Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: A metabolomic analysis

Sat, 02/09/2023 - 12:00
Prog Neuropsychopharmacol Biol Psychiatry. 2023 Aug 31:110849. doi: 10.1016/j.pnpbp.2023.110849. Online ahead of print.ABSTRACTOBJECTIVES: Approximately one-third of major depressive disorder (MDD) patients do not respond to standard antidepressants and develop treatment-resistant depression (TRD). We aimed to reveal metabolic differences and discover promising potential biomarkers in TRD.METHODS: Our study recruited 108 participants including healthy controls (n = 40) and patients with TRD (n = 35) and first-episode drug-naive MDD (DN-MDD) (n = 33). Plasma samples were presented to ultra performance liquid chromatography-tandem mass spectrometry. Then, a machine-learning algorithm was conducted to facilitate the selection of potential biomarkers.RESULTS: TRD appeared to be a distinct metabolic disorder from DN-MDD and healthy controls (HCs). Compared to HCs, 199 and 176 differentially expressed metabolites were identified in TRD and DN-MDD, respectively. Of all the metabolites that were identified, spermine, spermidine, and carnosine were considered the most promising biomarkers for diagnosing TRD and DN-MDD patients, with the resulting area under the ROC curve of 0.99, 0.99, and 0.93, respectively. Metabolic pathway analysis yielded compelling evidence of marked changes or imbalances in both polyamine metabolism and energy metabolism, which could potentially represent the primary altered pathways associated with MDD. Additionally, l-glutamine, Beta-alanine, and spermine were correlated with HAMD score.CONCLUSIONS: A more disordered metabolism structure is found in TRD than in DN-MDD and HCs. Future investigations should prioritize the comprehensive analysis of potential roles played by these differential metabolites and disturbances in polyamine pathways in the pathophysiology of TRD and depression.PMID:37659714 | DOI:10.1016/j.pnpbp.2023.110849

Ketoprofen exposure perturbs nitrogen assimilation and ATP synthesis in rice roots: An integrated metabolome and microbiome analysis

Sat, 02/09/2023 - 12:00
Environ Pollut. 2023 Aug 31:122485. doi: 10.1016/j.envpol.2023.122485. Online ahead of print.ABSTRACTKetoprofen, a commonly used non-steroidal anti-inflammatory drug (NSAID), can enter farmland environments via sewage irrigation and manure application and is toxic to plants. However, there have been relatively few studies on the association of ketoprofen with nitrogen (N) assimilation and metabolic responses in plants. Accordingly, the goal of this study was to investigate the effects of ketoprofen on ATP synthesis and N assimilation in rice roots. The results showed that with increasing ketoprofen concentration, root vitality, respiration rate, ATP content, and H+-ATPase activity decreased and plasma membrane permeability increased. The expressions of OSA9, a family III H+-ATPase gene, and OSA6 and OSA10, family IV genes, were upregulated, indicating a response of the roots to ketoprofen. Nitrate, ammonium, and free amino acids content decreased with increased ketoprofen. The levels of enzymes involved in N metabolism, namely nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthetase, and glutamate dehydrogenase, also decreased under ketoprofen treatment. Principal component analysis revealed that ketoprofen treatment can significantly affect energy synthesis and nitrogen assimilation in rice roots, while these effects can be alleviated by the antioxidant response. Most of the metabolite contents increased, including amino acids, carbohydrates, and secondary metabolites. Key metabolic pathways, namely substance synthesis and energy metabolism, were found to be disrupted. Microbiome analysis showed that community diversity and richness of rice root microorganisms in solution increased with increasing levels of ketoprofen treatment, and the microbial community structure and metabolic pathways significantly changed. The results of this study provides new insights into the response of rice roots to ketoprofen.PMID:37659631 | DOI:10.1016/j.envpol.2023.122485

