TSPAN5 KD and OE altered media serotonin concentrations. Application of a pharmacometabolomics-informed pharmacogenomic research strategy, followed by functional validation, indicated that TSPAN5 and ERICH3 are associated with plasma serotonin concentrations and may have a role in SSRI treatment outcomes. PMID: 26903268 [PubMed - indexed for MEDLINE]

metabolomics; +21 new citations

Thu, 21/09/2017 - 14:22
21 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2017/09/21PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +17 new citations

Wed, 20/09/2017 - 14:00
17 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2017/09/20PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +18 new citations

Tue, 19/09/2017 - 16:14
18 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2017/09/19PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +18 new citations

Tue, 19/09/2017 - 13:14
18 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2017/09/19PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics.

Mon, 18/09/2017 - 12:51
Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics. Aquat Toxicol. 2017 Sep 11;192:48-57 Authors: Song Q, Zhou H, Han Q, Diao X Abstract Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens. PMID: 28917945 [PubMed - as supplied by publisher]

Pages

1 2 3 4 5 6 7 8 9 next › last »