Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Farnesoid X receptor is an important target for the treatment of disorders of bile acid and fatty acid metabolism in mice with nonalcoholic fatty liver disease combined with cholestasis

Fri, 07/07/2023 - 12:00
J Gastroenterol Hepatol. 2023 Jul 6. doi: 10.1111/jgh.16279. Online ahead of print.ABSTRACTBACKGROUND AND AIM: The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rising globally. NAFLD patients combined with cholestasis have more obvious liver fibrosis, impaired bile acid (BA), and fatty acid (FA) metabolism and severer liver injury; however, its therapeutic options are limited, and the underlying metabolic mechanisms are understood. Here, we aimed to investigate the effects of farnesoid X receptor (FXR) on BA and FA metabolism in NAFLD combined with cholestasis and related signaling pathways.METHODS: A mouse model of NAFLD combined with cholestasis was established by joint intervention with high-fat diet (HFD) and alpha-naphthylisothiocyanate. The effects of FXR on BA and FA metabolism were evaluated by serum biochemical analysis. Liver damage was identified by histopathology. The expression of nuclear hormone receptor, membrane receptor, FA transmembrane transporter, and BA transporter protein in mice were measured by western blot.RESULTS: NAFLD mice combined with cholestasis developed more severe cholestasis and dysregulated BA and FA metabolism. Meanwhile, the expression of FXR protein was decreased in NAFLD mice combined with cholestasis compared to the controls. Fxr-/- mice showed liver injury. HFD aggravated the liver injury with decreased BSEP expression, increased expression of NTCP, LXRα, SREBP-1c, FAS, ACC1, and CD36, and significantly increased BA and FA accumulation.CONCLUSION: All the results suggested that FXR plays a key role in both FA and BA metabolism in NAFLD combined with cholestasis and thus may be a potential target for the treatment of disorders of BA and FA metabolism in NAFLD combined with cholestasis.PMID:37415275 | DOI:10.1111/jgh.16279

The changes of metabolites, quality components and antioxidant activity of tea (Camellia sinensis L.) infected with Exobasidium vexans by applying UPLC-MS/MS based widely targeted metabolome and biochemical analysis

Thu, 06/07/2023 - 12:00
Phytopathology. 2023 Jul 6. doi: 10.1094/PHYTO-03-23-0105-R. Online ahead of print.ABSTRACTBlister blight infected with Exobasidium vexans is one of the most destructive foliar diseases that seriously affects the quality and yield of tea. This research was to investigate the metabolite changes of healthy and infected leaves on tea cultivar "Fuding Dabaicha", as well as further explore the potential antimicrobial substances against E. vexans infection. In total, 1166 compounds were identified in the whole stage of infection, among which 73 different common compounds were significantly accumulated involved in the important antimicrobial substances of flavonoids and phenolic acids, including kaempferol (3,5,7,4'-tetrahydroxyflavone), kaempferol-3-O-sophoroside-7-O-glucoside, phloretin, 2,4,6-trihydroxybenzoic acid, galloylprocyanidin B4, and procyanidin C1 3'-O-gallate, which indicated that these metabolites might positively dominate the resistance to E. vexans. Furthermore, the relevant biological pathways, such as "Flavone and flavonol biosynthesis", "Flavo-noid biosynthesis", and "Phenylpropane pathway", were more closely related to the resistance against E. vexans. Additionally, total flavonoids, phenolics, alkaloids and terpenoids contributing to antimicrobial and antioxidant capacity altered significantly in four different infection periods, especially the Leaf_S2 stage (the second stage of infection) in which the concentration accumulated the most. The leaves affected by E. vexans infection at the second stage had the relatively highest antioxidant activity. Accordingly, this study provided a theoretical support and comprehensive insights into the effects on the metabolite changes, tea quality components and antioxidant activity of blister blight caused by E. vexans.PMID:37414414 | DOI:10.1094/PHYTO-03-23-0105-R

