Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Phellodendronoside A Exerts Anticancer Effects Depending on Inducing Apoptosis Through ROS/Nrf2/Notch Pathway and Modulating Metabolite Profiles in Hepatocellular Carcinoma

Mon, 26/06/2023 - 12:00
J Hepatocell Carcinoma. 2023 Jun 20;10:935-948. doi: 10.2147/JHC.S403630. eCollection 2023.ABSTRACTPURPOSE: To reveal the potential mechanism of PDA on hepatocellular carcinoma SMMC-7721 cells in vitro.METHODS: The cytotoxic activity, colony formation, cell cycle distribution, apoptosis and their associated protein analysis, intracellular reactive oxygen species (ROS) and Ca2+ levels, proteins in Nrf2 and Ntoch pathways and metabolite profiles of PDA against hepatocellular carcinoma were investigated.RESULTS: PDA with cytotoxic activity inhibited cell proliferation and migration, increased intracellular ROS, Ca2+ levels and MCUR1 protein expression in a dose-dependent manner, caused cell cycle arrest in the S phase and induced apoptosis via adjusting the levels of Bcl-2, Bax, and Caspase 3 proteins, and inhibited the activation of Notch1, Jagged, Hes1, Nrf2 and HO-1 proteins. Metabonomics data showed that PDA significantly regulated 144 metabolite levels tend to be normal level, especially carnitine derivatives, bile acid metabolites associated with hepatocellular carcinoma, and mainly enriched in ABC transporter, arginine and proline metabolism, primary bile acid biosynthesis, Notch signaling pathway, etc, and proved that PDA markedly adjusted Notch signaling pathway.CONCLUSION: PDA exhibited the proliferation inhibition of SMMC-7721 cells by inhibiting ROS/Nrf2/Notch signaling pathway and significantly affected the metabolic profile, suggesting PDA could be a potential therapeutic agent for patients with hepatocellular carcinoma.PMID:37361906 | PMC:PMC10290457 | DOI:10.2147/JHC.S403630

The impact of <em>CYP2C19</em> genotype on phenoconversion by concomitant medication

Mon, 26/06/2023 - 12:00
Front Pharmacol. 2023 Jun 8;14:1201906. doi: 10.3389/fphar.2023.1201906. eCollection 2023.ABSTRACTIntroduction: Pharmacogenetics-informed drug prescribing is increasingly applied in clinical practice. Typically, drug metabolizing phenotypes are determined based on genetic test results, whereupon dosage or drugs are adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication can however cause mismatches between predicted and observed phenotypes (phenoconversion). Here we investigated the impact of CYP2C19 genotype on the outcome of CYP2C19-dependent DDIs in human liver microsomes. Methods: Liver samples from 40 patients were included, and genotyped for CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal fractions was used as proxy for CYP2C19 activity, and concordance between genotype-predicted and observed CYP2C19 phenotype was examined. Individual microsomes were subsequently co-exposed to fluvoxamine, voriconazole, omeprazole or pantoprazole to simulate DDIs. Results: Maximal CYP2C19 activity (Vmax) in genotype-predicted intermediate metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and ultrarapid metabolizers (UMs; *17/*17) was not different from Vmax of predicted normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors exhibited Vmax rates ∼9% of NMs, confirming the genotype-predicted poor metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40% concordance between genetically-predicted CYP2C19 phenotypes and measured phenotypes, indicating substantial phenoconversion. Eight patients (20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their CYP2C19 genotype, of which six could be linked to the presence of diabetes or liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by omeprazole (-37% ± 8%), voriconazole (-59% ± 4%) and fluvoxamine (-85% ± 2%), but not by pantoprazole (-2 ± 4%). The strength of CYP2C19 inhibitors remained unaffected by CYP2C19 genotype, as similar percental declines in CYP2C19 activity and comparable metabolism-dependent inhibitory constants (Kinact/KI) of omeprazole were observed between CYP2C19 genotypes. However, the consequences of CYP2C19 inhibitor-mediated phenoconversion were different between CYP2C19 genotypes. In example, voriconazole converted 50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors. Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%). Conclusion: This study suggests that the differential outcome of CYP2C19-mediated DDIs between genotypes are primarily dictated by basal CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely also depends on disease-related factors.PMID:37361233 | PMC:PMC10285291 | DOI:10.3389/fphar.2023.1201906

