Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Microbial exopolysaccharide EPS66A inducing walnut (Juglans regia) resistance to bacterial blight

Fri, 06/10/2023 - 12:00
Food Chem. 2023 Sep 23;435:137551. doi: 10.1016/j.foodchem.2023.137551. Online ahead of print.ABSTRACTBacterial blight caused by Xanthomonas arboricola pv. juglandis is a major obstacle to walnut production. EPS66A, derived from Streptomyces sp. strain HL-66, has various beneficial properties, including broad-spectrum microbe inhibition and plant disease resistance induction. To understand the effects of Xaj and EPS66A on walnut, a comprehensive analysis of the metabolome and transcriptome was conducted. While EPS66A did not directly inhibit Xaj on agar media, applying it at 200 μg/mL, 24 h after Xaj inoculation on walnut leaves, significantly reduced bacterial blight in a greenhouse. Additionally, EPS66A increased phenolic and flavonoid concentrations and enhanced enzymatic activities associated with resistance, such as catalase, superoxide dismutase, peroxidase, and phenylalanine ammonia lyase. Differential expression of eleven metabolites and fourteen genes related to flavonoid biosynthesis pathway was observed. Consequently, EPS66A application induced systemic resistance in walnuts, effectively preventing Xaj infection. This study provides insights into the flavonoid biosynthesis mechanism underlying EPS66A-induced resistance in walnuts.PMID:37801767 | DOI:10.1016/j.foodchem.2023.137551

Characterization of color variation in bamboo sheath of Chimonobambusa hejiangensis by UPLC-ESI-MS/MS and RNA sequencing

Fri, 06/10/2023 - 12:00
BMC Plant Biol. 2023 Oct 6;23(1):466. doi: 10.1186/s12870-023-04494-3.ABSTRACTBACKGROUND: Chimonobambusa hejiangensis (C.hejiangensis) is a high-quality bamboo species native to China, known for its shoots that are a popular nutritional food. Three C.hejiangensis cultivars exhibit unique color variation in their shoot sheaths, however, the molecular mechanism behind this color change remains unclear.METHODS: We investigated flavonoid accumulation in the three bamboo cultivar sheaths using metabolomics and transcriptomics.RESULTS: UPLC-MS/MS identified 969 metabolites, with 187, 103, and 132 having differential accumulation in the yellow-sheath (YShe) vs. spot-sheath (SShe)/black-sheath (BShe) and SShe vs. BShe comparison groups. Flavonoids were the major metabolites that determined bamboo sheath color through differential accumulation of metabolites (DAMs) analysis. Additionally, there were 33 significantly differentially expressed flavonoid structural genes involved in the anthocyanin synthesis pathway based on transcriptome data. We conducted a KEGG analysis on DEGs and DAMs, revealing significant enrichment of phenylpropanoid and flavonoid biosynthetic pathways. Using gene co-expression network analysis, we identified nine structural genes and 29 transcription factors strongly linked to anthocyanin biosynthesis.CONCLUSION: We identified a comprehensive regulatory network for flavonoid biosynthesis which should improve our comprehension of the molecular mechanisms responsible for color variation and flavonoid biosynthesis in bamboo sheaths.PMID:37803268 | DOI:10.1186/s12870-023-04494-3

Big Data Analysis in Computational Biology and Bioinformatics

Fri, 06/10/2023 - 12:00
Methods Mol Biol. 2024;2719:181-197. doi: 10.1007/978-1-0716-3461-5_11.ABSTRACTAdvancements in high-throughput technologies, genomics, transcriptomics, and metabolomics play an important role in obtaining biological information about living organisms. The field of computational biology and bioinformatics has experienced significant growth with the advent of high-throughput sequencing technologies and other high-throughput techniques. The resulting large amounts of data present both opportunities and challenges for data analysis. Big data analysis has become essential for extracting meaningful insights from the massive amount of data. In this chapter, we provide an overview of the current status of big data analysis in computational biology and bioinformatics. We discuss the various aspects of big data analysis, including data acquisition, storage, processing, and analysis. We also highlight some of the challenges and opportunities of big data analysis in this area of research. Despite the challenges, big data analysis presents significant opportunities like development of efficient and fast computing algorithms for advancing our understanding of biological processes, identifying novel biomarkers for breeding research and developments, predicting disease, and identifying potential drug targets for drug development programs.PMID:37803119 | DOI:10.1007/978-1-0716-3461-5_11

Emerging Trends in Big Data Analysis in Computational Biology and Bioinformatics in Health Informatics: A Case Study on Epilepsy and Seizures