Omics Approaches for the Assessment of Biological Responses to Nanoparticles

Thu, 06/07/2023 - 12:00
Adv Drug Deliv Rev. 2023 Jul 4:114992. doi: 10.1016/j.addr.2023.114992. Online ahead of print.ABSTRACTNanotechnology has enabled the development of innovative therapeutics, diagnostics, and drug delivery systems. Nanoparticles (NPs) can influence gene expression, protein synthesis, cell cycle, metabolism, and other subcellular processes. Traditional methods are limited in characterizing these responses to NPs, whereas omics approaches can analyze whole sets of molecular entities that change upon exposure to NPs. This review discusses key omics approaches, namely transcriptomics, proteomics, metabolomics, lipidomics and multi-omics, applied to the assessment of biological responses to NPs. Fundamental concepts and the analytical tools used for each approach are presented, as well as good practices for omics experiments. Bioinformatics tools are essential to analyze, interpret and visualize large omics data, and to correlate observations in different molecular layers. The authors envision that conducting interdisciplinary multi-omics analyses in future nanomedicine studies will reveal integrated cell responses to NPs at different omics levels, and the incorporation of omics into the evaluation of targeted delivery, efficacy, and safety will improve the development of nanomedicine therapies.PMID:37414362 | DOI:10.1016/j.addr.2023.114992

Impact of asialoglycoprotein receptor and mannose receptor deficiency on murine plasma N-glycome profiles

Thu, 06/07/2023 - 12:00
Mol Cell Proteomics. 2023 Jul 4:100615. doi: 10.1016/j.mcpro.2023.100615. Online ahead of print.ABSTRACTThe asialoglycoprotein receptor (ASGPR) and the mannose receptor C-type 1 (MRC1) are well-known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied with higher levels of apolipoprotein D, haptoglobin and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and N-glycosylation of the major plasma proteins are tightly controlled and further suggests that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.PMID:37414249 | DOI:10.1016/j.mcpro.2023.100615

Maternal hyperglycemia induces alterations in hepatic amino acid, glucose and lipid metabolism of neonatal offspring: Multi-omics insights from a diabetic pig model

Thu, 06/07/2023 - 12:00
Mol Metab. 2023 Jul 4:101768. doi: 10.1016/j.molmet.2023.101768. Online ahead of print.ABSTRACTOBJECTIVE: To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics analysis of liver tissue from piglets developed in genetically diabetic (mutant INS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs.METHODS: Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n=9) born to MIDY mothers (PHG) were compared with those of WT piglets (n=10) born to normoglycemic mothers (PNG). Furthermore, protein-protein interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and to relate these mechanisms with human pathology.RESULTS: Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways - most prominently those from the Kennedy pathway - were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance.CONCLUSIONS: Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo lipogenesis. Reduced levels of PC biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future meta-analysis studies focusing on liver metabolism in newborns from diabetic mothers.PMID:37414142 | DOI:10.1016/j.molmet.2023.101768

Visualization of the composition of the urinary fluorescent metabolome. Why is it important to consider initial urine concentration?

Thu, 06/07/2023 - 12:00
Methods Appl Fluoresc. 2023 Jul 6. doi: 10.1088/2050-6120/ace512. Online ahead of print.ABSTRACTUrine is a highly complex fluorescent system, the fluorescence of which can be affected by many factors, including the often-ignored initial urine concentration in comprehensive fluorescent urine analysis. In this study, a total urine fluorescent metabolome profile (uTFMP) was created as a three-dimensional fluorescence profile of serial synchronous spectra of urine diluted by geometric progression. uTFMP was generated using software designed for this purpose after recalculating the 3D data concerning the initial urine concentration. It can be presented as a contour map (top view) or as a more illustrative and straightforward simple curve, thus usable in various medicinal applications.PMID:37414001 | DOI:10.1088/2050-6120/ace512

Immunometabolic coevolution defines unique microenvironmental niches in ccRCC

Thu, 06/07/2023 - 12:00
Cell Metab. 2023 Jun 28:S1550-4131(23)00215-2. doi: 10.1016/j.cmet.2023.06.005. Online ahead of print.ABSTRACTTumor cell phenotypes and anti-tumor immune responses are shaped by local metabolite availability, but intratumoral metabolite heterogeneity (IMH) and its phenotypic consequences remain poorly understood. To study IMH, we profiled tumor/normal regions from clear cell renal cell carcinoma (ccRCC) patients. A common pattern of IMH transcended all patients, characterized by correlated fluctuations in the abundance of metabolites and processes associated with ferroptosis. Analysis of intratumoral metabolite-RNA covariation revealed that the immune composition of the microenvironment, especially the abundance of myeloid cells, drove intratumoral metabolite variation. Motivated by the strength of RNA-metabolite covariation and the clinical significance of RNA biomarkers in ccRCC, we inferred metabolomic profiles from the RNA sequencing data of ccRCC patients enrolled in 7 clinical trials, and we ultimately identifyied metabolite biomarkers associated with response to anti-angiogenic agents. Local metabolic phenotypes, therefore, emerge in tandem with the immune microenvironment, influence ongoing tumor evolution, and are associated with therapeutic sensitivity.PMID:37413991 | DOI:10.1016/j.cmet.2023.06.005