Metabolic characteristics of voriconazole - Induced liver injury in rats

Sat, 02/09/2023 - 12:00
Chem Biol Interact. 2023 Aug 31:110693. doi: 10.1016/j.cbi.2023.110693. Online ahead of print.ABSTRACTVoriconazole (VOR) - induced liver injury is a common adverse reaction, and can lead to serious clinical outcomes. It is of great significance to describe the metabolic characteristics of VOR - induced liver injury and to elucidate the potential mechanisms. This study investigated the changes of plasma metabolic profiles in a rat model of VOR - induced liver injury by non - targeted metabolomics. Correlation analysis was performed between differentially expressed metabolites and plasma liver function indexes. The metabolites with strong correlation were determined for their predictive performance for liver injury using receiver operating characteristic (ROC) curve analysis. Potential biomarkers were then screened combined with liver pathological scores. Finally, the expression level of genes that involved in lipid metabolism were determined in rat liver to verify the mechanism of VOR - induced liver injury we proposed. VOR - induced liver injury in rats was characterized by plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation, the lipid droplets accumulation in liver, as well as inflammation and fibrosis. Significant changes of plasma metabolites were observed, with a decrease in lipid metabolites accounting for over 50% of all changed metabolites, and alterations of cholesterol and bile acids metabolites. The decrease of 3 phosphatidylcholine (PC) in plasma could indicate the occurrence of VOR - induced liver injury. Decreased fatty acids (FA) oxidation and bile acid excretion might the potential mechanisms of VOR - induced liver injury. This study provided new insights into the molecular characterization of VOR - induced liver injury.PMID:37659626 | DOI:10.1016/j.cbi.2023.110693

Integration of systematic review, lipidomics with experiment verification reveals abnormal sphingolipids facilitate diabetes retinopathy by inducing oxidative stress on RMECs

Sat, 02/09/2023 - 12:00
Biochim Biophys Acta Mol Cell Biol Lipids. 2023 Aug 31:159382. doi: 10.1016/j.bbalip.2023.159382. Online ahead of print.ABSTRACTOBJECTIVE: This study aims to explore the potential biomarkers in the development of diabetes mellitus (DM) into diabetes retinopathy (DR).METHODS: Systematic review of diabetic metabolomics was used to screen the differential metabolites and related pathways during the development of DM. Non-targeted lipidomics of rat plasma was performed to explore the differential metabolites in the development of DM into DR in vivo. To verify the effects of differential metabolites in inducing retinal microvascular endothelial cells (RMECs) injury by increasing oxidative stress, high glucose medium containing differential metabolites was used to induce rat RMECs injury and cell viability, malondialdehyde (MDA) contents, superoxide dismutase (SOD) activities, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated in vitro. Network pharmacology was performed to explore the potential mechanism of differential metabolites in inducing DR.RESULTS: Through the systematic review, 148 differential metabolites were obtained and the sphingolipid metabolic pathway attracted our attention. Plasma non-targeted lipidomics found that sphingolipids were accompanied by the development of DM into DR. In vitro experiments showed sphinganine and sphingosine-1-phosphate aggravated rat RMECs injury induced by high glucose, further increased MDA and ROS levels, and further decreased SOD activities and MMP. Network pharmacology revealed sphinganine and sphingosine-1-phosphate may induce DR by regulating the AGE-RAGE and HIF-1 signaling pathways.CONCLUSIONS: Integrated systematic review, lipidomics and experiment verification reveal that abnormal sphingolipid metabolism facilitates DR by inducing oxidative stress on RMECs. Our study could provide the experimental basis for finding potential biomarkers for the diagnosis and treatment of DR.PMID:37659619 | DOI:10.1016/j.bbalip.2023.159382

Adaptive response of triploid Fujian oyster (Crassostrea angulata) to nanoplastic stress: Insights from physiological, metabolomic, and microbial community analyses

