Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Investigating the Underlying Mechanisms of <em>Ardisia japonica</em> Extract's Anti-Blood-Stasis Effect via Metabolomics and Network Pharmacology

Tue, 14/11/2023 - 12:00
Molecules. 2023 Oct 27;28(21):7301. doi: 10.3390/molecules28217301.ABSTRACTOBJECTIVE: Our study aims to assess Ardisia japonica (AJ)'s anti-blood-stasis effect and its underlying action mechanisms.METHODS: The primary components of AJ were determined using liquid chromatography-mass spectrometry (LC-MS). The blood stasis model was used to investigate the anti-blood-stasis effect of AJ extract. The underlying mechanisms of AJ against blood stasis were investigated via network pharmacology, molecular docking, and plasma non-targeted metabolomics.RESULTS: In total, 94 compounds were identified from an aqueous extract of AJ, including terpenoids, phenylpropanoids, alkaloids, and fatty acyl compounds. In rats with blood stasis, AJ reduced the area of stasis, decreased the inflammatory reaction in the liver and lungs of rats, lowered the plasma viscosity, increased the index of erythrocyte deformability, and decreased the index of erythrocyte aggregation, suggesting that AJ has an anti-blood-stasis effect. Different metabolites were identified via plasma untargeted metabolomics, and it was found that AJ exerts its anti-blood-stasis effect by reducing inflammatory responses through the cysteine and methionine metabolism, linolenic acid metabolism, and sphingolipid metabolism. For the effect of AJ on blood stasis syndrome, the main active ingredients predicted via network pharmacology include sinensetin, galanin, isorhamnetin, kaempferol, wogonin, quercetin, and bergenin, and their targets were TP53, HSP90AA1, VEGFA, AKT1, EGFR, and PIK3CA that were mainly enriched in the PI3K/AKT and MAPK signaling pathways, which modulate the inflammatory response. Molecular docking was also performed, and the binding energies of these seven compounds to six proteins were less than -5, indicating that the chemical components bind to the target proteins.CONCLUSIONS: This study suggests AJ effectively prevents blood stasis by reducing inflammation.PMID:37959722 | DOI:10.3390/molecules28217301

Metabolomics Analysis Reveals the Accumulation Patterns of Flavonoids and Volatile Compounds in <em>Camellia oleifera</em> Petals with Different Color

Tue, 14/11/2023 - 12:00
Molecules. 2023 Oct 24;28(21):7248. doi: 10.3390/molecules28217248.ABSTRACTTo systematically and comprehensively investigate the metabolic characteristics of coloring substances and floral aroma substances in Camellia oleifera petals with different colors, ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) and headspace solid phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics methods were applied to determine the metabolic profiles of white, candy-pink and dark-red petals. The results revealed that 270 volatile organic compounds were detected, mainly terpenoids, heterocyclic, esters, hydrocarbons, aldehydes, and alcohols, in which phenylethyl alcohol, lilac alcohol, and butanoic acid, 1-methylhexyl ester, hotrienol, alpha-terpineol and 7-Octen-4-ol, 2-methyl-6-methylene-, (S)-, butanoic acid, 2-methyl-, 2-methylbutyl ester, 2,4-Octadienal, (E,E)- could act as the floral scent compounds. A total of 372 flavonoid compounds were identified, and luteolin, kaempferol, cyanidin and peonidin derivatives were considered as the main coloring substances for candy-pink and dark-red petal coloration. In conclusion, this study intuitively and quantitatively exhibited the variations in flower color and floral scent of C. oleifera petal with different colors caused by changes in variations of flavonoids and volatile organic compound composition, and provided useful data for improving the sensory quality and breeding of C. oleifera petals.PMID:37959668 | DOI:10.3390/molecules28217248

Safety Properties of <em>Escherichia coli</em> O157:H7 Specific Bacteriophages: Recent Advances for Food Safety