A review of the role of metabolites in vegetative desiccation tolerance of angiosperms

Thu, 06/07/2023 - 12:00
Curr Opin Plant Biol. 2023 Jul 4;75:102410. doi: 10.1016/j.pbi.2023.102410. Online ahead of print.ABSTRACTThe survival of extreme water deficit stress by tolerant organisms requires a coordinated series of responses, including those at cellular, transcriptional, translational and metabolic levels. Small molecules play a pivotal role in creating the proper chemical environment for the preservation of cellular integrity and homeostasis during dehydration. This review surveys recent insights in the importance of primary and specialised metabolites in the response to drying of angiosperms with vegetative desiccation tolerance, i.e. the ability to survive near total loss of water. Important metabolites include sugars such as sucrose, trehalose and raffinose family of oligosaccharides, amino acids and organic acids, as well as antioxidants, representing a common core mechanism of desiccation tolerance. Additional metabolites are discussed in the context of species specificity and adaptation.PMID:37413962 | DOI:10.1016/j.pbi.2023.102410

Effects of grape seed procyanidins on antioxidant function, barrier function, microbial community, and metabolites of cecum in geese

Thu, 06/07/2023 - 12:00
Poult Sci. 2023 Jun 19;102(9):102878. doi: 10.1016/j.psj.2023.102878. Online ahead of print.ABSTRACTThe gut is the first line of defense for body health and is essential to the overall health of geese. Grape seed procyanidins (GSPs) are proverbial for their antioxidant, anti-inflammatory, and microflora-regulating capabilities. This study aimed to inquire into the influences of dietary GSPs on the intestinal antioxidant function, barrier function, microflora, and metabolites of geese based on 16S rRNA sequencing and metabolomics. In total, 240 twenty-one-day-old Sichuan white geese were randomly divided into 4 groups, each of which was supplied with 1 of 4 diets: basal diet or a basal diet supplemented with 50, 100, or 150 mg/kg GSPs. Diets supplemented with GSPs at different concentrations significantly increased the total antioxidant capacity and superoxide dismutase activity in cecal mucosa (P < 0.001). Dietary supplementation with 50 or 100 mg/kg GSPs significantly increased catalase activity (P < 0.001). The serum diamine oxidase, D-lactic acid, and endotoxin concentrations were decreased by GSP supplementation in the goose diet. Dietary GSP supplementation increased microbial richness and diversity, enhanced the relative abundance of Firmicutes, and decreased that of Bacteroidetes in the cecum. Diets supplemented with 50 or 100 mg/kg GSPs enriched Eubacterium coprostanoligenes and Faecalibacterium. Dietary GSPs substantially raised the acetic and propionic acid concentrations in the cecum. The butyric acid concentration increased when the GSP dosage was 50 or 100 mg/kg. Additionally, dietary GSPs increased the levels of metabolites that belong to lipids and lipid-like molecules or organic acids and derivatives. Dietary GSP supplementation at 100 or 150 mg/kg reduced the levels of spermine (a source of cytotoxic metabolites) and N-acetylputrescine, which promotes in-vivo inflammation. In conclusion, dietary supplementation with GSPs was beneficial to gut health in geese. Dietary GSPs improved antioxidant activity; protected intestinal barrier integrity; increased the abundance and diversity of cecal microflora; promoted the proliferation of some beneficial bacteria; increased the production of acetic, propionic, and butyric acids in the cecum; and downregulated metabolites associated with cytotoxicity and inflammation. These results offer a strategy for promoting intestinal health in farmed geese.PMID:37413950 | DOI:10.1016/j.psj.2023.102878

Analysis of quality differences between Scutellaria baicalensis Georgi and Scutellaria rehderiana Diels based on phytochemistry and bioactivity evaluation

