Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Investigations of the highly efficient processing technique, chemical constituents, and anti-inflammatory effect of N-ethyl-2-pyrrolidinone-substituted flavan-3-ol (EPSF)-enriched white tea

Tue, 16/04/2024 - 12:00
Food Chem. 2024 Apr 12;450:139328. doi: 10.1016/j.foodchem.2024.139328. Online ahead of print.ABSTRACTN-Ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) are a newly discovered compound class in tea with various bioactivities. This study aimed to develop a novel processing technique to enhance EPSF contents in white tea efficiently. Using optimal processing parameters of 125 °C and 30 min in a high-temperature sterilizing oven, total EPSF content significantly increased by 1.42-18.80-fold to 1.57-6.22 mg/g without impacting sensory characteristics. Metabolomics analysis revealed elevated levels of nucleosides, nucleotides, bases, theaflavins, flavonol aglycones, EPSFs, and most flavone-C-glycosides, as well as decreased levels of amino acids, procyanidins, theasinensins, several flavanols, and flavonol-O-glycosides after EPSF-enrichment treatment. Furthermore, the EPSF-enriched white tea exhibited notable anti-inflammatory effects, mitigating xylene-induced ear edema in mice and carrageenan-induced paw edema and cotton ball-induced granulomas in rats. This study developed a new processing technique for highly efficient enhancement of EPSFs in white tea and demonstrated that EPSF-enriched white tea has a potential to serve as effective anti-inflammatory dietary supplement.PMID:38626712 | DOI:10.1016/j.foodchem.2024.139328

Lipidomic profiling of cervical mucus reveals the potential role of pro-inflammatory derived metabolites on sperm transport across the ovine cervix

Tue, 16/04/2024 - 12:00
Animal. 2024 Mar 21;18(5):101136. doi: 10.1016/j.animal.2024.101136. Online ahead of print.ABSTRACTInternationally, cervical artificial insemination (AI) in sheep yields low pregnancy rates when frozen-thawed semen is used. An exception to this is in Norway where vaginal AI of frozen-thawed semen to a natural oestrus yields non-return rates in excess of 60%, which has been attributed to the ewe breed used in Norway. This study used both metabolomics and an RNA-sequencing approach to assess the lipid production and composition from cervical mucus and tissue of four European ewe breeds (n = 28-30 ewes per breed) with previously reported differences in pregnancy rates following cervical AI with frozen-thawed semen. These breeds included Suffolk (exhibiting low fertility), Belclare (medium fertility) as well as Norwegian White Sheep and Fur (both with high fertility and pregnancy rates > 60%) at both a synchronised and natural oestrous cycle. The aim was to explore the differences between ewe breeds in the lipidomic profile and to identify candidate biomarkers associated with an optimal environment for cervical sperm transport. The results revealed the identification of 255 lipids, of which 170, 102 and 83 were different between ewe breeds, types of cycle and affected by their interaction, respectively (P < 0.05). Reduced levels of lipids involved in the resolution of inflammation (i.e. 14-HDoHE,17-HDoHE, 15-HETE) were identified in the low-fertility Suffolk breed compared to high-fertility ewe breeds. However, there was an up-regulation of the COX pathway accompanied by increased levels of prostaglandins in the Suffolk breed. These findings indicated a sub-optimal and pro-inflammatory environment that could have a negative effect on cervical sperm transport.PMID:38626706 | DOI:10.1016/j.animal.2024.101136

Untargeted metabolomics to discriminate liver and lung hydatid cysts: Importance of metabolites involved in the immune response

Tue, 16/04/2024 - 12:00
Vet Parasitol. 2024 Apr 5;328:110180. doi: 10.1016/j.vetpar.2024.110180. Online ahead of print.ABSTRACTThe Echinococcus granulosus sensu lato species complex is responsible for the neglected zoonotic disease known as cystic echinococcosis (CE). Humans and livestock are infected via fecal-oral transmission. CE remains prevalent in Western China, Central Asia, South America, Eastern Africa, and the Mediterranean. Approximately one million individuals worldwide are affected, influencing veterinary and public health, as well as social and economic matters. The infection causes slow-growing cysts, predominantly in the liver and lungs, but can also develop in other organs. The exact progression of these cysts is uncertain. This study aimed to understand the survival mechanisms of liver and lung CE cysts from cattle by determining their metabolite profiles through metabolomics and multivariate statistical analyses. Non-targeted metabolomic approaches were conducted using quadrupole-time-of-flight liquid chromatography/mass spectrometry (LC-QTOF-MS) to distinguish between liver and lung CE cysts. Data processing to extract the peaks on complex chromatograms was performed using XCMS. PCA and OPLS-DA plots obtained through multiple statistical analyses showed interactions of metabolites within and between groups. Metabolites such as glutathione, prostaglandin, folic acid, and cortisol that cause different immunological reactions have been identified both in liver and lung hydatid cysts, but in different ratios. Considering the differences in the metabolomic profiles of the liver and lung cysts determined in the present study will contribute research to enlighten the nature of the cyst and develop specific therapeutic strategies.PMID:38626652 | DOI:10.1016/j.vetpar.2024.110180