Leveraging omics to understand the molecular basis of acute-on-chronic liver failure

Mon, 26/06/2023 - 12:00
Adv Lab Med. 2021 Aug 11;2(4):516-540. doi: 10.1515/almed-2021-0023. eCollection 2021 Nov.ABSTRACTAcute-on-chronic liver failure (ACLF) is a complex syndrome that develops in patients with acutely decompensated cirrhosis. In this condition, dysbalanced immune function and excessive systemic inflammation are closely associated with organ failure and high short-term mortality. In this review, we describe how omic technologies have contributed to the characterization of the hyperinflammatory state in patients with acutely decompensated cirrhosis developing ACLF, with special emphasis on the role of metabolomics, lipidomics and transcriptomics in profiling the triggers (pathogen- and damage-associated molecular patterns [PAMPs and DAMPs]) and effector molecules (cytokines, chemokines, growth factors and bioactive lipid mediators) that lead to activation of the innate immune system. This review also describes how omic approaches can be invaluable tools to accelerate the identification of novel biomarkers that could guide the implementation of novel therapies/interventions aimed at protecting these patients from excessive systemic inflammation and organ failure.PMID:37360898 | PMC:PMC10197663 | DOI:10.1515/almed-2021-0023

Metabolomic and transcriptomic analyses reveal the effects of grafting on blood orange quality

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 1;14:1169220. doi: 10.3389/fpls.2023.1169220. eCollection 2023.ABSTRACTINTRODUCTION: Blood orange (Citrus sinensis L.) is a valuable source of nutrition because it is enriched in anthocyanins and has high organoleptic properties. Grafting is commonly used in citriculture and has crucial effects on various phenotypes of the blood orange, including its coloration, phenology, and biotic and abiotic resistance. Still, the underlying genetics and regulatory mechanisms are largely unexplored.METHODS: In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at eight developmental stages of the lido blood orange cultivar (Citrus sinensis L. Osbeck cv. Lido) grafted onto two rootstocks.RESULTS AND DISCUSSION: The Trifoliate orange rootstock provided the best fruit quality and flesh color for Lido blood orange. Comparative metabolomics suggested significant differences in accumulation patterns of metabolites and we identified 295 differentially accumulated metabolites. The major contributors were flavonoids, phenolic acids, lignans and coumarins, and terpenoids. Moreover, transcriptome profiling resulted in the identification of 4179 differentially expressed genes (DEGs), and 54 DEGs were associated with flavonoids and anthocyanins. Weighted gene co-expression network analysis identified major genes associated to 16 anthocyanins. Furthermore, seven transcription factors (C2H2, GANT, MYB-related, AP2/ERF, NAC, bZIP, and MYB) and five genes associated with anthocyanin synthesis pathway (CHS, F3H, UFGT, and ANS) were identified as key modulators of the anthocyanin content in lido blood orange. Overall, our results revealed the impact of rootstock on the global transcriptome and metabolome in relation to fruit quality in lido blood orange. The identified key genes and metabolites can be further utilized for the quality improvement of blood orange varieties.PMID:37360739 | PMC:PMC10286243 | DOI:10.3389/fpls.2023.1169220

Integrated omic analysis provides insights into the molecular regulation of stress tolerance by partial root-zone drying in rice