Sat, 02/09/2023 - 12:00
Chemosphere. 2023 Aug 31:140027. doi: 10.1016/j.chemosphere.2023.140027. Online ahead of print.ABSTRACTTriploid Fujian oyster (Crassostrea angulata) is crucial to aquaculture and coastal ecosystems because of its accelerated growth and heightened resilience against environmental stressors. In light of the increasing prevalence of nanoplastic pollution in the ocean, understanding its potential impact on this organism, particularly its adaptive responses, is of paramount importance. Despite this, the effects of nanoplastic pollution on the physiology of C. angulata remain largely unexplored. In this study, we explored the responses of triploid Fujian oysters to nanoplastic stress during a 14-day exposure period, employing an integrative methodology that included physiological, metabolomic, and 16S rRNA sequencing analyses. Our results demonstrate that the oysters exhibit a strong adaptive response to nanoplastic exposure, characterized by alterations in enzyme activity, metabolic pathways, and microbial community composition, indicative of an adaptive recovery state as opposed to a disordered state. Oysters subjected to elevated nanoplastic levels exhibited adaptive responses primarily by boosting the activity of the antioxidant enzyme catalase and elevating the levels of antioxidants such as adenosine, 3-(4-hydroxyphenyl)pyruvate, D-sorbitol, d-mannose, and unsaturated fatty acids, as well as the functional amino acids l-proline and l-lysine. Nanoplastic treatment also resulted in increased activity of succinate dehydrogenase, a key component of energy metabolism, and increased contents of intermediate metabolites or products of energy metabolism, such as adenosine monophosphate, adenosine, guanosine, creatine, and thiamine. Nanoplastic treatment led to an increase in the abundance of certain advantageous genera of gut bacteria, specifically Phaeobacter and Nautella. The observed adaptive response of triploid Fujian oysters to nanoplastic stress provides valuable insights into the mechanisms underpinning resilience in marine bivalves.PMID:37659513 | DOI:10.1016/j.chemosphere.2023.140027

Intestinal microbiome and metabolome signatures in patients with chronic granulomatous disease

Sat, 02/09/2023 - 12:00
J Allergy Clin Immunol. 2023 Aug 31:S0091-6749(23)01101-6. doi: 10.1016/j.jaci.2023.07.022. Online ahead of print.ABSTRACTBACKGROUND: CGD is caused by defects in any of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived ROS production. Almost 50% of patients with chronic granulomatous disease (CGD) have IBD (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments.OBJECTIVE: To identify microbiome and metabolome signatures that can distinguish patients with CGD and CGD-IBD.METHODS: We conducted a cross-sectional, observational study of 79 patients with CGD, 8 pathogenic variant carriers and 19 healthy controls followed at the National Institutes of Health Clinical Center (NIH CC). We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 CGD patients recruited through the Primary Immune Deficiency Treatment Consortium (PIDTC).RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp., Sellimonas spp. and Lachnoclostridium spp. in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the NIH CC and PIDTC cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD.CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.PMID:37659505 | DOI:10.1016/j.jaci.2023.07.022

Study on the accumulation pattern of anthocyanins, sugars and organic acids in medicinal Vitis vinifera 'SuoSuo' during ripening

Sat, 02/09/2023 - 12:00
Food Chem. 2023 Aug 25;433:137294. doi: 10.1016/j.foodchem.2023.137294. Online ahead of print.ABSTRACTIn this study, targeted metabolomics technology was used to accurately and quantitatively analyze the metabolic pathways of anthocyanin, sugars and organic acid metabolites during the ripening of 'SuoSuo' grape berries. Results, 33, 10 and 36 metabolites of anthocyanins, sugars and organic acids, respectively, were detected. The anthocyanin with the highest content was cyanidin-3-O-glucoside (136.343 ng/g), which reached a maximum at 135 days after full bloom. The highest fructose content in sugar was 167.69 ng/g (135 days after full bloom). Among the organic acids, tartaric acid exhibited the highest content (37,196.67 mg/kg, 105 days after full bloom). The content of oleanolic acid (230.064 mg/kg, 135 days after full bloom) was higher in organic acids. These results clarify how anthocyanin, sugar and organic acid metabolites accumulate and change as 'SuoSuo' grapes ripen and provide a reference for the development and utilization of 'SuoSuo'.PMID:37659294 | DOI:10.1016/j.foodchem.2023.137294

Effect of high-dose glucocorticoid treatment on human brown adipose tissue activity: a randomised, double-blinded, placebo-controlled cross-over trial in healthy men