Exploring machine learning for untargeted metabolomics using molecular fingerprints

Tue, 16/04/2024 - 12:00
Comput Methods Programs Biomed. 2024 Apr 8;250:108163. doi: 10.1016/j.cmpb.2024.108163. Online ahead of print.ABSTRACTBACKGROUND: Metabolomics, the study of substrates and products of cellular metabolism, offers valuable insights into an organism's state under specific conditions and has the potential to revolutionise preventive healthcare and pharmaceutical research. However, analysing large metabolomics datasets remains challenging, with available methods relying on limited and incompletely annotated metabolic pathways.METHODS: This study, inspired by well-established methods in drug discovery, employs machine learning on metabolite fingerprints to explore the relationship of their structure with responses in experimental conditions beyond known pathways, shedding light on metabolic processes. It evaluates fingerprinting effectiveness in representing metabolites, addressing challenges like class imbalance, data sparsity, high dimensionality, duplicate structural encoding, and interpretable features. Feature importance analysis is then applied to reveal key chemical configurations affecting classification, identifying related metabolite groups.RESULTS: The approach is tested on two datasets: one on Ataxia Telangiectasia and another on endothelial cells under low oxygen. Machine learning on molecular fingerprints predicts metabolite responses effectively, and feature importance analysis aligns with known metabolic pathways, unveiling new affected metabolite groups for further study.CONCLUSION: In conclusion, the presented approach leverages the strengths of drug discovery to address critical issues in metabolomics research and aims to bridge the gap between these two disciplines. This work lays the foundation for future research in this direction, possibly exploring alternative structural encodings and machine learning models.PMID:38626559 | DOI:10.1016/j.cmpb.2024.108163

Decline of a distinct coral reef holobiont community under ocean acidification

Tue, 16/04/2024 - 12:00
Microbiome. 2024 Apr 17;12(1):75. doi: 10.1186/s40168-023-01683-y.ABSTRACTBACKGROUND: Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA), known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome.RESULTS: We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis; under OA, the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonised by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation.CONCLUSIONS: We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings suggest that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, undesirable, and measurable form of ecosystem changed. Video Abstract.PMID:38627822 | DOI:10.1186/s40168-023-01683-y

Integrated analysis of metabolome, transcriptome, and bioclimatic factors of Acer truncatum seeds reveals key candidate genes related to unsaturated fatty acid biosynthesis, and potentially optimal production area

Tue, 16/04/2024 - 12:00
BMC Plant Biol. 2024 Apr 16;24(1):284. doi: 10.1186/s12870-024-04936-6.ABSTRACTBACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production.RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 β-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China.CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.PMID:38627650 | DOI:10.1186/s12870-024-04936-6

Transactivator of Transcription (Tat)-Induced Neuroinflammation as a Key Pathway in Neuronal Dysfunction: A Scoping Review