Fri, 06/10/2023 - 12:00
Methods Mol Biol. 2024;2719:99-119. doi: 10.1007/978-1-0716-3461-5_6.ABSTRACTAdvanced technology innovations allow cost-effective, high-throughput profiling of biological systems. It enabled genome sequencing in days using advanced technologies (e.g., next-generation sequencing, microarrays, and mass spectrometry). Since technology has been developed, massive biological data (e.g., genomics, proteomics) has been produced cheaply, allowing the "big data" era to create new opportunities to solve medical and biological complications in many disciplines-preventive medicine, biology, Personalized Medicine, gene sequencing, healthcare, and industry. Computational biology and bioinformatics are interdisciplinary fields that develop and apply computational methods (e.g., analytical methods, mathematical modeling, and simulation) to analyze large collections of biological data, such as genetic sequences, cell populations, or protein samples, to make new predictions or discover new biology. Biological data storage, mining, and analysis have challenges because data is much more heterogeneous. In this study, the big data resources of genomics, proteomics, and metabolomics have been explored to solve biological problems using big data analysis approaches. The goal is to build a network of relationship-based gene-disease associations to prioritize phenotypes common to epilepsy and seizure disease. Through network analysis, The 10 seed genes, 22 associated genes, 132 microRNAs, and 38 transcription factors have been identified that have a direct effect on all forms of epilepsy and seizures. The majority of seed genes, according to the results of a functional analysis of seed genes, are involved in the acetylcholine-gated channel complex (10%) and the heterotrimeric G-protein complex (10%) pathways related to cellular components, followed by a role in the regulation of action potential (20%) and positive regulation of vascular endothelial growth factor production (20%) in Epilepsy and Seizures pathways related to biological processes. This study might provide insight into the workings of the disease and shows the importance of continued research into epilepsy and other conditions that can trigger seizure activity.PMID:37803114 | DOI:10.1007/978-1-0716-3461-5_6

Impact of humid climate on rheumatoid arthritis faecal microbiome and metabolites

Fri, 06/10/2023 - 12:00
Sci Rep. 2023 Oct 6;13(1):16846. doi: 10.1038/s41598-023-43964-4.ABSTRACTStudies have shown that high humidity is a condition that aggravates the pain of rheumatoid arthritis (RA), but the relevant mechanism is controversial. Currently, there is a lack of experimental animal studies on high humidity as an adverse factor related to the pathogenesis of RA. We used healthy SD rats and collagen-induced arthritis (CIA) rats to investigate the effects of high humidity on arthritis. Integrated metabolomics analyses of faeces and 16S rRNA sequencing of the faecal microbiota were performed to comprehensively assess the diversity of the faecal microbiota and metabolites in healthy and CIA rats. In this study, high humidity aggravated arthritis in CIA rats, which manifested as articular cartilage lesions, increased arthritis scores, and an increase in proinflammatory cytokines. High humidity had a certain effect on the articular cartilage extent, arthritis score and proinflammatory cytokines of healthy rats as well. Furthermore, high humidity caused significant changes in faecal microbes and metabolites in both healthy and CIA rats. 16S rRNA sequencing of faecal samples showed that high humidity increased the amount of inflammation-related bacteria in healthy and CIA rats. Faecal metabolomics results showed that high humidity significantly altered the level of faecal metabolites in healthy rats and CIA rats, and the changes in biological functions were mainly related to the inflammatory response and oxidative stress. Combined analysis showed that there was a strong correlation between the faecal microbiota and faecal metabolites. High humidity is an adverse factor for the onset and development of RA, and its mechanism is related to the inflammatory response and oxidative stress. However, the question of how high humidity impacts RA pathogenesis needs to be further investigated.PMID:37803075 | DOI:10.1038/s41598-023-43964-4

Amino acid transporter SLC38A5 is a tumor promoter and a novel therapeutic target for pancreatic cancer