Sat, 02/09/2023 - 12:00
EBioMedicine. 2023 Aug 31;96:104771. doi: 10.1016/j.ebiom.2023.104771. Online ahead of print.ABSTRACTBACKGROUND: Glucocorticoids (GCs) are widely applied anti-inflammatory drugs that are associated with adverse metabolic effects including insulin resistance and weight gain. Previous research indicates that GCs may negatively impact brown adipose tissue (BAT) activity in rodents and humans.METHODS: We performed a randomised, double-blinded cross-over trial in 16 healthy men (clinicaltrials.govNCT03269747). Participants received 40 mg of prednisone per day for one week or placebo. After a washout period of four weeks, participants crossed-over to the other treatment arm. Primary endpoint was the increase in resting energy expenditure (EE) in response to a mild-cold stimulus (cold-induced thermogenesis, CIT). Secondary outcomes comprised mean 18F-FDG uptake into supraclavicular BAT (SUVmean) as determined by FDG-PET/CT, volume of the BAT depot as well as fat content determined by MRI. The plasma metabolome and the transcriptome of supraclavicular BAT and of skeletal muscle biopsies after each treatment period were analysed.FINDINGS: Sixteen participants were recruited to the trial and completed it successfully per protocol. After prednisone treatment resting EE was higher both during warm and cold conditions. However, CIT was similar, 153 kcal/24 h (95% CI 40-266 kcal/24 h) after placebo and 186 kcal/24 h (95% CI 94-277 kcal/24 h, p = 0.38) after prednisone. SUVmean of BAT after cold exposure was not significantly affected by prednisone (3.36 g/ml, 95% CI 2.69-4.02 g/ml, vs 3.07 g/ml, 95% CI 2.52-3.62 g/ml, p = 0.28). Results of plasma metabolomics and BAT transcriptomics corroborated these findings. RNA sequencing of muscle biopsies revealed higher expression of genes involved in calcium cycling. No serious adverse events were reported and adverse events were evenly distributed between the two treatments.INTERPRETATION: Prednisone increased EE in healthy men possibly by altering skeletal muscle calcium cycling. Cold-induced BAT activity was not affected by GC treatment, which indicates that the unfavourable metabolic effects of GCs are independent from thermogenic adipocytes.FUNDING: Grants from Swiss National Science Foundation (PZ00P3_167823), Bangerter-Rhyner Foundation and from Nora van der Meeuwen-Häfliger Foundation to MJB. A fellowship-grant from the Swiss National Science Foundation (SNF211053) to WS. Grants from German Research Foundation (project number: 314061271-TRR 205) and Else Kröner-Fresenius (grant support 2012_A103 and 2015_A228) to MR.PMID:37659283 | DOI:10.1016/j.ebiom.2023.104771

Metabolomics and metatranscriptomics reveal the influence mechanism of endogenous microbe (Staphylococcus succinus) inoculation on the flavor of fermented chili pepper

Sat, 02/09/2023 - 12:00
Int J Food Microbiol. 2023 Aug 26;406:110371. doi: 10.1016/j.ijfoodmicro.2023.110371. Online ahead of print.ABSTRACTThis study integrated metabolomic and metatranscriptomic techniques to examine how the endogenous microbe, Staphylococcus succinus, influenced the essential flavor of fermented chili peppers. The mechanisms governing spontaneous fermentation and S. succinus-inoculated fermentation were also elucidated. Esters (e.g., ethyl undecanoate, isoamyl acetate, and methyl salicylate), terpenes (e.g., terpinen-4-ol), and alcohols (e.g., α-terpineol, linalool, and 4-methyl-3-heptanol) were found to be the key aroma-active compounds, aspartic acid (Asp) and glutamic acid (Glu) were identified as primary flavoring free amino acids. Notably, during the early stages of S. succinus-inoculated fermentation, the production of these essential metabolites was abundant, while their gradual increase over time was observed in the case of spontaneous fermentation. Metatranscriptomic analysis revealed that S. succinus inoculation could up-regulate genes related to glycolysis, amino acid metabolism, and aroma compound synthesis. These changes sequentially boosted the production of sweet and umami free amino acids, enhanced organic acid levels, increased unique aroma compound generation, and further improved the flavor and quality of the fermented chili peppers. Therefore, S. succinus inoculation can augment the sensory quality of fermented chili peppers, making this strain a promising candidate for Sichuan pickle fermentation starters.PMID:37659279 | DOI:10.1016/j.ijfoodmicro.2023.110371

Omics techniques reveal the toxicity mechanisms of three antiepileptic drugs to juvenile zebrafish (Danio rerio) brain and liver