Thu, 06/07/2023 - 12:00
J Pharm Biomed Anal. 2023 May 24;234:115481. doi: 10.1016/j.jpba.2023.115481. Online ahead of print.ABSTRACTScutellaria baicalensis Georgi (SG) and Scutellaria rehderiana Diels (SD) belong to the same genus of Scutellaria in the Labiatae (Lamiaceae) family. SG is confirmed as the medicinal source according to the Chinese Pharmacopeia, but SD is often used as a substitute for SG due to its abundant plant resources. However, the current quality standards are far from sufficient to judge the quality differences between SG and SD. In this study, an integrated strategy of "biosynthetic pathway (specificity) - plant metabolomics (difference) - bioactivity evaluation (effectiveness)" was established to evaluate this quality differences. First, an ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS) method was developed for the identification of chemical components. The abundant components information was obtained and the characteristic constituents were screened according to the location in the biosynthetic pathway as well as species specificity. Then, plant metabolomics combined with multivariate statistical analysis to find differential components between SG and SD. The chemical markers for quality analysis were determined based on the differential and characteristic components, and the content of each marker was tentatively evaluated through the semi-quantitative analysis of UHPLC-Q/TOF-MS/MS. Finally, the anti-inflammatory activity of SG and SD was compared by measuring the inhibitory effect on the release of NO from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Under this analytical strategy, a total of 113 compounds were tentatively identified in both SG and SD, among which baicalein, wogonin, chrysin, oroxylin A 7-O-β-D-glucuronoside, pinocembrin and baicalin were selected as chemical markers due to their species characteristics and differentiation. The contents of oroxylin A 7-O-β-D-glucuronoside and baicalin was higher in SG, and the others were higher in SD. In addition, both SG and SD exhibited prominent anti-inflammatory activity, but SD was less effective. The analysis strategy combining phytochemistry and bioactivity evaluation realized the scientific evaluation of the intrinsic quality differences between SG and SD, which provides a reference for fully utilizing and expanding the medicinal resources, and also provides a reference for the comprehensive quality control of herbal medicines.PMID:37413917 | DOI:10.1016/j.jpba.2023.115481

Accurate prediction of isothermal gas chromatographic Kováts retention indices

Thu, 06/07/2023 - 12:00
J Chromatogr A. 2023 Jun 24;1705:464176. doi: 10.1016/j.chroma.2023.464176. Online ahead of print.ABSTRACTWe describe a freely available web server called Retention Index Predictor (RIpred) (https://ripred.ca) that rapidly and accurately predicts Gas Chromatographic Kováts Retention Indices (RI) using SMILES strings as chemical structure input. RIpred performs RI prediction for three different stationary phases (semi-standard non-polar (SSNP), standard non-polar (SNP), and standard polar (SP)) for both derivatized (trimethylsilyl (TMS) and tert‑butyldimethylsilyl (TBDMS) derivatized) and underivatized (base compound) forms of GC-amenable structures. RIpred was developed to address the need for freely available, fast, highly accurate RI predictions for a wide range of derivatized and underivatized chemicals for all common GC stationary phases. RIpred was trained using a Graph Neural Network (GNN) that used compound structures, their extracted features (mostly atom-level features) and the GC-RI data from the National Institute of Standards and Technology databases (NIST 17 and NIST 20). We curated this NIST 17 and NIST 20 GC-RI data, which is available for all three stationary phases, to create appropriate inputs (molecular graphs in this case) needed to enhance our model performance. The performance of different RIpred predictive models was evaluated using 10-fold cross validation (CV). The best performing RIpred models were identified and when tested on hold-out test sets from all stationary phases, achieved a Mean Absolute Error (MAE) of <73 RI units (SSNP: 16.5-29.5, SNP: 38.5-45.9, SP: 46.52-72.53). The Mean Absolute Percentage Error (MAPE) of these models were typically within 3% (SSNP: 0.78-1.62%, SNP: 1.87-2.88%, SP: 2.34-4.05%). When compared to the best performing model by Qu et al., 2021, RIpred performed similarly (MAE of 16.57 RI units [RIpred] vs. 16.84 RI units [Qu et al., 2021 predictor] for derivatized compounds). RIpred also includes ∼5 million predicted RI values for all GC-amenable compounds (∼57,000) in the Human Metabolome Database HMDB 5.0 (Wishart et al., 2022).PMID:37413909 | DOI:10.1016/j.chroma.2023.464176