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 9;14:1156514. doi: 10.3389/fpls.2023.1156514. eCollection 2023.ABSTRACTPartial root-zone drying (PRD) is an effective water-saving irrigation strategy that improves stress tolerance and facilitates efficient water use in several crops. It has long been considered that abscisic acid (ABA)-dependent drought resistance may be involved during partial root-zone drying. However, the molecular mechanisms underlying PRD-mediated stress tolerance remain unclear. It's hypothesized that other mechanisms might contribute to PRD-mediated drought tolerance. Here, rice seedlings were used as a research model and the complex transcriptomic and metabolic reprogramming processes were revealed during PRD, with several key genes involved in osmotic stress tolerance identified by using a combination of physiological, transcriptome, and metabolome analyses. Our results demonstrated that PRD induces transcriptomic alteration mainly in the roots but not in the leaves and adjusts several amino-acid and phytohormone metabolic pathways to maintain the balance between growth and stress response compared to the polyethylene glycol (PEG)-treated roots. Integrated analysis of the transcriptome and metabolome associated the co-expression modules with PRD-induced metabolic reprogramming. Several genes encoding the key transcription factors (TFs) were identified in these co-expression modules, highlighting several key TFs, including TCP19, WRI1a, ABF1, ABF2, DERF1, and TZF7, involved in nitrogen metabolism, lipid metabolism, ABA signaling, ethylene signaling, and stress regulation. Thus, our work presents the first evidence that molecular mechanisms other than ABA-mediated drought resistance are involved in PRD-mediated stress tolerance. Overall, our results provide new insights into PRD-mediated osmotic stress tolerance, clarify the molecular regulation induced by PRD, and identify genes useful for further improving water-use efficiency and/or stress tolerance in rice.PMID:37360728 | PMC:PMC10288491 | DOI:10.3389/fpls.2023.1156514

Metabolomics and genetics of reproductive bud development in <em>Ficus carica</em> var. <em>sativa</em> (edible fig) and in <em>Ficus carica</em> var. <em>caprificus</em> (caprifig): similarities and differences

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 8;14:1192350. doi: 10.3389/fpls.2023.1192350. eCollection 2023.ABSTRACTIn figs, reproductive biology comprises cultivars requiring or not pollination, with female trees (edible fig) and male trees (caprifig) bearing different types of fruits. Metabolomic and genetic studies may clarify bud differentiation mechanisms behind the different fruits. We used a targeted metabolomic analysis and genetic investigation through RNA sequence and candidate gene investigation to perform a deep analysis of buds of two fig cultivars, 'Petrelli' (San Pedro type) and 'Dottato' (Common type), and one caprifig. In this work, proton nuclear magnetic resonance (1H NMR-based metabolomics) has been used to analyze and compare buds of the caprifig and the two fig cultivars collected at different times of the season. Metabolomic data of buds collected on the caprifig, 'Petrelli', and 'Dottato' were treated individually, building three separate orthogonal partial least squared (OPLS) models, using the "y" variable as the sampling time to allow the identification of the correlations among metabolomic profiles of buds. The sampling times revealed different patterns between caprifig and the two edible fig cultivars. A significant amount of glucose and fructose was found in 'Petrelli', differently from 'Dottato', in the buds in June, suggesting that these sugars not only are used by the ripening brebas of 'Petrelli' but also are directed toward the developing buds on the current year shoot for either a main crop (fruit in the current season) or a breba (fruit in the successive season). Genetic characterization through the RNA-seq of buds and comparison with the literature allowed the identification of 473 downregulated genes, with 22 only in profichi, and 391 upregulated genes, with 21 only in mammoni.PMID:37360723 | PMC:PMC10285451 | DOI:10.3389/fpls.2023.1192350

Editorial: Omics data-based identification of plant specialized metabolic genes

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 9;14:1209334. doi: 10.3389/fpls.2023.1209334. eCollection 2023.NO ABSTRACTPMID:37360719 | PMC:PMC10289223 | DOI:10.3389/fpls.2023.1209334

A metabolome genome-wide association study implicates histidine <em>N</em>-pi-methyltransferase as a key enzyme in <em>N</em>-methylhistidine biosynthesis in <em>Arabidopsis thaliana</em>