Tue, 14/11/2023 - 12:00
Foods. 2023 Oct 31;12(21):3989. doi: 10.3390/foods12213989.ABSTRACTShiga-toxin-producing Escherichia coli (STEC) is typically detected on food products mainly due to cross-contamination with faecal matter. The serotype O157:H7 has been of major public health concern due to the severity of illness caused, prevalence, and management. In the food chain, the main methods of controlling contamination by foodborne pathogens often involve the application of antimicrobial agents, which are now becoming less efficient. There is a growing need for the development of new approaches to combat these pathogens, especially those that harbour antimicrobial resistant and virulent determinants. Strategies to also limit their presence on food contact surfaces and food matrices are needed to prevent their transmission. Recent studies have revealed that bacteriophages are useful non-antibiotic options for biocontrol of E. coli O157:H7 in both animals and humans. Phage biocontrol can significantly reduce E. coli O157:H7, thereby improving food safety. However, before being certified as potential biocontrol agents, the safety of the phage candidates must be resolved to satisfy regulatory standards, particularly regarding phage resistance, antigenic properties, and toxigenic properties. In this review, we provide a general description of the main virulence elements of E. coli O157:H7 and present detailed reports that support the proposals that phages infecting E. coli O157:H7 are potential biocontrol agents. This paper also outlines the mechanism of E. coli O157:H7 resistance to phages and the safety concerns associated with the use of phages as a biocontrol.PMID:37959107 | DOI:10.3390/foods12213989

Bioprotection Efficiency of <em>Metschnikowia</em> Strains in Synthetic Must: Comparative Study and Metabolomic Investigation of the Mechanisms Involved

Tue, 14/11/2023 - 12:00
Foods. 2023 Oct 26;12(21):3927. doi: 10.3390/foods12213927.ABSTRACTThree Metschnikowia strains marketed as bioprotection yeasts were studied to compare their antimicrobial effect on a mixture of two Hanseniaspora yeast strains in synthetic must at 12 °C, mimicking pre-fermentative maceration by combining different approaches. The growth of the different strains was monitored, their nitrogen and oxygen requirements were characterised, and their metabolomic footprint in single and co-cultures studied. Only the M. fructicola strain and one M. pulcherrima strains colonised the must and induced the rapid decline of Hanseniaspora. The efficiency of these two strains followed different inhibition kinetics. Furthermore, the initial ratio between Metschnikowia and Hanseniaspora was an important factor to ensure optimal bioprotection. Nutrient consumption kinetics showed that apiculate yeasts competed with Metschnikowia strains for nutrient accessibility. However, this competition did not explain the observed bioprotective effect, because of the considerable nitrogen content remaining on the single and co-cultures. The antagonistic effect of Metschnikowia on Hanseniaspora probably implied another form of amensalism. For the first time, metabolomic analyses of the interaction in a bioprotection context were performed after the pre-fermentative maceration step. A specific footprint of the interaction was observed, showing the strong impact of the interaction on the metabolic modulation of the yeasts, especially on the nitrogen and vitamin pathways.PMID:37959046 | DOI:10.3390/foods12213927

Potential of Arabica Coffee Beans from Northern Thailand: Exploring Antidiabetic Metabolites through Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Metabolomic Profiling across Diverse Postharvest Processing Techniques

Tue, 14/11/2023 - 12:00
Foods. 2023 Oct 24;12(21):3893. doi: 10.3390/foods12213893.ABSTRACTCoffee, a widely consumed beverage worldwide, undergoes postharvest methods that influence its physicochemical characteristics, while roasting modulates its composition, affecting sensory attributes. This study investigates the impact of distinct postharvest methods (washed and natural) on the antidiabetic activities, including α-amylase and DPP4, as well as the phytochemical profiling of geological indicator (GI) coffee beans (Coffea arabica L.). The results indicate notable differences in antidiabetic activity and phytochemical profiles between washed and natural processing methods. Coffee beans processed naturally exhibit significant suppression of DPP4 and α-amylase activities (p-value < 0.01) compared to beans processed using the washed technique. TLC profiling using the ratios of the solvent systems of ethyl acetate/dichloromethane (DCM) and acetone/DCM as separation solvents reveals dominant spots for the washed technique. LC-MS/MS-based untargeted metabolomics analysis using principle component analysis (PCA) clearly segregates samples processed by the natural and washed techniques without any overlap region. A total of 1114 phytochemicals, including amino acids and short peptides, are annotated. The natural processing of coffee beans has been shown to yield a slightly higher content of chlorogenic acid (CGA) compared to the washed processing method. Our findings highlight the distinct bioactivities and phytochemical compositions of GI coffee beans processed using different techniques. This information can guide consumers in choosing coffee processing methods that offer potential benefits in terms of alternative treatment for diabetes.PMID:37959013 | DOI:10.3390/foods12213893