Tue, 16/04/2024 - 12:00
Mol Neurobiol. 2024 Apr 17. doi: 10.1007/s12035-024-04173-w. Online ahead of print.ABSTRACTThe activity of HIV-1 and its viral proteins within the central nervous system (CNS) is responsible for a wide array of neuropathological effects, resulting in a spectrum of neurocognitive deficits defined as HIV-associated neurocognitive disorders (HAND). Amongst the various viral proteins, the transactivator of transcription (Tat) remains detectable even with effective antiretroviral therapy (ART) and suppressed viremia, highlighting the significance of this protein in the modern ART era. Tat has been extensively researched in both fundamental and clinical settings due to its role in neuroinflammation, neuronal damage, and neurocognitive impairment amongst people living with HIV (PLHIV). To date, numerous fundamental studies have explored Tat-induced neuroinflammation. However, there is no clear consensus on the most frequently studied inflammatory markers or the consistency in the levels of these Tat-induced inflammatory marker levels across different studies. Therefore, we conducted a scoping review of studies investigating Tat-induced neuroinflammation. We conducted searches in PubMed, Scopus, and Web of Science databases using a search protocol tailored specifically to adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for scoping reviews (PRISMA-ScR) guidelines. From the 22 included studies, findings suggest that the HIV-1 Tat protein amplifies levels of neuroinflammatory markers. Amongst the vast array of inflammatory markers explored in the included studies, consistent results point to higher levels of CCL2, IL-6, IL-8, and TNF-α in primary cells and cell lines exposed to or transfected with HIV-1 Tat. These markers are regulated by key inflammatory pathways, such as the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol 3-kinase (PI3K) pathway, the p38 MAPK pathway, and nuclear factor-kB (NF-kB). Furthermore, Tat has been shown to induce neuronal apoptosis, both directly and indirectly. With regards to study designs, utilizing full-length Tat101 at concentrations ranging from 100 to 1000 ng/ml and durations of 24 and 48 h appears optimal for investigating Tat-induced neuroinflammation. In this context, we highlight specific inflammatory markers and pathways that are potentially pivotal in Tat-induced neuroinflammation and subsequent neuronal damage. A deeper investigation into these markers and pathways is crucial to better understand their roles in the development of HAND.PMID:38627350 | DOI:10.1007/s12035-024-04173-w

GALNT2 expression is associated with glucose control and serum metabolites in patients with type 2 diabetes

Tue, 16/04/2024 - 12:00
Acta Diabetol. 2024 Apr 17. doi: 10.1007/s00592-024-02280-7. Online ahead of print.ABSTRACTAIMS: Aim of this study was to investigate in type 2 diabetes whether expression level of GALNT2, a positive modulator of insulin sensitivity, is associated with a metabolic signature.METHODS: Five different metabolite families, including acylcarnitines, aminoacids, biogenic amines, phospholipids and sphingolipids were investigated in fasting serum of 70 patients with type 2 diabetes, by targeted metabolomics. GALNT2 expression levels were measured in peripheral white blood cells by RT-PCR. The association between GALNT2 expression and serum metabolites was assessed using false discovery rate followed by stepwise selection and, finally, multivariate model including several clinical parameters as confounders. The association between GALNT2 expression and the same clinical parameters was also investigated.RESULTS: GALNT2 expression was independently correlated with HbA1c levels (P value = 0.0052), a finding that is the likely consequence of the role of GALNT2 on insulin sensitivity. GALNT2 expression was also independently associated with serum levels of the aminoacid glycine (P value = 0.014) and two biogenic amines phenylethylamine (P value = 0.0065) and taurine (P value = 0.0011). The association of GALNT2 expression with HbA1c was not mediated by these three metabolites.CONCLUSIONS: Our data indicate that in type 2 diabetes the expression of GALNT2 is associated with several serum metabolites. This association needs to be further investigated to understand in depth its role in mediating the effect of GALNT2 on insulin sensitivity, glucose control and other clinical features in people with diabetes.PMID:38627282 | DOI:10.1007/s00592-024-02280-7

Dihydrophenazine: A multifunctional new weapon that kills multidrug-resistant Acinetobacter baumannii and restores carbapenem and oxidative stress susceptibilities

Tue, 16/04/2024 - 12:00
J Appl Microbiol. 2024 Apr 16:lxae100. doi: 10.1093/jambio/lxae100. Online ahead of print.ABSTRACTAIMS: The current work aims to fully characterize a new antimicrobial agent against Acinetobacter baumannii, which continues to represent a growing threat to healthcare settings worldwide. With minimal treatment options due to the extensive spread of resistance to almost all the available antimicrobials, the hunt for new antimicrobial agents is a high priority.METHODS AND RESULTS: An Egyptian soil-derived bacterium strain NHM-077B proved to be a promising source for a new antimicrobial agent. Bio-guided fractionation of the culture supernatants of NHM-077B followed by chemical structure elucidation identified the active antimicrobial agent as 1-hydroxy phenazine. Chemical synthesis yielded more derivatives, including dihydrophenazine (DHP), which proved to be the most potent against A. baumannii, yet it exhibited a safe cytotoxicity profile against human skin fibroblasts. Proteomics analysis of the cells treated with DHP revealed multiple proteins with altered expression that could be correlated to the observed phenotypes and potential mechanism of the antimicrobial action of DHP. DHP is a multi-pronged agent that affects membrane integrity, increases susceptibility to oxidative stress, interferes with amino acids/protein synthesis, and modulates virulence-related proteins. Interestingly, DHP in sub-inhibitory concentrations re-sensitizes the highly virulent carbapenem-resistant A. baumannii strain AB5075 to carbapenems providing great hope in regaining some of the benefits of this important class of antibiotics.CONCLUSIONS: This work underscores the potential of DHP as a promising new agent with multifunctional roles as both a classical and non-conventional antimicrobial agent that is urgently needed.PMID:38627251 | DOI:10.1093/jambio/lxae100