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 8;14:1201129. doi: 10.3389/fpls.2023.1201129. eCollection 2023.ABSTRACTA genome-wide association study (GWAS), which uses information on single nucleotide polymorphisms (SNPs) from many accessions, has become a powerful approach to gene identification. A metabolome GWAS (mGWAS), which relies on phenotypic information based on metabolite accumulation, can identify genes that contribute to primary and secondary metabolite contents. In this study, we carried out a mGWAS using seed metabolomic data from Arabidopsis thaliana accessions obtained by liquid chromatography-mass spectrometry to identify SNPs highly associated with the contents of metabolites such as glucosinolates. These SNPs were present in genes known to be involved in glucosinolate biosynthesis, thus confirming the effectiveness of our analysis. We subsequently focused on SNPs detected in an unknown methyltransferase gene associated with N-methylhistidine content. Knockout and overexpression of A. thaliana lines of this gene had significantly decreased and increased N-methylhistidine contents, respectively. We confirmed that the overexpressing line exclusively accumulated histidine methylated at the pi position, not at the tau position. Our findings suggest that the identified methyltransferase gene encodes a key enzyme for N-methylhistidine biosynthesis in A. thaliana.PMID:37360714 | PMC:PMC10285387 | DOI:10.3389/fpls.2023.1201129

Chromosome-level genome and multi-omics analyses provide insights into the geo-herbalism properties of <em>Alpinia oxyphylla</em>

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 8;14:1161257. doi: 10.3389/fpls.2023.1161257. eCollection 2023.ABSTRACTINTRODUCTION: Alpinia oxyphylla Miquel (A. oxyphylla), one of the "Four Famous South Medicines" in China, is an essential understory cash crop that is planted widely in the Hainan, Guangdong, Guangxi, and Fujian provinces. Particularly, A. oxyphylla from Hainan province is highly valued as the best national product for geo-herbalism and is an important indicator of traditional Chinese medicine efficacy. However, the molecular mechanism underlying the formation of its quality remains unspecified.METHODS: To this end, we employed a multi-omics approach to investigate the authentic quality formation of A. oxyphylla.RESULTS: In this study, we present a high-quality chromosome-level genome assembly of A. oxyphylla, with contig N50 of 76.96 Mb and a size of approximately 2.08Gb. A total of 38,178 genes were annotated, and the long terminal repeats were found to have a high frequency of 61.70%. Phylogenetic analysis demonstrated a recent whole-genome duplication event (WGD), which occurred before A. oxyphylla's divergence from W. villosa (~14 Mya) and is shared by other species from the Zingiberaceae family (Ks, ~0.3; 4DTv, ~0.125). Further, 17 regions from four provinces were comprehensively assessed for their metabolite content, and the quality of these four regions varied significantly. Finally, genomic, metabolic, and transcriptomic analyses undertaken on these regions revealed that the content of nootkatone in Hainan was significantly different from that in other provinces.DISCUSSION: Overall, our findings provide novel insights into germplasm conservation, geo-herbalism evaluation, and functional genomic research for the medicinal plant A. oxyphylla.PMID:37360712 | PMC:PMC10285302 | DOI:10.3389/fpls.2023.1161257

Comprehensive metabolomics-based analysis of sugar composition and content in berries of 18 grape varieties

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 9;14:1200071. doi: 10.3389/fpls.2023.1200071. eCollection 2023.ABSTRACTXinjiang is the largest grape-producing region in China and the main grape cultivation area in the world. The Eurasian grape resources grown in Xinjiang are very rich in diversity. The sugar composition and content are the main factors that determine the quality of berries. However, there are currently no systematic reports on the types and contents of sugars in grapes grown in Xinjiang region. In this research, we evaluated the appearance and fruit maturity indicators of 18 grape varieties during fruit ripening and determined their sugar content using GC-MS. All cultivars primarily contained glucose, D-fructose, and sucrose. The glucose content in varieties varied from 42.13% to 46.80% of the total sugar, whereas the fructose and sucrose contents varied from 42.68% to 50.95% and 6.17% to 12.69%, respectively. The content of trace sugar identified in grape varieties varied from 0.6 to 2.3 mg/g. The comprehensive assessment by principal component analysis revealed strong positive correlations between some sugar components. A comprehensive study on the content and types of sugar will provide the foundation to determine the quality of grape cultivars and effective ways to utilize resources to improve sugar content through breeding.PMID:37360706 | PMC:PMC10288860 | DOI:10.3389/fpls.2023.1200071

Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in cassava (<em>Manihot esculenta</em> Crantz) leaves