Sat, 02/09/2023 - 12:00
Aquat Toxicol. 2023 Aug 23;262:106668. doi: 10.1016/j.aquatox.2023.106668. Online ahead of print.ABSTRACTEpilepsy, a neurological disorder, is characterized by seizures that are an appearance of excessive brain activity and is symptomatically treated with antiepileptic drugs (AEDs). Oxcarbazepine (OCBZ), lamotrigine (LTG), and carbamazepine (CBZ) are widely used AEDs in clinics and are very often detected in aquatic environments. However, neither the sub-lethal effects nor the specific mechanisms of these AEDs' action on the fish are well understood. In this study, juvenile zebrafish were exposed to a sub-lethal concentration (100 μg/L) of OCBZ, LTG, and CBZ for 28 d, after which indicators of oxidative stress (i.e. superoxide dismutase (SOD) activity, catalase (CAT) activity, and malondialdehyde (MDA) level) and neurotoxicity (i.e. acetylcholinesterase (AChE) activity, γ-aminobutyric acid (GABA) level, and glutamic acid (Glu) level) were measured. Brain SOD activity was significantly increased by three AEDs, while brain CAT activity was significantly inhibited by LTG and CBZ. Liver SOD activity was significantly enhanced by CBZ, and liver CAT activity was significantly induced by OCBZ and LTG. Liver MDA level was significantly increased by three AEDs. Brain AChE activity was significantly increased by LTG and CBZ, and brain GABA level was significantly enhanced by three AEDs. However, there were no significant alterations in the levels of MDA and Glu in zebrafish brain. To ascertain mechanisms of AEDs-induced toxicity, brain transcriptomics and liver metabolomics were conducted in zebrafish. The brain transcriptomics results showed that lots of differentially expressed genes (DEGs) were enriched in the sensory system, the immune system, the digestive system, the metabolic processes, and others in three AEDs treated groups. The metabolomics data indicated dysregulation of glycerophospholipid signaling and lipid homeostasis in zebrafish liver after three AEDs exposure. The overall results of this study improve understanding of the sub-lethal effects and potential molecular mechanisms of action of AEDs in fish.PMID:37659109 | DOI:10.1016/j.aquatox.2023.106668

Atorvastatin rescues hyperhomocysteinemia-induced cognitive deficits and neuroinflammatory gene changes

Fri, 01/09/2023 - 12:00
J Neuroinflammation. 2023 Sep 1;20(1):199. doi: 10.1186/s12974-023-02883-x.ABSTRACTBACKGROUND: Epidemiological data suggests statins could reduce the risk of dementia, and more specifically, Alzheimer's disease (AD). Pre-clinical data suggests statins reduce the risk of dementia through their pleiotropic effects rather than their cholesterol lowering effects. While AD is a leading cause of dementia, it is frequently found co-morbidly with cerebral small vessel disease and other vascular contributions to cognitive impairment and dementia (VCID), which are another leading cause of dementia. In this study, we determined if atorvastatin ameliorated hyperhomocysteinemia (HHcy)-induced VCID.METHODS: Wild-type (C57Bl6/J) mice were placed on a diet to induce HHcy or a control diet each with or without atorvastatin for 14 weeks. Mice underwent novel object recognition testing before tissue collection. Plasma total cholesterol and total homocysteine as well as related metabolites were measured. Using qPCR and NanoString technology, we profiled glial cell-associated gene expression changes. Finally, microglial morphology, astrocyte end feet, and microhemorrhages were analyzed using histological methods.RESULTS: Atorvastatin treatment of HHcy in mice led to no changes in total cholesterol but decreases in total homocysteine in plasma. While HHcy decreased expression of many glial genes, atorvastatin rescued these gene changes, which mostly occurred in oligodendrocytes and microglia. Microglia in HHcy mice with atorvastatin were trending towards fewer processes compared to control with atorvastatin, but there were no atorvastatin effects on astrocyte end feet. While atorvastatin treatment was trending towards increasing the area of microhemorrhages in HHcy mice in the frontal cortex, it only slightly (non-significantly) reduced the number of microhemorrhages. Finally, atorvastatin treatment in HHcy mice led to improved cognition on the novel object recognition task.CONCLUSIONS: These data suggest that atorvastatin rescued cognitive changes induced by HHcy most likely through lowering plasma total homocysteine and rescuing gene expression changes rather than impacts on vascular integrity or microglial changes.PMID:37658433 | DOI:10.1186/s12974-023-02883-x