Spatial metabolomics principles and application to cancer research

Thu, 06/07/2023 - 12:00
Curr Opin Chem Biol. 2023 Jul 4;76:102362. doi: 10.1016/j.cbpa.2023.102362. Online ahead of print.ABSTRACTMass spectrometry imaging (MSI) is an emerging technology in cancer metabolomics. Desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) MSI are complementary techniques to identify hundreds of metabolites in space with close to single-cell resolution. This technology leap enables research focusing on tumor heterogeneity, cancer cell plasticity, and the communication signals between cancer and stromal cells in the tumor microenvironment (TME). Currently, unprecedented knowledge is generated using spatial metabolomics in fundamental cancer research. Yet, also translational applications are emerging, including the assessment of spatial drug distribution in organs and tumors. Moreover, clinical research investigates the use of spatial metabolomics as a rapid pathology tool during cancer surgeries. Here, we summarize MSI applications, the knowledge gained by this technology in space, future directions, and developments needed.PMID:37413787 | DOI:10.1016/j.cbpa.2023.102362

Metabolomics analysis reveals changes related to pseudocyst formation induced by iron depletion in Trichomonas vaginalis

Thu, 06/07/2023 - 12:00
Parasit Vectors. 2023 Jul 6;16(1):226. doi: 10.1186/s13071-023-05842-w.ABSTRACTBACKGROUND: Iron is an essential element for cellular functions, such as energy metabolism. Trichomonas vaginalis, a human urogenital tract pathogen, is capable of surviving in the environment without sufficient iron supplementation. Pseudocysts (cyst-like structures) are an environmentally tolerated stage of this parasite while encountering undesired conditions, including iron deficiency. We previously demonstrated that iron deficiency induces more active glycolysis but a drastic downregulation of hydrogenosomal energy metabolic enzymes. Therefore, the metabolic direction of the end product of glycolysis is still controversial.METHODS: In the present work, we conducted an LC‒MS-based metabolomics analysis to obtain accurate insights into the enzymatic events of T. vaginalis under iron-depleted (ID) conditions.RESULTS: First, we showed the possible digestion of glycogen, cellulose polymerization, and accumulation of raffinose family oligosaccharides (RFOs). Second, a medium-chain fatty acid (MCFA), capric acid, was elevated, whereas most detected C18 fatty acids were reduced significantly. Third, amino acids were mostly reduced, especially alanine, glutamate, and serine. Thirty-three dipeptides showed significant accumulation in ID cells, which was probably associated with the decrease in amino acids. Our results indicated that glycogen was metabolized as the carbon source, and the structural component cellulose was synthesized at same time. The decrease in C18 fatty acids implied possible incorporation in the membranous compartment for pseudocyst formation. The decrease in amino acids accompanied by an increase in dipeptides implied incomplete proteolysis. These enzymatic reactions (alanine dehydrogenase, glutamate dehydrogenase, and threonine dehydratase) were likely involved in ammonia release.CONCLUSION: These findings highlighted the possible glycogen utilization, cellulose biosynthesis, and fatty acid incorporation in pseudocyst formation as well as NO precursor ammonia production induced by iron-depleted stress.PMID:37415204 | DOI:10.1186/s13071-023-05842-w

Gut microbiota signatures and fecal metabolites in postmenopausal women with osteoporosis