Fri, 06/10/2023 - 12:00
Sci Rep. 2023 Oct 6;13(1):16863. doi: 10.1038/s41598-023-43983-1.ABSTRACTPancreatic ductal adenocarcinoma (PDAC) cells have a great demand for nutrients in the form of sugars, amino acids, and lipids. Particularly, amino acids are critical for cancer growth and, as intermediates, connect glucose, lipid and nucleotide metabolism. PDAC cells meet these requirements by upregulating selective amino acid transporters. Here we show that SLC38A5 (SN2/SNAT5), a neutral amino acid transporter is highly upregulated and functional in PDAC cells. Using CRISPR/Cas9-mediated knockout of SLC38A5, we show its tumor promoting role in an in vitro cell line model as well as in a subcutaneous xenograft mouse model. Using metabolomics and RNA sequencing, we show significant reduction in many amino acid substrates of SLC38A5 as well as OXPHOS inactivation in response to SLC38A5 deletion. Experimental validation demonstrates inhibition of mTORC1, glycolysis and mitochondrial respiration in KO cells, suggesting a serious metabolic crisis associated with SLC38A5 deletion. Since many SLC38A5 substrates are activators of mTORC1 as well as TCA cycle intermediates/precursors, we speculate amino acid insufficiency as a possible link between SLC38A5 deletion and inactivation of mTORC1, glycolysis and mitochondrial respiration, and the underlying mechanism for PDAC attenuation. Overall, we show that SLC38A5 promotes PDAC, thereby identifying a novel, hitherto unknown, therapeutic target for PDAC.PMID:37803043 | DOI:10.1038/s41598-023-43983-1

Decreased liver B vitamin-related enzymes as a metabolic hallmark of cancer cachexia

Fri, 06/10/2023 - 12:00
Nat Commun. 2023 Oct 6;14(1):6246. doi: 10.1038/s41467-023-41952-w.ABSTRACTCancer cachexia is a complex metabolic disorder accounting for ~20% of cancer-related deaths, yet its metabolic landscape remains unexplored. Here, we report a decrease in B vitamin-related liver enzymes as a hallmark of systemic metabolic changes occurring in cancer cachexia. Metabolomics of multiple mouse models highlights cachexia-associated reductions of niacin, vitamin B6, and a glycine-related subset of one-carbon (C1) metabolites in the liver. Integration of proteomics and metabolomics reveals that liver enzymes related to niacin, vitamin B6, and glycine-related C1 enzymes dependent on B vitamins decrease linearly with their associated metabolites, likely reflecting stoichiometric cofactor-enzyme interactions. The decrease of B vitamin-related enzymes is also found to depend on protein abundance and cofactor subtype. These metabolic/proteomic changes and decreased protein malonylation, another cachexia feature identified by protein post-translational modification analysis, are reflected in blood samples from mouse models and gastric cancer patients with cachexia, underscoring the clinical relevance of our findings.PMID:37803016 | DOI:10.1038/s41467-023-41952-w

Mechanism of Jiming Powder in ameliorating heart failure with preserved ejection fraction based on metabolomics

Fri, 06/10/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Sep;48(17):4747-4760. doi: 10.19540/j.cnki.cjcmm.20230510.702.ABSTRACTIn this study, untargeted metabolomics was conducted using the liquid chromatography-tandem mass spectrometry(LC-MS/MS) technique to analyze the potential biomarkers in the plasma of mice with heart failure with preserved ejection fraction(HFpEF) induced by a high-fat diet(HFD) and nitric oxide synthase inhibitor(Nω-nitro-L-arginine methyl ester hydrochloride, L-NAME) and explore the pharmacological effects and mechanism of Jiming Powder in improving HFpEF. Male C57BL/6N mice aged eight weeks were randomly assigned to a control group, a model group, an empagliflozin(10 mg·kg~(-1)·d~(-1)) group, and high-and low-dose Jiming Powder(14.3 and 7.15 g·kg~(-1)·d~(-1)) groups. Mice in the control group were fed on a low-fat diet, and mice in the model group and groups with drug intervention were fed on a high-fat diet. All mice had free access to water, with water in the model group and Jiming Powder groups being supplemented with L-NAME(0.5 g·L~(-1)). Drugs were administered on the first day of modeling, and 15 weeks later, blood pressure and cardiac function of the mice in each group were measured. Heart tissues were collected for hematoxylin-eosin(HE) staining to observe pathological changes and Masson's staining to observe myocardial collagen deposition. Untargeted metabolomics analysis was performed on the plasma collected from mice in each group, and metabolic pathway analysis was conducted using MetaboAnalyst 5.0. The results showed that the blood pressure was significantly lower and the myocardial concentric hypertrophy and left ventricular diastolic dysfunction were significantly improved in both the high-dose and low-dose Jiming Powder groups as compared with those in the model group. HE and Masson staining showed that both high-dose and low-dose Jiming Powder significantly alleviated myocardial fibrosis. In the metabolomics experiment, 23 potential biomarkers were identified and eight strongly correlated metabolic pathways were enriched, including linoleic acid metabolism, histidine metabolism, alpha-linolenic acid metabolism, glycerophospholipid metabolism, purine metabolism, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and pyrimidine metabolism. The study confirmed the pharmacological effects of Jiming Powder in lowering blood pressure and ameliorating HFpEF and revealed the mechanism of Jiming Powder using the metabolomics technique, providing experimental evidence for the clinical application of Jiming Powder in treating HFpEF and a new perspective for advancing and developing TCM therapy for HFpEF.PMID:37802814 | DOI:10.19540/j.cnki.cjcmm.20230510.702