Long-term conservation tillage increase cotton rhizosphere sequestration of soil organic carbon by changing specific microbial CO<sub>2</sub> fixation pathways in coastal saline soil

Tue, 16/04/2024 - 12:00
J Environ Manage. 2024 Apr 15;358:120743. doi: 10.1016/j.jenvman.2024.120743. Online ahead of print.ABSTRACTCoastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.PMID:38626484 | DOI:10.1016/j.jenvman.2024.120743

The causal relationship between genetically predicted blood metabolites and idiopathic pulmonary fibrosis: A bidirectional two-sample Mendelian randomization study

Tue, 16/04/2024 - 12:00
PLoS One. 2024 Apr 16;19(4):e0300423. doi: 10.1371/journal.pone.0300423. eCollection 2024.ABSTRACTBACKGROUND: Numerous metabolomic studies have confirmed the pivotal role of metabolic abnormalities in the development of idiopathic pulmonary fibrosis (IPF). Nevertheless, there is a lack of evidence on the causal relationship between circulating metabolites and the risk of IPF.METHODS: The potential causality between 486 blood metabolites and IPF was determined through a bidirectional two-sample Mendelian randomization (TSMR) analysis. A genome-wide association study (GWAS) involving 7,824 participants was performed to analyze metabolite data, and a GWAS meta-analysis involving 6,257 IPF cases and 947,616 control European subjects was conducted to analyze IPF data. The TSMR analysis was performed primarily with the inverse variance weighted model, supplemented by weighted mode, MR-Egger regression, and weighted median estimators. A battery of sensitivity analyses was performed, including horizontal pleiotropy assessment, heterogeneity test, Steiger test, and leave-one-out analysis. Furthermore, replication analysis and meta-analysis were conducted with another GWAS dataset of IPF containing 4,125 IPF cases and 20,464 control subjects. Mediation analyses were used to identify the mediating role of confounders in the effect of metabolites on IPF.RESULTS: There were four metabolites associated with the elevated risk of IPF, namely glucose (odds ratio [OR] = 2.49, 95% confidence interval [95%CI] = 1.13-5.49, P = 0.024), urea (OR = 6.24, 95% CI = 1.77-22.02, P = 0.004), guanosine (OR = 1.57, 95%CI = 1.07-2.30, P = 0.021), and ADpSGEGDFXAEGGGVR (OR = 1.70, 95%CI = 1.00-2.88, P = 0.0496). Of note, the effect of guanosine on IPF was found to be mediated by gastroesophageal reflux disease. Reverse Mendelian randomization analysis displayed that IPF might slightly elevate guanosine levels in the blood.CONCLUSION: Conclusively, hyperglycemia may confer a promoting effect on IPF, highlighting that attention should be paid to the relationship between diabetes and IPF, not solely to the diagnosis of diabetes. Additionally, urea, guanosine, and ADpSGEGDFXAEGGGVR also facilitate the development of IPF. This study may provide a reference for analyzing the potential mechanism of IPF and carry implications for the prevention and treatment of IPF.PMID:38626141 | DOI:10.1371/journal.pone.0300423

Widely targeted metabolomics reveals differences in metabolites of Paeonia lactiflora cultivars

Tue, 16/04/2024 - 12:00
PLoS One. 2024 Apr 16;19(4):e0298194. doi: 10.1371/journal.pone.0298194. eCollection 2024.ABSTRACTINTRODUCTION: Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS).METHODS: The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora.RESULTS: A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety.CONCLUSIONS: A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.PMID:38625916 | DOI:10.1371/journal.pone.0298194