Transcriptomic (DNA Microarray) and Metabolome (LC-TOF-MS) Analyses of the Liver in High-Fat Diet Mice after Intranasal Administration of GALP (Galanin-like Peptide)

Tue, 14/11/2023 - 12:00
Int J Mol Sci. 2023 Oct 31;24(21):15825. doi: 10.3390/ijms242115825.ABSTRACTThe aim of this research was to test the efficacy and potential clinical application of intranasal administration of galanin-like peptide (GALP) as an anti-obesity treatment under the hypothesis that GALP prevents obesity in mice fed a high-fat diet (HFD). Focusing on the mechanism of regulation of lipid metabolism in peripheral tissues via the autonomic nervous system, we confirmed that, compared with a control (saline), intranasally administered GALP prevented further body weight gain in diet-induced obesity (DIO) mice with continued access to an HFD. Using an omics-based approach, we identified several genes and metabolites in the liver tissue of DIO mice that were altered by the administration of intranasal GALP. We used whole-genome DNA microarray and metabolomics analyses to determine the anti-obesity effects of intranasal GALP in DIO mice fed an HFD. Transcriptomic profiling revealed the upregulation of flavin-containing dimethylaniline monooxygenase 3 (Fmo3), metallothionein 1 and 2 (Mt1 and Mt2, respectively), and the Aldh1a3, Defa3, and Defa20 genes. Analysis using the DAVID tool showed that intranasal GALP enhanced gene expression related to fatty acid elongation and unsaturated fatty acid synthesis and downregulated gene expression related to lipid and cholesterol synthesis, fat absorption, bile uptake, and excretion. Metabolite analysis revealed increased levels of coenzyme Q10 and oleoylethanolamide in the liver tissue, increased levels of deoxycholic acid (DCA) and taurocholic acid (TCA) in the bile acids, increased levels of taurochenodeoxycholic acid (TCDCA), and decreased levels of ursodeoxycholic acid (UDCA). In conclusion, intranasal GALP administration alleviated weight gain in obese mice fed an HFD via mechanisms involving antioxidant, anti-inflammatory, and fatty acid metabolism effects and genetic alterations. The gene expression data are publicly available at NCBI GSE243376.PMID:37958806 | DOI:10.3390/ijms242115825

The Role of Longevity Assurance Homolog 2/Ceramide Synthase 2 in Bladder Cancer

Tue, 14/11/2023 - 12:00
Int J Mol Sci. 2023 Oct 27;24(21):15668. doi: 10.3390/ijms242115668.ABSTRACTThe human CERS2 gene encodes a ceramide synthase enzyme, known as CERS2 (ceramide synthase 2). This protein is also known as LASS2 (LAG1 longevity assurance homolog 2) and TMSG1 (tumor metastasis-suppressor gene 1). Although previously described as a tumor suppressor for different types of cancer, such as prostate or liver cancer, it has also been observed to promote tumor growth in adenocarcinoma. In this review, we focus on the influence of CERS2 in bladder cancer (BC), approaching the existing literature about its structure and activity, as well as the miRNAs regulating its expression. From a mechanistic point of view, different explanations for the role of CERS2 as an antitumor protein have been proposed, including the production of long-chain ceramides, interaction with vacuolar ATPase, and its function as inhibitor of mitochondrial fission. In addition, we reviewed the literature specifically studying the expression of this gene in both BC and biopsy-derived tumor cell lines, complementing this with an analysis of public gene expression data and its association with disease progression. We also discuss the importance of CERS2 as a biomarker and the presence of CERS2 mRNA in extracellular vesicles isolated from urine.PMID:37958652 | DOI:10.3390/ijms242115668

The Toxicity Differences of Fluralaner against the Red Imported Fire Ant (<em>Solenopsis invicta</em>) at Different Developmental Stages