Therapeutic effect and mechanism of Mailuo Shutong Pills on posterior limb swelling caused by femur fracture in rats based on intestinal flora and intestinal metabolism

Fri, 06/10/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Sep;48(17):4711-4721. doi: 10.19540/j.cnki.cjcmm.20230512.401.ABSTRACTThis study aimed to investigate the protective effect and underlying mechanism of Mailuo Shutong Pills(MLST) on posterior limb swelling caused by femur fracture in rats. The rats were randomly divided into a sham operation group, a model group, a low-dose MLST group(1.8 g·kg~(-1)·d~(-1)), a high-dose MLST group(3.6 g·kg~(-1)·d~(-1)), and a positive drug group(60 mg·kg~(-1)·d~(-1) Maizhiling Tablets). The femur in the sham operation group was exposed and the wound was sutured, while the other four groups underwent mechanical damage to cause femur fracture. The rats were treated with corresponding drugs by gavage 7 days before modeling and 5 days after modeling, while those in the sham operation group and the model group were given an equivalent dose of distilled water by gavage. Hematoxylin-eosin(HE) staining was used to detect the pathological injury of the posterior limb muscle tissues in rats, and the degree of hind limb swelling was measured. The enzyme-linked immunosorbent assay(ELISA) kit was used to detect the expression levels of interleukin-6(IL-6), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α) in the serum of rats in each group. The activity of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and glutathione peroxidase(GSH-Px) in rat serum was also measured. Western blot was used to detect the protein expression levels of heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), and nuclear transcription factor E2-related factor 2(Nrf2) in rat posterior limb muscle tissues. The changes in the intestinal flora and intestinal metabolites in rats were detected by 16S rDNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), respectively, to explore the underlying mechanism of MLST in treating posterior limb swelling caused by femur fracture in rats. Compared with the model group, MLST significantly improved the degree of posterior limb swelling in rats, reduced the levels of serum inflammatory factors, and alleviated oxidative stress injury. The HE staining results showed that the inflammatory infiltration in the posterior limb muscle tissues of rats in the MLST groups was significantly improved. Western blot results showed that MLST significantly increased the protein expression of HO-1, NQO1, and Nrf2 in rat posterior limb muscle tissues compared with the model group. The 16S rDNA sequencing results showed that MLST improved the disorder of intestinal flora in rats after femur fracture. The UPLC-MS/MS results showed that MLST significantly affected the bile acid biosynthesis and metabolism pathway in the intestine after femur fracture, and the Spearman analysis confirmed that the metabolite deoxycholic acid involved in bile acid biosynthesis was positively correlated with the abundance of Turicibacter. The metabolite cholic acid was positively correlated with the abundance of Papilibacter, Staphylococcus, and Intestinimonas. The metabolite lithocholic acid was positively correlated with Papilibacter and Intestinimonas. The above results indicated that MLST could protect against the posterior limb swelling caused by femur fracture in rats. This protective effect may be achieved by improving the pathological injury of the posterior limb muscle, reducing the expression levels of inflammatory and oxidative stress-related factors in serum, reducing the oxidative injury of the posterior limb muscle, improving intestinal flora, and balancing the biosynthesis of bile acids in the intestine.PMID:37802810 | DOI:10.19540/j.cnki.cjcmm.20230512.401

Dead heart of pith-decayed Scutellariae Radix: a study based on multi-omics

Fri, 06/10/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Sep;48(17):4634-4646. doi: 10.19540/j.cnki.cjcmm.20230414.101.ABSTRACTDead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-β-D-glucuronide, oroxylin A-7-O-β-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.PMID:37802802 | DOI:10.19540/j.cnki.cjcmm.20230414.101

Resource components and utilization values of different parts of Panax quinquefolium in Shandong province