Exploring the flavor changes in mung bean flour through lactobacillus fermentation: insights from volatile compounds and non-targeted metabolomics analysis

Tue, 16/04/2024 - 12:00
J Sci Food Agric. 2024 Apr 16. doi: 10.1002/jsfa.13545. Online ahead of print.ABSTRACTBACKGROUND: Mung beans are abundant in nutrition, but their leguminous flavor limits their development. Lactic Acid Bacteria (LAB) fermentation can decrease unwanted bean flavors in legumes and enhance their flavor. This study examined the influence of Lactobacillus fermentation on the flavor characteristics of mung bean flour (MBF) using volatile compounds and non-targeted metabolomics.RESULTS: Lactobacillus plantarum LP90, Lactobacillus casei LC89, and Lactobacillus acidophilus LA85 eliminated 61.37%, 48.29%, and 43.73% of the primary bean odor aldehydes from MBF. The results of relative odor activity values (ROAV) showed that fermented mung bean flour (FMBF) included volatile chemicals that contributed to fruity, flowery, and milky aromas. These compounds included ethyl acetate, hexyl formate, 3-hydroxy-2-butanone, and 2,3-butanedione. The levels of amino acids with a fresh sweet flavor increased significantly by 93.89%, 49.40%, and 35.27% in LP90, LC89, and LA85, respectively. A total of 49 up-regulated and 13 down-regulated significantly differential metabolites were annotated, and 10 metabolic pathways were screened for contributing to the flavor. The correlation between important volatile compounds and non-volatile substances relies on two primary metabolic pathways: the citric acid cycle pathway and the amino acid metabolic system.CONCLUSION: The flavor of MBF was greatly enhanced by the process of Lactobacillus fermentation, with LP90 having the most notable impact. These results serve as a reference for identifying the flavor of FMBF. This article is protected by copyright. All rights reserved.PMID:38625751 | DOI:10.1002/jsfa.13545

The estrogen signaling pathway reprograms prostate cancer cell metabolism and supports proliferation and disease progression

Tue, 16/04/2024 - 12:00
J Clin Invest. 2024 Apr 16:e170809. doi: 10.1172/JCI170809. Online ahead of print.ABSTRACTJust as the androgen receptor (AR), the estrogen receptor α (ERα) is expressed in the prostate and is thought to influence prostate cancer (PCa) biology. Yet, the incomplete understanding of ERα functions in PCa hinders our ability to fully comprehend its clinical relevance and restricts the repurposing of estrogen-targeted therapies for the treatment of this disease. Using two human PCa tissue microarray cohorts, we first demonstrated that nuclear ERα expression was heterogeneous among patients, being only detected in half of tumors. Positive nuclear ERα levels were correlated with disease recurrence, progression to metastatic PCa, and patient survival. Using in vitro and in vivo models of the normal prostate and PCa, bulk and single-cell RNA-Seq analyses revealed that estrogens partially mimic the androgen transcriptional response and induce specific biological pathways linked to proliferation and metabolism. Bioenergetic flux assays and metabolomics confirmed the regulation of cancer metabolism by estrogens, supporting proliferation. Using cancer cell lines and patient-derived organoids, selective estrogen receptor modulators, a pure anti-estrogen, and genetic approaches impaired cancer cell proliferation and growth in an ERα-dependent manner. Overall, our study revealed that, when expressed, ERα functionally reprograms PCa metabolism, is associated with disease progression, and could be targeted for therapeutic purposes.PMID:38625747 | DOI:10.1172/JCI170809

Response and Adaptive Mechanism of Flavonoids in Pigmented Potatoes to Different Altitudes

Tue, 16/04/2024 - 12:00
Plant Cell Physiol. 2024 Apr 16:pcae045. doi: 10.1093/pcp/pcae045. Online ahead of print.ABSTRACTAltitude is an important ecological factor affecting plant physiology and ecology, material metabolism and gene expression. Tuber color changes were observed in purple and red potatoes growing at four different elevations ranging from 1800±50 to 3300±50 meters in the Tiger Leaping Gorge area of Yunnan Province. The results showed that the TPC, TFC, TAC and biological yield of anthocyanin increased with increasing altitude until 2800 ± 50 m, and the highest anthocyanin contents were detected in the purple potato Huaxinyangyu and the red potato Jianchuanhong at the flowering stage and budding stage, respectively. Combined transcriptomic and metabolomic analyses revealed that the content and diversity of flavonoids are associated with gene expression via the promotion of propane metabolism to improve potato adaptation to different altitudes. These results provide a foundation for understanding the coloring mechanism and creating new potato germplasms with high resistance and good quality via genetic manipulation.PMID:38625713 | DOI:10.1093/pcp/pcae045