Acetate supplementation rescues social deficits and alters transcriptional regulation in prefrontal cortex of Shank3 deficient mice

Fri, 01/09/2023 - 12:00
Brain Behav Immun. 2023 Aug 30:S0889-1591(23)00251-9. doi: 10.1016/j.bbi.2023.08.020. Online ahead of print.ABSTRACTBACKGROUND: The pathophysiology of autism spectrum disorder (ASD) involves genetic and environmental factors. Mounting evidence demonstrates a role for the gut microbiome in ASD, with signaling via short-chain fatty acids (SCFA) as one mechanism. Here, we utilize mice carrying deletion to exons 4-22 of Shank3 (Shank3KO) to model gene by microbiome interactions in ASD. We identify SCFA acetate as a mediator of gut-brain interactions and show acetate supplementation reverses social deficits concomitant with alterations to prefrontal cortex (mPFC) transcriptional regulation independent of microbiome status.METHODS: Shank3KO and wild-type (Wt) littermates were divided into control, Abx, Acetate and Abx + Acetate groups upon weaning. After six weeks, animals underwent behavioral testing. Molecular analysis including 16S and metagenomic sequencing, metabolomic and transcriptional profiling were conducted. Additionally, targeted serum metabolomic data from Phelan McDermid Syndrome (PMS) patients (who are heterozygous for the Shank3 gene) were leveraged to assess levels of SCFA's relative to ASD clinical measures.RESULTS: Shank3KO mice were found to display social deficits, dysregulated gut microbiome and decreased cecal levels of acetate - effects exacerbated by Abx treatment. RNA-sequencing of mPFC showed unique gene expression signature induced by microbiome depletion in the Shank3KO mice. Oral treatment with acetate reverses social deficits and results in marked changes in gene expression enriched for synaptic signaling, pathways among others, even in Abx treated mice. Clinical data showed sex specific correlations between levels of acetate and hyperactivity scores.CONCLUSION: These results suggest a key role for the gut microbiome and the neuroactive metabolite acetate in regulating ASD-like behaviors.PMID:37657643 | DOI:10.1016/j.bbi.2023.08.020

Integrated microbiome and multi-omics analysis reveal the molecular mechanisms of Eisenia fetida in response to biochar-derived dissolved and particulate matters

Fri, 01/09/2023 - 12:00
J Hazard Mater. 2023 Aug 28;460:132422. doi: 10.1016/j.jhazmat.2023.132422. Online ahead of print.ABSTRACTAt present, most ecotoxicological studies are still confined to focusing on the harmful effects of biochar itself on soil fauna. However, the potential ecotoxicity of different components separated from biochar to terrestrial invertebrates remains poorly understood. In this study, the dissolved matter (DM) and particulate matter (PM) were separated from biochar (BC) and then introduced into the soil-earthworm system to investigate the response mechanism of earthworms at the molecular level. The results showed that BC and DM exposure caused an increase in the abundance of Proteobacteria in the cast bacterial community, suggesting the dysbiosis of intestinal microbiota. It was also observed that the cast bacterial communities were more sensitive to DM exposure than PM exposure. Transcriptomic analysis showed that BC and DM exposure induced significant enrichment of functional pathways related to infectious and neuropathic diseases. Metabolomic profiling manifested that DM exposure caused metabolic dysfunction, antioxidant and detoxification abilities recession. Furthermore, significant differences in the responses of earthworms at transcriptomic and metabolic levels confirmed that DM exhibited greater ecotoxicity than PM. This study highlighted the significant contributions of dissolved matter to the ecotoxicity of biochar from the perspective of transcriptomic and metabolomic profiles.PMID:37657322 | DOI:10.1016/j.jhazmat.2023.132422

RNA binding motif protein 45-mediated phosphorylation enhances protein stability of ASCT2 to promote hepatocellular carcinoma progression