Fri, 06/10/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Aug;48(15):4097-4105. doi: 10.19540/j.cnki.cjcmm.20230313.103.ABSTRACTTo explore the resource components and availability of different parts of Panax quinquefolium in Shandong province, the paper employed the non-targeted metabolomics technology based on ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) to analyze the metabolites and their metabolic pathways in the root, fibril, stem, and leaf of P. quinquefolium. The content of seven ginsenosides and polysaccharides in different parts was determined by high performance liquid chromatography(HPLC) and ultraviolet-visible spectrophotometry(UV-Vis). The results showed that the metabolites were mainly sugars, glycosides, organic acids, amino acids and their derivatives, terpenoids, etc. The total abundance of metabolites followed the trend of leaf > root > fibril > stem. Most of the differential metabolites were concentrated in phenylpropane biosynthesis, flavonoid biosynthesis, citric acid cycle, and amino acid biosynthesis. The leaf contained high levels of sugars, glycosides, amino acids and their derivatives, and flavonoids; the root was rich in terpenoids, volatile oils, vitamins, and lignin; the fibril contained rich organic acids; and the stem had high content of nucleotides and their derivatives. The content of ginsenosides Re and Rb_1 was significantly higher in the root; the content of ginsenosides Rg_1, Rg_2, Rd, F_(11), and polysaccharide was significantly higher in the leaf; and the content of ginsenoside Rb_2 was significantly higher in the stem. We analyzed the resource components and availability of different parts of P. quinquefolium, aiming to provide basic information for the comprehensive development and utilization of P. quinquefolium resources in Shandong province.PMID:37802777 | DOI:10.19540/j.cnki.cjcmm.20230313.103

Serum metabolomics study of Psoraleae Fructus in improving learning and memory ability of APP/PS1 mice

Fri, 06/10/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Aug;48(15):4039-4045. doi: 10.19540/j.cnki.cjcmm.20230303.401.ABSTRACTThis study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.PMID:37802771 | DOI:10.19540/j.cnki.cjcmm.20230303.401

Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets

Fri, 06/10/2023 - 12:00
Sci Adv. 2023 Oct 6;9(40):eadf0837. doi: 10.1126/sciadv.adf0837. Epub 2023 Oct 6.ABSTRACTIntratumor heterogeneity (ITH) profoundly affects therapeutic responses and clinical outcomes. However, the widespread methods for assessing ITH based on genomic sequencing or pathological slides, which rely on limited tissue samples, may lead to inaccuracies due to potential sampling biases. Using a newly established multicenter breast cancer radio-multiomic dataset (n = 1474) encompassing radiomic features extracted from dynamic contrast-enhanced magnetic resonance images, we formulated a noninvasive radiomics methodology to effectively investigate ITH. Imaging ITH (IITH) was associated with genomic and pathological ITH, predicting poor prognosis independently in breast cancer. Through multiomic analysis, we identified activated oncogenic pathways and metabolic dysregulation in high-IITH tumors. Integrated metabolomic and transcriptomic analyses highlighted ferroptosis as a vulnerability and potential therapeutic target of high-IITH tumors. Collectively, this work emphasizes the superiority of radiomics in capturing ITH. Furthermore, we provide insights into the biological basis of IITH and propose therapeutic targets for breast cancers with elevated IITH.PMID:37801493 | DOI:10.1126/sciadv.adf0837

Differential sperm histone retention in normozoospermic ejaculates of infertile men negatively affects sperm functional competence and embryo quality

Fri, 06/10/2023 - 12:00
Andrology. 2023 Oct 6. doi: 10.1111/andr.13541. Online ahead of print.ABSTRACTBACKGROUND: The unique epigenetic architecture that sperm cells acquire during spermiogenesis by retaining <15% of either canonical or variant histone proteins in their genome is essential for normal embryogenesis. Whilst heterogeneous levels of retained histones are found in morphologically normal spermatozoa, their effect on reproductive outcomes is not fully understood.METHODS: Processed spermatozoa (n = 62) were tested for DNA integrity by sperm chromatin dispersion assay, and retained histones were extracted and subjected to dot-blot analysis. The impact of retained histone modifications in normozoospermic patients on sperm functional characteristics, embryo quality, metabolic signature in embryo spent culture medium and pregnancy outcome was studied.RESULTS: Dot-blot analysis showed heterogeneous levels of retained histones in the genome of normozoospermic ejaculates. Post-wash sperm yield was affected by an increase in H3K27Me3 and H4K20Me3 levels in the sperm chromatin (p < 0.05). Also, spermatozoa with higher histone H3 retention had increased DNA damage (p < 0.05). Spermatozoa from these cohorts, when injected into donor oocytes, correlated to a significant decrease in the fertilisation rate with an increase in sperm histone H3 (p < 0.05) and H3K27Me3 (p < 0.01). An increase in histone H3 negatively affected embryo quality (p < 0.01) and clinical pregnancy outcome post-embryo transfer (p < 0.05). On the other hand, spent culture medium metabolites assessed by high-resolution (800 MHz) nuclear magnetic resonance showed an increased intensity of the amino acid methionine in the non-pregnant group than in the pregnant group (p < 0.05) and a negative correlation with sperm histone H3 in the pregnant group (p < 0.05).DISCUSSION AND CONCLUSION: Histone retention in spermatozoa can be one of the factors behind the development of idiopathic male infertility. Such spermatozoa may influence embryonic behaviour and thereby affect the success rate of assisted reproductive technology procedures. These results, although descriptive in nature, warrant further research to address the underlying mechanisms behind these clinically important observations.PMID:37801310 | DOI:10.1111/andr.13541