Thu, 06/07/2023 - 12:00
Gut Pathog. 2023 Jul 6;15(1):33. doi: 10.1186/s13099-023-00553-0.ABSTRACTBACKGROUND: Women suffer from various distress and disturbances after menopause, including osteoporosis, a risk factor associated with multiple diseases. Altered gut microbiota has been implicated in postmenopausal osteoporosis. In this study, to understand gut microbiota signatures and fecal metabolite changes in postmenopausal women with osteoporosis, 108 postmenopausal women were recruited for intestinal microbiota and fecal metabolite detection. Among these participants, 98 patients, who met the inclusion criteria, were divided into postmenopausal osteoporosis (PMO) and non-postmenopausal osteoporosis (non-PMO) groups based on bone mineral density (BMD). The compositions of gut bacteria and fungi were examined by 16 S rRNA gene sequencing and ITS sequencing, respectively. Meanwhile, fecal metabolites were analyzed using liquid chromatography coupled with mass spectrometry (LC-MS).RESULTS: We found that bacterial α-diversity and β-diversity were significantly altered in PMO compared to non-PMO patients. Interestingly, fungi composition showed larger changes, and the differences in β-diversity were more significant between PMO and non-PMO patients. Metabolomics analysis revealed that fecal metabolites, such as levulinic acid, N-Acetylneuraminic acid, and the corresponding signaling pathways were also changed significantly, especially in the alpha-Linolenic acid metabolism and selenocompound metabolism. The screened differential bacteria, fungi, and metabolites closely correlated with clinical findings between these two groups, for example, the bacterial genus, Fusobacterium, the fungal genus, Devriesia, and the metabolite, L-pipecolic acid, were significantly associated with BMD.CONCLUSIONS: Our findings indicated that there were remarkable changes in gut bacteria, fungi, and fecal metabolites in postmenopausal women, and such changes were notably correlated with patients' BMD ​​and clinical findings. These correlations provide novel insights into the mechanism of PMO development, potential early diagnostic indicators, and new therapeutic approaches to improve bone health in postmenopausal women.PMID:37415173 | DOI:10.1186/s13099-023-00553-0

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

Thu, 06/07/2023 - 12:00
J Microbiol Biotechnol. 2023 Jun 12;33(10):1-10. doi: 10.4014/jmb.2301.01036. Online ahead of print.ABSTRACTEndocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrinedisrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroiddisrupting activity of EDC-derived metabolites and for proposing novel biotransformants.PMID:37415082 | DOI:10.4014/jmb.2301.01036

Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial

Thu, 06/07/2023 - 12:00
Nat Med. 2023 Jul 6. doi: 10.1038/s41591-023-02453-x. Online ahead of print.ABSTRACTFecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .PMID:37414899 | DOI:10.1038/s41591-023-02453-x

Amelogenin peptide analyses reveal female leadership in Copper Age Iberia (c. 2900-2650 BC)

Thu, 06/07/2023 - 12:00
Sci Rep. 2023 Jul 6;13(1):9594. doi: 10.1038/s41598-023-36368-x.ABSTRACTGiven the absence of written records, the main source of information available to analyze gender inequalities in early complex societies is the human body itself. And yet, for decades, archaeologists have struggled with the sex estimation of poorly preserved human remains. Here we present an exceptional case study that shows how ground-breaking new scientific methods may address this problem. Through the analysis of sexually dimorphic amelogenin peptides in tooth enamel, we establish that the most socially prominent person of the Iberian Copper Age (c. 3200-2200 BC) was not male, as previously thought, but female. The analysis of this woman, discovered in 2008 at Valencina, Spain, reveals that she was a leading social figure at a time where no male attained a remotely comparable social position. Only other women buried a short time after in the Montelirio tholos, part of the same burial area, appear to have enjoyed a similarly high social position. Our results invite to reconsider established interpretations about the political role of women at the onset of early social complexity, and question traditionally held views of the past. Furthermore, this study anticipates the changes that newly developed scientific methods may bring to prehistoric archaeology and the study of human social evolution.PMID:37414858 | DOI:10.1038/s41598-023-36368-x

ATP-citrate lyase controls endothelial gluco-lipogenic metabolism and vascular inflammation in sepsis-associated organ injury

Thu, 06/07/2023 - 12:00
Cell Death Dis. 2023 Jul 6;14(7):401. doi: 10.1038/s41419-023-05932-8.ABSTRACTSepsis involves endothelial cell (EC) dysfunction, which contributes to multiple organ failure. To improve therapeutic prospects, elucidating molecular mechanisms of vascular dysfunction is of the essence. ATP-citrate lyase (ACLY) directs glucose metabolic fluxes to de novo lipogenesis by generating acetyl-Co-enzyme A (acetyl-CoA), which facilitates transcriptional priming via protein acetylation. It is well illustrated that ACLY participates in promoting cancer metastasis and fatty liver diseases. Its biological functions in ECs during sepsis remain unclear. We found that plasma levels of ACLY were increased in septic patients and were positively correlated with interleukin (IL)-6, soluble E-selectin (sE-selectin), soluble vascular cell adhesion molecule 1 (sVCAM-1), and lactate levels. ACLY inhibition significantly ameliorated lipopolysaccharide challenge-induced EC proinflammatory response in vitro and organ injury in vivo. The metabolomic analysis revealed that ACLY blockade fostered ECs a quiescent status by reducing the levels of glycolytic and lipogenic metabolites. Mechanistically, ACLY promoted forkhead box O1 (FoxO1) and histone H3 acetylation, thereby increasing the transcription of c-Myc (MYC) to facilitate the expression of proinflammatory and gluco-lipogenic genes. Our findings revealed that ACLY promoted EC gluco-lipogenic metabolism and proinflammatory response through acetylation-mediated MYC transcription, suggesting ACLY as the potential therapeutic target for treating sepsis-associated EC dysfunction and organ injury.PMID:37414769 | DOI:10.1038/s41419-023-05932-8