Mon, 26/06/2023 - 12:00
Front Plant Sci. 2023 Jun 9;14:1181257. doi: 10.3389/fpls.2023.1181257. eCollection 2023.ABSTRACTCassava (Manihot esculenta Crantz) leaves are often used as vegetables in Africa. Anthocyanins possess antioxidant, anti-inflammatory, anti-cancer, and other biological activities. They are poor in green leaves but rich in the purple leaves of cassava. The mechanism of anthocyanin's accumulation in cassava is poorly understood. In this study, two cassava varieties, SC9 with green leaves and Ziyehuangxin with purple leaves (PL), were selected to perform an integrative analysis using metabolomics and transcriptomics. The metabolomic analysis indicated that the most significantly differential metabolites (SDMs) belong to anthocyanins and are highly accumulated in PL. The transcriptomic analysis revealed that differentially expressed genes (DEGs) are enriched in secondary metabolites biosynthesis. The analysis of the combination of metabolomics and transcriptomics showed that metabolite changes are associated with the gene expressions in the anthocyanin biosynthesis pathway. In addition, some transcription factors (TFs) may be involved in anthocyanin biosynthesis. To further investigate the correlation between anthocyanin accumulation and color formation in cassava leaves, the virus-induced gene silencing (VIGS) system was used. VIGS-MeANR silenced plant showed the altered phenotypes of cassava leaves, partially from green to purple color, resulting in a significant increase of the total anthocyanin content and reduction in the expression of MeANR. These results provide a theoretical basis for breeding cassava varieties with anthocyanin-rich leaves.PMID:37360704 | PMC:PMC10289162 | DOI:10.3389/fpls.2023.1181257

Insight into Nephrotoxicity and Processing Mechanism of <em>Arisaema erubescens</em> (Wall.) Schott by Metabolomics and Network Analysis

Mon, 26/06/2023 - 12:00
Drug Des Devel Ther. 2023 Jun 19;17:1831-1846. doi: 10.2147/DDDT.S406551. eCollection 2023.ABSTRACTBACKGROUND: Arisaematis Rhizome (AR) has been used as a damp-drying, phlegm-resolving, wind-expelling, pain-alleviating, and swelling-relieving drug for thousands of years. However, the toxicity limits its clinical applications. Therefore, AR is usually processed (Paozhi in Chinese) prior to clinical use. In this study, the integration of ultra-high performance liquid chromatography-quadrupole/ time-of-flight mass spectrometry-based metabolomics and network analysis was adopted to investigate the metabolic shifts induced by AR and explore the processing mechanism.MATERIALS AND METHODS: Extracts of crude and processed AR products (1g/kg) were intragastrically administered to rats once daily for four consecutive weeks. The renal function was evaluated by blood urea nitrogen, creatinine, interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), super oxide dismutase (SOD), the ratio of glutathione/glutathione disulfide (GSH/GSSH), glutathione peroxidase (GSH-Px) and histopathological examination. Furthermore, the chemical composition of AR was clarified by ultra-high performance liquid chromatography-quadrupole/ time-of-flight mass spectrometry, after which the integration of metabolomics and network analysis was adopted to investigate the metabolic shifts induced by AR and explore the processing mechanism.RESULTS: Crude AR caused renal damage by stimulating inflammation and oxidative stress, as confirmed by the increased production of IL-1β, TNF-α and MDA, and decreased levels of SOD, GSH/GSSH and GSH-Px. Processing with ginger juice, alumen and bile juice alleviated the damage to kidney. Metabolomics results showed that a total of 35 potential biomarkers enriched in amino acid metabolism, glycerophospholipid metabolism, fatty acid-related pathways, etc. were deduced to be responsible for the nephrotoxicity of AR and the toxicity-reducing effect of processing.CONCLUSION: This work provided theoretical and data support for the in-depth study of the processing mechanism, showing that processing reduces AR nephrotoxicity through multiple metabolic pathways.PMID:37360574 | PMC:PMC10289099 | DOI:10.2147/DDDT.S406551

Corrigendum: Combined intestinal metabolomics and microbiota analysis for acute endometritis induced by lipopolysaccharide in mice