Tue, 14/11/2023 - 12:00
Int J Mol Sci. 2023 Oct 26;24(21):15627. doi: 10.3390/ijms242115627.ABSTRACTThe red imported fire ant (RIFA), Solenopsis invicta, is an invasive pest that causes damage to agricultural and ecological environments worldwide. Fluralaner is a new isoxazoline pesticide with the potential to become a control agent against RIFA. However, it is not clear whether S. invicta responds the same way to fluralaner at different reproductive stages. The present study firstly evaluated the toxicity of fluralaner to S. invicta at different developmental stages, finding that fourth instar larvae (LD50, 1744.23 mg/kg) and worker ants (LD50, 8.62 mg/kg) were differently susceptible to fluralaner, while the mortality rate of fourth instar larvae was significantly lower at the same concentration of 10 mg/L (5.56 ± 3.14%) than that of worker ants (62.22 ± 3.14%), demonstrating a greater tolerance to fluralaner. Subsequently, the metabolic responses of worker and larval ants to fluralaner stress (10 mg/L) were investigated using non-targeted metabolomics, which indicated that the amount of differential metabolites and the KEGG metabolic pathways enriched were different between workers and larvae when exposed to the same dose (10 mg/L) of fluralaner. Differential metabolites of larvae and worker ants under fluralaner stress were mainly concentrated in organic acids and their derivatives, lipids and lipid-like molecules, nucleosides, nucleotides, and analogues, combined with the enriched metabolic pathways, revealed that the differential metabolic responses of larvae and worker ants were mainly in energy metabolism, detoxification metabolism, and neurotransmitter ligands. Workers consumed more substrates in the arginine synthesis pathway (l-glutamic acid, l-aspartic acid, and fumaric acid) to provide energy for the detoxification (glutathione) of pesticides when exposed to fluralaner stress, and the high accumulation of l-aspartic acid induced excitotoxicity in the worker ants. Larval ants consumed more arachidonic acid to synthesize PG D2, and changes in the metabolism of antioxidants such as catechins, hesperidin, and l-ascorbic acid suggested that larvae were more capable of scavenging the ROS response than worker ants. The results of non-targeted metabolomics successfully revealed differences in the sensitivity of larvae and workers to fluralaner agents, providing insights into the fluralaner control of Solenopsis invicta.PMID:37958611 | DOI:10.3390/ijms242115627

From Fruit Waste to Medical Insight: The Comprehensive Role of Watermelon Rind Extract on Renal Adenocarcinoma Cellular and Transcriptomic Dynamics

Tue, 14/11/2023 - 12:00
Int J Mol Sci. 2023 Oct 26;24(21):15615. doi: 10.3390/ijms242115615.ABSTRACTCancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.PMID:37958599 | DOI:10.3390/ijms242115615

Microbial-Related Metabolites May Be Involved in Eight Major Biological Processes and Represent Potential Diagnostic Markers in Gastric Cancer

Tue, 14/11/2023 - 12:00
Cancers (Basel). 2023 Nov 3;15(21):5271. doi: 10.3390/cancers15215271.ABSTRACTMetabolites associated with microbes regulate human immunity, inhibit bacterial colonization, and promote pathogenicity. Integrating microbe and metabolome research in GC provides a direction for understanding the microbe-associated pathophysiological process of metabolic changes and disease occurrence. The present study included 30 GC patients with 30 cancerous tissues and paired non-cancerous tissues (NCs) as controls. LC-MS/MS metabolomics and 16S rRNA sequencing were performed to obtain the metabolic and microbial characteristics. Integrated analysis of the microbes and metabolomes was conducted to explore the coexistence relationship between the microbial and metabolic characteristics of GC and to identify microbial-related metabolite diagnostic markers. The metabolic analysis showed that the overall metabolite distribution differed between the GC tissues and the NC tissues: 25 metabolites were enriched in the NC tissues and 42 metabolites were enriched in the GC tissues. The α and β microbial diversities were higher in the GC tissues than in the NC tissues, with 11 differential phyla and 52 differential genera. In the correlation and coexistence integrated analysis, 66 differential metabolites were correlated and coexisted, with specific differential microbes. The microbes in the GC tissue likely regulated eight metabolic pathways. In the efficacy evaluation of the microbial-related differential metabolites in the diagnosis of GC, 12 differential metabolites (area under the curve [AUC] >0.9) exerted relatively high diagnostic efficiency, and the combined diagnostic efficacy of 5 to 6 microbial-related differential metabolites was higher than the diagnostic efficacy of a single feature. Therefore, microbial diversity and metabolite distribution differed between the GC tissues and the NC tissues. Microbial-related metabolites may be involved in eight major metabolism-based biological processes in GC and represent potential diagnostic markers.PMID:37958446 | DOI:10.3390/cancers15215271