Impacts of AlaAT3 transgenic poplar on rhizosphere soil chemical properties, enzyme activity, bacterial community, and metabolites under two nitrogen conditions

Tue, 16/04/2024 - 12:00
GM Crops Food. 2024 Dec 31;15(1):1-15. doi: 10.1080/21645698.2024.2339568. Epub 2024 Apr 16.ABSTRACTPoplar stands as one of the primary afforestation trees globally. We successfully generated transgenic poplar trees characterized by enhanced biomass under identical nutrient conditions, through the overexpression of the pivotal nitrogen assimilation gene, pxAlaAT3. An environmental risk assessment was conducted for investigate the potential changes in rhizosphere soil associated with these overexpressing lines (OL). The results show that acid phosphatase activity was significantly altered under ammonium in OL compared to the wild-type control (WT), and a similar difference was observed for protease under nitrate. 16SrDNA sequencing indicated no significant divergence in rhizosphere soil microbial community diversity between WT and OL. Metabolomics analysis revealed that the OL caused minimal alterations in the metabolites of the rhizosphere soil, posing no potential harm to the environment. With these findings in mind, we anticipate that overexpressed plants will not adversely impact the surrounding soil environment.PMID:38625676 | DOI:10.1080/21645698.2024.2339568

Brain Immune Cell Infiltration and Serum Metabolomic Characteristics Reveal that Lauric Acid Promotes Immune Cell Infiltration in Brain and Streptococcus suis Meningitis in Mice

Tue, 16/04/2024 - 12:00
Mol Neurobiol. 2024 Apr 16. doi: 10.1007/s12035-024-04144-1. Online ahead of print.ABSTRACTAlthough naturally Streptococcus suis serotype 2 (SS2) causes meningitis resulting in death or sequela of neurological symptoms in pigs and humans, severely threatening public health in the world, it has been difficult to build up and confirm experimental meningitis mouse models with obvious neurological syndrome for about two decades, which strongly hampers the in-depth study on the control measures and mechanisms of SS2-induced meningitis. In this study, a typical meningitis mouse model of SS2 was successfully established, as confirmed by the behavioral indicators of balance beam test, suspension test, and gait analysis. With bacteria gathering in the brain, distinguishable unique features including meningeal thickening, vacuolization of the Nissl body, brain barrier damage, glial cell activation, and more infiltration of T cells, macrophages, and DCs are observed in SS2 meningitis mice with typical neurological signs. Some meningitis mice were also accompanied by identical nephritis, ophthalmia, and cochlearitis. Investigation of the metabolic features demonstrated the downregulated cholic acid and upregulated 2-hydroxyvaleric acid, tetrahydrocortisone, nicotinic acid, and lauric acid in blood serum of mice and piglets with meningitis. And feeding trials show that lauric acid can promote meningitis by promoting the infiltration of immune cells into brain. These findings demonstrated that infection of ICR (improved castle road) mice with SS2 was able to induce typical meningitis accompanied by immune cell infiltration and lauric acid upregulation. These data provide a basis for the deep study of SS2 meningitis.PMID:38625620 | DOI:10.1007/s12035-024-04144-1

Exploring Anticancer Properties of Medicinal Plants against Breast Cancer by Downregulating Human Epidermal Growth Factor Receptor 2

Tue, 16/04/2024 - 12:00
J Agric Food Chem. 2024 Apr 16. doi: 10.1021/acs.jafc.3c07565. Online ahead of print.ABSTRACTPlants have a history of being employed in managing breast cancer. However, no scientific evidence supports the idea that these plants can effectively reduce the level of HER2 expression. In this study, extracts from 10 medicinal plants were evaluated for their anticancer properties against HER2-positive breast cancer cells through various methods, including the SRB assay, comet assay, annexin V-FITC dual staining, and immunoblotting. All extracts exerted antiproliferative activity against HER2-positive breast cancer cells. Furthermore, Terminalia chebula (T. chebula), Berberis aristata (B. aristata), and Mucuna pruriens (M. pruriens) reduced HER2 expression in tested cell lines. In addition, an increased Bax/Bcl-2 ratio was observed after the treatment. A comparative proteomics study showed modulation in the proteome profile of breast cancer cells after treatment with T. chebula, B. aristata, Punica granatum, M. pruriens, and Acorus calamus. Metabolic profiling of lead plants revealed the existence of multiple anticancer compounds. Our study demonstrates the considerable potential of the mentioned plants as innovative therapies for HER2-positive breast cancer.PMID:38624258 | DOI:10.1021/acs.jafc.3c07565