Metabolomics-Guided Discovery, Isolation, Structure Elucidation, and Bioactivity of Myropeptins C-E from <em>Myrothecium inundatum</em>

Thu, 06/07/2023 - 12:00
J Nat Prod. 2023 Jul 6. doi: 10.1021/acs.jnatprod.3c00148. Online ahead of print.ABSTRACTThe saprotrophic filamentous fungus Myrothecium inundatum represents a chemically underexplored ascomycete with a high number of putative biosynthetic gene clusters in its genome. Here, we present new linear lipopeptides from nongenetic gene activation experiments using nutrient and salt variations. Metabolomics studies revealed four myropeptins, and structural analyses by NMR, HRMS, Marfey's analysis, and ECD assessment for their helical properties established their absolute configuration. A myropeptin biosynthetic gene cluster in the genome was identified. The myropeptins exhibit general nonspecific toxicity against all cancer cell lines in the NCI-60 panel, larval zebrafish with EC50 concentrations of 5-30 μM, and pathogenic bacteria and fungi (MICs of 4-32 μg/mL against multidrug-resistant S. aureus and C. auris). In vitro hemolysis, cell viability, and ionophore assays indicate that the myropeptins target mitochondrial and cellular membranes, inducing cell depolarization and cell death. The toxic activity is modulated by the length of the lipid side chain, which provides valuable insight into their structure-activity relationships.PMID:37411007 | DOI:10.1021/acs.jnatprod.3c00148

<em>Lactobacillus casei</em>-Derived Postbiotics Elevate the Bioaccessibility of Proteins via Allosteric Regulation of Pepsin and Trypsin and Introduction of Endopeptidases

Thu, 06/07/2023 - 12:00
J Agric Food Chem. 2023 Jul 6. doi: 10.1021/acs.jafc.3c02125. Online ahead of print.ABSTRACTThe potential of probiotics to benefit digestion has been widely reported, while its utilization in high-risk patients and potential adverse reactions have focused interest on postbiotics. A variable data-independent acquisition (vDIA)-based spatial-omics strategy integrated with unsupervised variational autoencoders was applied to profile the functional mechanism underlying the action of Lactobacillus casei-derived postbiotic supplementation in goat milk digestion in an infant digestive system, from a metabolomics-peptidomics-proteomics perspective. Amide and olefin derivatives were proved to elevate the activities of pepsin and trypsin through hydrogen bonding and hydrophobic forces based on allosteric effects, and recognition of nine endopeptidases and their cleavage to serine, proline, and aspartate were introduced by postbiotics, thereby promoting the generation of hydrophilic peptides and elevating the bioaccessibility of goat milk protein. The peptides originating from αs1-casein, β-casein, β-lactoglobulin, Ig-like domain-containing protein, κ-casein, and serum amyloid A protein, with multiple bioactivities including angiotensin I-converting enzyme (ACE)-inhibitory, osteoanabolic, dipeptidyl peptidase IV (DPP-IV) inhibitory, antimicrobial, bradykinin-potentiating, antioxidant, and anti-inflammatory activities, were significantly increased in the postbiotic supplementation group, which was also considered to potentially prevent necrotizing enterocolitis through inhibiting the multiplication of pathogenic bacteria and blocking signal transducer and activator of transcription 1 and nuclear factor kappa-light-chain-enhancer of activated B cells inflammatory pathways. This research deepened the understanding of the mechanism underlying the postbiotics affecting goat milk digestion, which established a critical groundwork for the clinical application of postbiotics in infant complementary foods.PMID:37410960 | DOI:10.1021/acs.jafc.3c02125

Pages