Mon, 26/06/2023 - 12:00
Front Cell Infect Microbiol. 2023 Jun 9;13:1223663. doi: 10.3389/fcimb.2023.1223663. eCollection 2023.ABSTRACT[This corrects the article DOI: 10.3389/fcimb.2021.791373.].PMID:37360533 | PMC:PMC10289254 | DOI:10.3389/fcimb.2023.1223663

Development of a Transformation System for the Medicinal Fungus <em>Sanghuangporus baumii</em> and Acquisition of High-Value Strain

Mon, 26/06/2023 - 12:00
Mycobiology. 2023 Jun 20;51(3):169-177. doi: 10.1080/12298093.2023.2220164. eCollection 2023.ABSTRACTTo further explore the molecular mechanism of triterpenoid biosynthesis and acquire high-value strain of Sanghuangporus baumii, the Agrobacterium tumefaciens-mediated transformation (ATMT) system was studied. The key triterpenoid biosynthesis-associated gene isopentenyl diphosphate isomerase (IDI) was transformed into S. baumii by ATMT system. Then, the qRT-PCR technique was used to analyze gene transcript level, and the widely targeted metabolomics was used to investigate individual triterpenoid content. Total triterpenoid content and anti-oxidant activity were determined by spectrophotometer. In this study, we for the first time established an efficient ATMT system and transferred the IDI gene into S. baumii. Relative to the wild-type (WT) strain, the IDI-transformant (IT) strain showed significantly higher transcript levels of IDI and total triterpenoid content. We then investigated individual triterpenoids in S. baumii, which led to the identification of 10 distinct triterpenoids. The contents of individual triterpenoids produced by the IT2 strain were 1.76-10.03 times higher than those produced by the WT strain. The triterpenoid production showed a significant positive correlation with the IDI gene expression. Besides, IT2 strain showed better anti-oxidant activity. The findings provide valuable information about the biosynthetic pathway of triterpenoids and provide a strategy for cultivating high-value S. baumii strains.PMID:37359953 | PMC:PMC10288903 | DOI:10.1080/12298093.2023.2220164

Integrated multi-omics analyses reveal the altered transcriptomic characteristics of pulmonary macrophages in immunocompromised hosts with <em>Pneumocystis pneumonia</em>

Mon, 26/06/2023 - 12:00
Front Immunol. 2023 Jun 9;14:1179094. doi: 10.3389/fimmu.2023.1179094. eCollection 2023.ABSTRACTINTRODUCTION: With the extensive use of immunosuppressants, immunosuppression-associated pneumonitis including Pneumocystis jirovecii pneumonia (PCP) has received increasing attention. Though aberrant adaptive immunity has been considered as a key reason for opportunistic infections, the characteristics of innate immunity in these immunocompromised hosts remain unclear.METHODS: In this study, wild type C57BL/6 mice or dexamethasone-treated mice were injected with or without Pneumocystis. Bronchoalveolar lavage fluids (BALFs) were harvested for the multiplex cytokine and metabolomics analysis. The single-cell RNA sequencing (scRNA-seq) of indicated lung tissues or BALFs was performed to decipher the macrophages heterogeneity. Mice lung tissues were further analyzed via quantitative polymerase chain reaction (qPCR) or immunohistochemical staining.RESULTS: We found that the secretion of both pro-inflammatory cytokines and metabolites in the Pneumocystis-infected mice are impaired by glucocorticoids. By scRNA-seq, we identified seven subpopulations of macrophages in mice lung tissues. Among them, a group of Mmp12+ macrophages is enriched in the immunocompetent mice with Pneumocystis infection. Pseudotime trajectory showed that these Mmp12+ macrophages are differentiated from Ly6c+ classical monocytes, and highly express pro-inflammatory cytokines elevated in BALFs of Pneumocystis-infected mice. In vitro, we confirmed that dexamethasone impairs the expression of Lif, Il1b, Il6 and Tnf, as well as the fungal killing capacity of alveolar macrophage (AM)-like cells. Moreover, in patients with PCP, we found a group of macrophages resembled the aforementioned Mmp12+ macrophages, and these macrophages are inhibited in the patient receiving glucocorticoid treatment. Additionally, dexamethasone simultaneously impaired the functional integrity of resident AMs and downregulated the level of lysophosphatidylcholine, leading to the suppressed antifungal capacities.CONCLUSION: We reported a group of Mmp12+ macrophages conferring protection during Pneumocystis infection, which can be dampened by glucocorticoids. This study provides multiple resources for understanding the heterogeneity and metabolic changes of innate immunity in immunocompromised hosts, and also suggests that the loss of Mmp12+ macrophages population contributes to the pathogenesis of immunosuppression-associated pneumonitis.PMID:37359523 | PMC:PMC10289015 | DOI:10.3389/fimmu.2023.1179094