Fri, 01/09/2023 - 12:00
Oncogene. 2023 Sep 1. doi: 10.1038/s41388-023-02795-3. Online ahead of print.ABSTRACTTargeting metabolic remodeling represents a potentially promising strategy for hepatocellular carcinoma (HCC) therapy. In-depth understanding on the regulation of the glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) contributes to the development of novel promising therapeutics. As a developmentally regulated RNA binding protein, RBM45 is capable to shuttle between nucleus and cytoplasm, and directly interacts with proteins. By bioinformatics analysis, we screened out that RBM45 was elevated in the HCC patient specimens and positively correlated with poor prognosis. RBM45 promoted cell proliferation, boosted xenograft tumorigenicity and accelerated HCC progression. Using untargeted metabolomics, it was found that RBM45 interfered with glutamine metabolism. Further results demonstrated that RBM45 positively associated with ASCT2 in human and mouse specimens. Moreover, RBM45 enhanced ASCT2 protein stability by counteracting autophagy-independent lysosomal degradation. Significantly, wild-type ASCT2, instead of phospho-defective mutants, rescued siRBM45-suppressed HCC cell proliferation. Using molecular docking approaches, we found AG-221, a mutant isocitrate dehydrogenase 2 (mIDH2) inhibitor for acute myeloid leukemia therapy, pharmacologically perturbed RBM45-ASCT2 interaction, decreased ASCT2 stability and suppressed HCC progression. These findings provide evidence that RBM45 plays a crucial role in HCC progression via interacting with and counteracting the degradation of ASCT2. Our findings suggest a novel alternative structural sites for the design of ASCT2 inhibitors and the agents interfering with RBM45-ASCT2 interaction may be a potential direction for HCC drug development.PMID:37658192 | DOI:10.1038/s41388-023-02795-3

Acquired miR-142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into blast crisis

Fri, 01/09/2023 - 12:00
Nat Commun. 2023 Sep 1;14(1):5325. doi: 10.1038/s41467-023-41167-z.ABSTRACTThe mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid β-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.PMID:37658085 | DOI:10.1038/s41467-023-41167-z

Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease

Fri, 01/09/2023 - 12:00
Sci Rep. 2023 Sep 1;13(1):14363. doi: 10.1038/s41598-023-40065-0.ABSTRACTCamponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.PMID:37658067 | DOI:10.1038/s41598-023-40065-0

Removal of false positives in metagenomics-based taxonomy profiling via targeting Type IIB restriction sites

Fri, 01/09/2023 - 12:00
Nat Commun. 2023 Sep 1;14(1):5321. doi: 10.1038/s41467-023-41099-8.ABSTRACTAccurate species identification and abundance estimation are critical for the interpretation of whole metagenome sequencing (WMS) data. Yet, existing metagenomic profilers suffer from false-positive identifications, which can account for more than 90% of total identified species. Here, by leveraging species-specific Type IIB restriction endonuclease digestion sites as reference instead of universal markers or whole microbial genomes, we present a metagenomic profiler, MAP2B (MetAgenomic Profiler based on type IIB restriction sites), to resolve those issues. We first illustrate the pitfalls of using relative abundance as the only feature in determining false positives. We then propose a feature set to distinguish false positives from true positives, and using simulated metagenomes from CAMI2, we establish a false-positive recognition model. By benchmarking the performance in metagenomic profiling using a simulation dataset with varying sequencing depth and species richness, we illustrate the superior performance of MAP2B over existing metagenomic profilers in species identification. We further test the performance of MAP2B using real WMS data from an ATCC mock community, confirming its superior precision against sequencing depth. Finally, by leveraging WMS data from an IBD cohort, we demonstrate the taxonomic features generated by MAP2B can better discriminate IBD and predict metabolomic profiles.PMID:37658057 | DOI:10.1038/s41467-023-41099-8

Longitudinal assessment of bleomycin-induced pulmonary fibrosis by evaluating TGF-β1/Smad2, Nrf2 signaling and metabolomic analysis in mice