Changes in toxicity after mixing imidacloprid and cadmium: enhanced, diminished, or both? From a perspective of oxidative stress, lipid metabolism, and amino acid metabolism in mice

Fri, 06/10/2023 - 12:00
Environ Sci Pollut Res Int. 2023 Oct 6. doi: 10.1007/s11356-023-29980-x. Online ahead of print.ABSTRACTImidacloprid (IMI) and cadmium (Cd) are pollutants of concern in the environment. Although investigations about their combined toxicity to organisms such as earthworms, aquatic worms, Daphnia magna, and zebrafish have been carried out, their combined toxicity to mammals remains unknow. In this study, twenty-four 8-week-old mice were arbitrarily separated into 4 groups: CK (control group), IMI (15 mg/kg bw/day, 1/10 LD50), Cd (15 mg/kg bw/day, 1/10 LD50), and IMI + Cd (15 mg/kg bw/day IMI + 15 mg/kg bw/d Cd) and the combined toxic effects of IMI and Cd were examined with biochemical (oxidative stress testing) and omics approaches (metabolomics and lipidomics). The results revealed changes in each treatment group in terms of oxidative stress, abnormalities in lipid metabolism, and disturbances in amino acid metabolism. Co-administration had antagonistic effects on MDA accumulation and lipid metabolism disorders while acting synergistically on changes in SOD and GSH-Px activities. It is worth noting that after analysis, the changes caused by mixed administration in vivo were closer to those caused by IMI administration alone. This study provides new insights into the combined toxicity of neonicotinoids and heavy metals, which is helpful for relevant environmental governance and further investigations about their impacts on human health and the environment.PMID:37801250 | DOI:10.1007/s11356-023-29980-x

Whole-Blood Metabolomics of a Rat Model of Repetitive Concussion

Fri, 06/10/2023 - 12:00
J Mol Neurosci. 2023 Oct 6. doi: 10.1007/s12031-023-02162-7. Online ahead of print.ABSTRACTMild traumatic brain injury (mTBI) and repetitive mTBI (RmTBI) are silent epidemics, and so far, there is no objective diagnosis. The severity of the injury is solely based on the Glasgow Coma Score (GCS) scale. Most patients suffer from one or more behavioral abnormalities, such as headache, amnesia, cognitive decline, disturbed sleep pattern, anxiety, depression, and vision abnormalities. Additionally, most neuroimaging modalities are insensitive to capture structural and functional alterations in the brain, leading to inefficient patient management. Metabolomics is one of the established omics technologies to identify metabolic alterations, mostly in biofluids. NMR-based metabolomics provides quantitative metabolic information with non-destructive and minimal sample preparation. We employed whole-blood NMR analysis to identify metabolic markers using a high-field NMR spectrometer (800 MHz). Our approach involves chemical-free sample pretreatment and minimal sample preparation to obtain a robust whole-blood metabolic profile from a rat model of concussion. A single head injury was given to the mTBI group, and three head injuries to the RmTBI group. We found significant alterations in blood metabolites in both mTBI and RmTBI groups compared with the control, such as alanine, branched amino acid (BAA), adenosine diphosphate/adenosine try phosphate (ADP/ATP), creatine, glucose, pyruvate, and glycerphosphocholine (GPC). Choline was significantly altered only in the mTBI group and formate in the RmTBI group compared with the control. These metabolites corroborate previous findings in clinical and preclinical cohorts. Comprehensive whole-blood metabolomics can provide a robust metabolic marker for more accurate diagnosis and treatment intervention for a disease population.PMID:37801210 | DOI:10.1007/s12031-023-02162-7

A conserved metabolic signature associated with response to fast-acting anti-malarial agents