Integrated transcriptome and metabolome analysis unveil the response mechanism in wild rice (<em>Zizania latifolia</em> griseb.) against sheath rot infection

Mon, 26/06/2023 - 12:00
Front Genet. 2023 Jun 9;14:1163464. doi: 10.3389/fgene.2023.1163464. eCollection 2023.ABSTRACTSheath rot disease (SRD) is one of the most devastating diseases of Manchurian wild rice (MWR) (Zizania latifolia Griseb). Pilot experiments in our laboratory have shown that an MWR cultivar "Zhejiao NO.7"exhibits signs of SRD tolerance. To explore the responses of Zhejiao No. 7 to SRD infection, we used a combined transcriptome and metabolome analysis approach. A total of 136 differentially accumulated metabolites (DAMs, 114 up- and 22 down-accumulated in FA compared to CK) were detected. These up-accumulated metabolites were enriched in tryptophan metabolism, amino acid biosynthesis, flavonoids, and phytohormone signaling. Transcriptome sequencing results showed the differential expression of 11,280 genes (DEGs, 5,933 up-, and 5,347 downregulated in FA compared to CK). The genes expressed in tryptophan metabolism, amino acid biosynthesis, phytohormone biosynthesis and signaling, and reactive oxygen species homeostasis confirmed the metabolite results. In addition, genes related to the cell wall, carbohydrate metabolism, and plant-pathogen interaction (especially hypersensitive response) showed changes in expression in response to SRD infection. These results provide a basis for understanding the response mechanisms in MWR to FA attack that can be used for breeding SRD-tolerant MWR.PMID:37359383 | PMC:PMC10289006 | DOI:10.3389/fgene.2023.1163464

Unraveling the therapeutic mechanisms of dichloroacetic acid in lung cancer through integrated multi-omics approaches: metabolomics and transcriptomics

Mon, 26/06/2023 - 12:00
Front Genet. 2023 Jun 8;14:1199566. doi: 10.3389/fgene.2023.1199566. eCollection 2023.ABSTRACTObjective: The aim of this study was to investigate the molecular mechanisms underlying the therapeutic effects of dichloroacetic acid (DCA) in lung cancer by integrating multi-omics approaches, as the current understanding of DCA's role in cancer treatment remains insufficiently elucidated. Methods: We conducted a comprehensive analysis of publicly available RNA-seq and metabolomic datasets and established a subcutaneous xenograft model of lung cancer in BALB/c nude mice (n = 5 per group) treated with DCA (50 mg/kg, administered via intraperitoneal injection). Metabolomic profiling, gene expression analysis, and metabolite-gene interaction pathway analysis were employed to identify key pathways and molecular players involved in the response to DCA treatment. In vivo evaluation of DCA treatment on tumor growth and MIF gene expression was performed in the xenograft model. Results: Metabolomic profiling and gene expression analysis revealed significant alterations in metabolic pathways, including the Warburg effect and citric acid cycle, and identified the MIF gene as a potential therapeutic target in lung cancer. Our analysis indicated that DCA treatment led to a decrease in MIF gene expression and an increase in citric acid levels in the treatment group. Furthermore, we observed a potential interaction between citric acid and the MIF gene, suggesting a novel mechanism underlying the therapeutic effects of DCA in lung cancer. Conclusion: This study underscores the importance of integrated omics approaches in deciphering the complex molecular mechanisms of DCA treatment in lung cancer. The identification of key metabolic pathways and the novel finding of citric acid elevation, together with its interaction with the MIF gene, provide promising directions for the development of targeted therapeutic strategies and improving clinical outcomes for lung cancer patients.PMID:37359381 | PMC:PMC10285292 | DOI:10.3389/fgene.2023.1199566