Fri, 01/09/2023 - 12:00
Life Sci. 2023 Aug 30:122064. doi: 10.1016/j.lfs.2023.122064. Online ahead of print.ABSTRACTINTRODUCTION: Pulmonary fibrosis (PF) is characterized by an increase in collagen synthesis and deposition of extracellular matrix. Several factors, including transforming growth factor-β1 (TGF-β1), mothers against decapentaplegic homolog family proteins (Smad), and alpha-smooth muscle actin (α-SMA) trigger extracellular matrix (ECM) accumulation, fibroblast to myofibroblasts conversion, and epithelial-to-mesenchymal-transition (EMT) leading to PF. However, the role of cellular defense mechanisms such as the role of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling during the onset and progression of PF is not understood completely.AIM: The present study aims to analyze the involvement of TGF-β1/Smad signaling, and Nrf2 in the EMT and metabolic alterations that promote fibrosis in a time-dependent manner using bleomycin (BLM)-induced PF model in C57BL/6 mice.KEY FINDINGS: Histopathological studies revealed loss of lung architecture and increased collagen deposition in BLM-exposed mice. BLM upregulated TGF-β1/Smad signaling and α-SMA at all time-points. The gradual increase in the accumulation of α-SMA and collagen implied the progression of PF. BLM exposure raises Nrf2 throughout each specified time-point, which suggests that Nrf2 activation might be responsible for TGF-β1-induced EMT and the development of PF. Further, metabolomic studies linked the development of PF to alterations in metabolic pathways. The pentose phosphate pathway (PPP) was consistently enriched across all the time-points. Additionally, alterations in 22 commonly enriched pathways, associated with fatty acid (FA) and amino acid metabolism were observed in 30- and 60-days.SIGNIFICANCE: This study elucidates the association of TGF-β1/Smad and Nrf2 signaling in the EMT and metabolic alterations associated with the etiology and progression of PF.PMID:37657527 | DOI:10.1016/j.lfs.2023.122064

Metabolism and release of characteristic components and their enzymatic mechanisms in Pericarpium Citri Reticulatae co-fermentation

Fri, 01/09/2023 - 12:00
Food Chem. 2023 Aug 24;432:137227. doi: 10.1016/j.foodchem.2023.137227. Online ahead of print.ABSTRACTA co-fermentation strategy was explored to rapidly improve the characteristic components and quality of Pericarpium Citri Reticulatae (PCR) using Monascus anka and Saccharomyces cerevisiae, and the enzymatic mechanism was investigated. The results showed that the free flavonoid content of fermented PCR was 48.12% higher than that of unfermented PCR after 12 days of co-fermentation, resulting in stronger antioxidant activity. d-Limonene, γ-terpinene, proline (Pro), arginine (Arg), and serine (Ser) contributed the most to the flavors of citrus, herb, and sweet citrus based on odor and taste activity value analysis. Metabolomics and multivariate statistics showed that 55 components were differentially metabolized during co-fermentation, and ten metabolic pathways were closely related to metabolism. Furthermore, five hydrolases participated in the release and conversion of the active ingredients. This study provides an effective processing method for PCR and is conducive to the development of new PCR functional health foods.PMID:37657346 | DOI:10.1016/j.foodchem.2023.137227

Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics

Fri, 01/09/2023 - 12:00
Medicine (Baltimore). 2023 Sep 1;102(35):e34843. doi: 10.1097/MD.0000000000034843.ABSTRACTOphiocordyceps sinensis is a precious Chinese traditional herb with a long medicinal history. This study used UPLC-MS metabolomics to explore and compare the metabolic profiles of the stroma (OSBSz), sclerotium (OSBSh), and mycelium (OSBS) of O sinensis to analyze their differential metabolites and identified potential active components. Then combined with network pharmacology and molecular docking to explore the mechanism of differential metabolites with anti-influenza properties. The results indicate that the stroma, sclerotium, and mycelium showed significant differences in metabolites. The key pathways for differential metabolites were butanoate metabolism, thiamin metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, and arginine biosynthesis. Protein-protein interaction analysis identified potential targets, including SRC, RHOA, HSP90AA1, VEGFA, ITGB1, PRKCA, and ITGA1, and the key protective pathways in-volved PI3K-Akt, HIF-1, influenza A, and Coronavirus disease 2019. The molecular docking results showed that the core metabolite D-(-)-glutamine has high binding affinity with SRC, RHOA, and EGFR, re-flecting the multi-component and multi-target network system of O sinensis. In short, the combination of metabonomics, network pharmacology and macromolecular docking technology provides a new way to explore the anti-influenza research of O sinensis. This is undoubtedly an important theoretical support for the clinical application of O sinensis in the future.PMID:37657041 | DOI:10.1097/MD.0000000000034843

Pages