Fri, 06/10/2023 - 12:00
Microbiol Spectr. 2023 Oct 6:e0397622. doi: 10.1128/spectrum.03976-22. Online ahead of print.ABSTRACTCharacterizing the mode of action of anti-malarial compounds that emerge from high-throughput phenotypic screens is central to understanding how parasite resistance to these drugs can emerge. Here, we have employed untargeted metabolomics to inform on the mechanism of action of anti-malarial leads with different speed of kill profiles being developed by the Novartis Institute of Tropical Diseases (NITD). Time-resolved global changes in malaria parasite metabolite profiles upon drug treatment were quantified using liquid chromatography-based mass spectrometry and compared to untreated controls. Using this approach, we confirmed previously reported metabolomics profiles of the fast-killing (2.5 h) drug dihydroartemisinin (DHA) and the slower killing atovaquone. A slow-acting anti-malarial lead from NITD of imidazolopiperazine (IZP) class, GNF179, elicited little or no discernable metabolic change in malaria parasites in the same 2.5-h window of drug exposure. In contrast, fast-killing drugs, DHA and the spiroindolone (NITD246), elicited similar metabolomic profiles both in terms of kinetics and content. DHA and NITD246 induced peptide losses consistent with disruption of hemoglobin catabolism and also interfered with the pyrimidine biosynthesis pathway. Two members of the recently described class of anti-malarial agents of the 5-aryl-2-amino-imidazothiadiazole class also exhibited a fast-acting profile that featured peptide losses indicative of disrupted hemoglobin catabolism. Our screen demonstrates that structurally unrelated, fast-acting anti-malarial compounds generate similar biochemical signatures in Plasmodium pointing to a common mechanism associated with rapid parasite death. These profiles may be used to identify and possibly predict the mode of action of other fast-acting drug candidates. IMPORTANCE In malaria drug discovery, understanding the mode of action of lead compounds is important as it helps in predicting the potential emergence of drug resistance in the field when these drugs are eventually deployed. In this study, we have employed metabolomics technologies to characterize the potential targets of anti-malarial drug candidates in the developmental pipeline at NITD. We show that NITD fast-acting leads belonging to spiroindolone and imidazothiadiazole class induce a common biochemical theme in drug-exposed malaria parasites which is similar to another fast-acting, clinically available drug, DHA. These biochemical features which are absent in a slower acting NITD lead (GNF17) point to hemoglobin digestion and inhibition of the pyrimidine pathway as potential action points for these drugs. These biochemical themes can be used to identify and inform on the mode of action of fast drug candidates of similar profiles in future drug discovery programs.PMID:37800971 | DOI:10.1128/spectrum.03976-22

<em>Alpinia katsumadai</em> Hayata Volatile Oil Is Effective in Treating 5-Fluorouracil-Induced Mucositis by Regulating Gut Microbiota and Modulating the GC/GR Pathway and the mPGES-1/PGE2/EP4 Pathways

Fri, 06/10/2023 - 12:00
J Agric Food Chem. 2023 Oct 6. doi: 10.1021/acs.jafc.3c05051. Online ahead of print.ABSTRACTThis study was aimed to investigate the therapeutic effect and mechanism of AKHO on 5-fluorouracil (5-FU)-induced intestinal mucositis in mice. Mouse body weight, diarrhea score, and H&E staining were applied to judge the therapeutic effect of AKHO. 16S rDNA and nontargeted metabolomics have been used to study the mechanism. WB, ELISA, and immunohistochemistry were adopted to validate possible mechanisms. The results demonstrated that AKHO significantly reduced diarrhea scores and intestinal damage induced by 5-FU in mice. AKHO lowered the serum levels of LD and DAO, and upregulated the expressions of ZO-1 and occludin in the ileum. Also, AKHO upregulated the abundance of Lactobacillus in the gut and suppressed KEGG pathways such as cortisol synthesis and secretion and arachidonic acid metabolism. Further validation studies indicated that AKHO downregulated the expressions of prostaglandin E2 (PGE2), microsomal prostaglandin E synthase-1 (mPGES-1), and PGE2 receptor EP4, as well as upregulated the expression of glucocorticoid (GC) receptor (GR), leading to improved intestinal epithelial barrier function. Taken together, AKHO elicited protective effects against 5-FU-induced mucositis by regulating the expressions of tight junction proteins via modulation of GC/GR and mPGES-1/PGE2/EP4 pathway, providing novel insights into the utilization and development of this pharmaceutical/food resource.PMID:37800952 | DOI:10.1021/acs.jafc.3c05051