Metabolic profiling of peri-implant crevicular fluid in peri-implantitis

Tue, 16/04/2024 - 12:00
Clin Oral Implants Res. 2024 Apr 16. doi: 10.1111/clr.14270. Online ahead of print.ABSTRACTOBJECTS: This study aims to explore the etiology of peri-implantitis by comparing the metabolic profiles in peri-implant crevicular fluid (PICF) from patients with healthy implants (PH) and those with peri-implantitis (PI).MATERIALS AND METHODS: Fifty-six patients were enrolled in this cross-sectional study. PICF samples were collected and analyzed using both non-targeted and targeted metabolomics approaches. The relationship between metabolites and clinical indices including probing depth (PD), bleeding on probing (BOP), and marginal bone loss (MBL) was examined. Additionally, submucosal microbiota was collected and analyzed using 16S rRNA gene sequencing to elucidate the association between the metabolites and microbial communities.RESULTS: Significant differences in metabolic profiles were observed between the PH and PI groups, with 179 distinct metabolites identified. In the PI group, specific amino acids and fatty acids were significantly elevated compared to the PH group. Organic acids including succinic acid, fructose-6-phosphate, and glucose-6-phosphate were markedly higher in the PI group, showing positive correlations with mean PD, BOP, and MBL. Metabolites that increased in the PI group positively correlated with the presence of Porphyromonas and Treponema and negatively with Streptococcus and Haemophilus.CONCLUSIONS: This study establishes a clear association between metabolic compositions and peri-implant condition, highlighting enhanced metabolite activity in peri-implantitis. These findings open avenues for further research into metabolic mechanisms of peri-implantitis and their potential therapeutic implications.PMID:38624226 | DOI:10.1111/clr.14270

Machine learning approach to assess the association between anthropometric, metabolic, and nutritional status and semen parameters

Tue, 16/04/2024 - 12:00
Asian J Androl. 2024 Apr 12. doi: 10.4103/aja20247. Online ahead of print.ABSTRACTMany lifestyle factors, such as nutritional imbalance leading to obesity, metabolic disorders, and nutritional deficiency, have been identified as potential risk factors for male infertility. The aim of this study was to evaluate the relationship between semen parameters and anthropometric, metabolic and nutritional parameters. Relationship was first assessed individually, then after the application of a previously constructed and validated machine learning score that allows their combination. Anthropometric, metabolic, antioxidant, micronutrient, and sperm parameters from 75 men suffering from idiopathic infertility from four infertility centers in France (Jean-Verdier ART Center Hospital, Bondy; North Hospital ART Center, Saint-Étienne; Navarre Polyclinic ART Center, Pau; and Cochin Hospital ART Center, Paris) between September 2009 and December 2013 were collected. After assessing standard correlation analysis, a previously built machine learning model, providing a score ranging from 0 (the poorest) to 1 (the most favorable), was calculated for each man in the study cohort. This machine learning model, which separates infertile/fertile men with unexplained infertility on the basis of their bioclinical signature, provides a more holistic evaluation of the influence of the considered markers (anthropometric, metabolic, and oxidative status). We observed a significant correlation of some anthropometric, metabolic, and nutritional disorders with some sperm characteristics. Moreover, an unfavorable machine learning score was associated with a high level of sperm DNA fragmentation. Favorable anthropometric, metabolic, and oxidative patterns, which may reflect an appropriate lifestyle, appear to positively impact overall health, in particular reproductive function. This study, consistent with previous publications, suggests that beyond semen quality parameters, in an essential assessment of male fertility, other key factors should be taken into account. In this regard, the application of emerging artificial intelligence techniques may provide a unique opportunity to integrate all these parameters and deliver personalized care.PMID:38624205 | DOI:10.4103/aja20247

Pages