In Situ Spatial Analysis of Metabolic Heterogeneity in Single Living Tumor Spheroids Using Nanocapillary-Based Electrospray Ionization Mass Spectroscopy

Mon, 26/06/2023 - 12:00
Anal Chem. 2023 Jun 26. doi: 10.1021/acs.analchem.3c00479. Online ahead of print.ABSTRACTSpatial metabolomic analysis of individual tumor spheroids can help investigate metabolic rearrangements in different cellular regions of a spheroid. In this work, a nanocapillary-based electrospray ionization mass spectroscopy (ESI-MS) method is established that could realize the spatial sampling of cellular components in different regions of a single living tumor spheroid and the subsequent MS analysis for a metabolic study. During the penetration of the nanocapillary into the spheroid for sampling, this "wound surface" at the outer layer of the spheroid takes only 0.1% of the whole area that maximally maintains the cellular activity inside the spheroid for the metabolic analysis. Using the ESI-MS analysis, different metabolic activities in the inner and outer (upper and lower) layers of a single spheroid are revealed, giving a full investigation of the metabolic heterogeneity inside one living tumor spheroid for the first time. In addition, the metabolic activities between the outer layer of the spheroid and two-dimensional (2D)-cultured cells show obvious differences, which suggests more frequent cell-cell and cell-extracellular environment interactions during the culture of the spheroid. This observation not only establishes a powerful tool for the in situ spatial analysis of the metabolic heterogeneity in single living tumor spheroids but also provides molecular information to elucidate the metabolic heterogeneity in this three-dimensional (3D)-cultured cell model.PMID:37358923 | DOI:10.1021/acs.analchem.3c00479

Differential carbohydrate-active enzymes and secondary metabolite production by the grapevine trunk pathogen <em>Neofusicoccum parvum</em> Bt-67 grown on host and non-host biomass

Mon, 26/06/2023 - 12:00
Mycologia. 2023 Jun 26:1-23. doi: 10.1080/00275514.2023.2216122. Online ahead of print.ABSTRACTNeofusicoccum parvum is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of N. parvum carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, N. parvum produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the N. parvum strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the N. parvum Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when N. parvum Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from N. parvum with potential use for lignocellulose biorefining.PMID:37358885 | DOI:10.1080/00275514.2023.2216122

1-Aminocyclopropane-1-carboxylic Acid Enhances Phytoestrogen Accumulation in Soy Plants (<em>Glycine max</em> L.) by Its Acceleration of the Isoflavone Biosynthetic Pathway

Mon, 26/06/2023 - 12:00
J Agric Food Chem. 2023 Jun 26. doi: 10.1021/acs.jafc.3c01810. Online ahead of print.ABSTRACTThe low levels of bioactive metabolites in target plants present a bottleneck for the functional food industry. The major disadvantage of soy leaves is their low phytoestrogen content despite the fact that these leaves are an enriched source of flavonols. Our study demonstrated that simple foliar spraying with 1-aminocyclopropane-1-carboxylic acid (ACC) significantly enhanced the phytoestrogen contents of the whole soy plant, including its leaves (27-fold), stalks (3-fold), and roots (4-fold). In particular, ACC continued to accelerate the biosynthesis pathway of isoflavones in the leaves for up to 3 days after treatment, from 580 to 15,439 μg/g. The detailed changes in the levels of this metabolite in soy leaves are disclosed by quantitative and metabolomic analyses based on HPLC and UPLC-ESI-TOF/MS. The PLS-DA score plot, S-plot, and heatmap provide comprehensive evidence to clearly distinguish the effect of ACC treatment. ACC was also proved to activate a series of structural genes (CHS, CHR, CHI, IFS, HID, IF7GT, and IF7MaT) along the isoflavone biosynthesis pathway time-dependently. In particular, ACC oxidase genes were turned on 12 h after ACC treatment, which was rationalized to start activating the synthetic pathway of isoflavones.PMID:37358831 | DOI:10.1021/acs.jafc.3c01810

Pages