Spatially Resolved Metabolomics Combined with the 3D Tumor-Immune Cell Coculture Spheroid Highlights Metabolic Alterations during Antitumor Immune Response

Fri, 06/10/2023 - 12:00
Anal Chem. 2023 Oct 6. doi: 10.1021/acs.analchem.2c05734. Online ahead of print.ABSTRACTThe metabolic cross-talk between tumor and immune cells plays key roles in immune cell function and immune checkpoint blockade therapy. However, the characterization of tumor immunometabolism and its spatiotemporal alterations during immune response in a complex tumor microenvironment is challenging. Here, a 3D tumor-immune cell coculture spheroid model was developed to mimic tumor-immune interactions, combined with mass spectrometry imaging-based spatially resolved metabolomics to visualize tumor immunometabolic alterations during immune response. The inhibition of T cells was simulated by coculturing breast tumor spheroids with Jurkat T cells, and the reactivation of T cells can be monitored through diminishing cancer PD-L1 expressions by berberine. This system enables simultaneously screening and imaging discriminatory metabolites that are altered during T cell-mediated antitumor immune response and characterizing the distributions of berberine and its metabolites in tumor spheroids. We discovered that the transport and catabolism of glutamine were significantly reprogrammed during the antitumor immune response at both metabolite and enzyme levels, corresponding to its indispensable roles in energy metabolism and building new biomass. The combination of spatially resolved metabolomics with the 3D tumor-immune cell coculture spheroid visually reveals metabolic interactions between tumor and immune cells and possibly helps decipher the role of immunometabolic alterations in tumor immunotherapy.PMID:37800909 | DOI:10.1021/acs.analchem.2c05734

Plasma metabonomic study on the effect of <em>Para</em>‑hydroxybenzaldehyde intervention in a rat model of transient focal cerebral ischemia

Fri, 06/10/2023 - 12:00
Mol Med Rep. 2023 Nov;28(5):224. doi: 10.3892/mmr.2023.13111. Epub 2023 Oct 6.ABSTRACTGastrodia elata Blume has been widely used to treat various central and peripheral nerve diseases, and Para‑hydroxybenzaldehyde (PHBA) is one of the indicated components suggested to provide a neuroprotective effect. In our previous, it was shown that PHBA protected mitochondria against cerebral ischemia‑reperfusion (I/R) injury in rats. In the present study, how PHBA regulated the metabolic mechanism in blood following cerebral I/R was assessed to identify an effective therapeutic target for the prevention and treatment of ischemic stroke (IS). First, a rat model of cerebral ischemia‑reperfusion injury was established via middle cerebral artery occlusion/reperfusion (MCAO/R). The therapeutic effect of PHBA on brain I/R was evaluated by assessing the neurological function score, triphenyl tetrazolium chloride, hematoxylin and eosin, and Nissl staining. Next, a non‑targeted metabolomic based on high‑performance liquid chromatography quadrupole time‑of‑flight mass spectrometry was established to identify differential metabolites. Finally, a targeted metabolic spectrum was analyzed and the potential therapeutic targets were verified by Western blotting. The results showed that the neurological function score, cerebral infarction area, hippocampal morphology, and the number of neurons in the PHBA group were significantly improved compared with the model group. Metabonomic analysis showed that 13 different metabolites were identified between the model and PHBA group, which may be involved in the 'tricarboxylic acid cycle', 'glutathione metabolism', and 'mutual transformation of pentose and glucuronates', amongst others. Among these, the levels of the most significant differential metabolite, dGMP, decreased significantly following PHBA treatment. Western blotting was used to verify the expression of membrane‑associated guanosine kinase PSD‑95 and the subunit of glutamate AMPA receptor GluA1, which significantly increased after PHBA treatment. In addition, it was also found that PHBA increased the expression of the light chain‑3 protein and autophagy effector protein 1, whilst the expression of sequestosome‑1 decreased, indicating that PHBA promoted autophagy. Similarly, in TUNEL staining and detection of apoptosis‑related proteins, it was found that MCAO/R upregulated the expression of Bax and cleaved‑caspase‑3 whilst downregulating the expression of Bcl‑2 and increasing the apoptosis of hippocampal neurons; PHBA reversed this situation. These results suggest that cerebral I/R causes postsynaptic dysfunction by disrupting the interaction between PSD‑95 and AMPARs, and the inhibition of the autophagy system eventually leads to the apoptosis of hippocampal neurons.PMID:37800608 | DOI:10.3892/mmr.2023.13111

Pages