Characterisation of Aberrant Metabolic Pathways in Hepatoblastoma Using Liquid Chromatography and Tandem Mass Spectrometry (LC-MS/MS)

Tue, 14/11/2023 - 12:00
Cancers (Basel). 2023 Oct 28;15(21):5182. doi: 10.3390/cancers15215182.ABSTRACTHepatoblastoma (HB) is a rare childhood tumour with an evolving molecular landscape. We present the first comprehensive metabolomic analysis using untargeted and targeted liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS) of paired tumour and non-tumour surgical samples in HB patients (n = 8 pairs). This study demonstrates that the metabolomic landscape of HB is distinct from that of non-tumour (NT) liver tissue, with 35 differentially abundant metabolites mapping onto pathways such as fatty acid transport, glycolysis, the tricarboxylic acid (TCA) cycle, branched-chain amino acid degradation and glutathione synthesis. Targeted metabolomics demonstrated reduced short-chain acylcarnitines and a relative accumulation of branched-chain amino acids. Medium- and long-chain acylcarnitines in HB were similar to those in NT. The metabolomic changes reported are consistent with previously reported transcriptomic data from tumour and non-tumour samples (49 out of 54 targets) as well as metabolomic data obtained using other techniques. Gene set enrichment analysis (GSEA) from RNAseq data (n = 32 paired HB and NT samples) demonstrated a downregulation of the carnitine metabolome and immunohistochemistry showed a reduction in CPT1a (n = 15 pairs), which transports fatty acids into the mitochondria, suggesting a lack of utilisation of long-chain fatty acids in HB. Thus, our findings suggest a reduced metabolic flux in HB which is corroborated at the gene expression and protein levels. Further work could yield novel insights and new therapeutic targets.PMID:37958356 | DOI:10.3390/cancers15215182

Immunometabolic Profiling of Chronic Subdural Hematoma through Untargeted Mass Spectrometry Analysis: Preliminary Findings of a Novel Approach

Tue, 14/11/2023 - 12:00
Diagnostics (Basel). 2023 Oct 30;13(21):3345. doi: 10.3390/diagnostics13213345.ABSTRACTObjective: Metabolomics has growing importance in the research of inflammatory processes. Chronic subdural hematoma (cSDH) is considered to be, at least in part, of inflammatory nature, but no metabolic analyses yet exist. Therefore, a mass spectrometry untargeted metabolic analysis was performed on hematoma samples from patients with cSDH. Methods: A prospective analytical cross-sectional study on the efficacy of subperiosteal drains in cSDH was performed. Newly diagnosed patients had the option of granting permission for the collection of a hematoma sample upon its removal. The samples were analyzed using liquid chromatography-mass spectrometry to obtain different types of metabolites from diverse biochemical classes. The statistical analysis included data cleaning, imputation, and log transformation, followed by PCA, PLS-DA, HCA, and ANOVA. The postoperative course of the disease was followed for 3 months. The metabolite concentrations in the hematoma fluid were compared based on whether a recurrence of the disease was recorded within this time frame. Results: Fifty-nine samples from patients who were operated on because of a cSDH were gathered. Among those, 8 samples were eliminated because of missing metabolites, and only 51 samples were analyzed further. Additionally, 39 samples were from patients who showed no recurrence over the course of a 3-month follow-up, and 12 samples were from a group with later recurrence. We recorded a noticeable drop (35%) in the concentration of acylcarnitines in the "recurrence group", where 10 of the 22 tested metabolites showed a significant reduction (p < 0.05). Furthermore, a noticeable reduction in different Acyl-CoA-dehydrogenases was detected (VLCAD-deficiency p < 0.05, MCAD-deficiency p = 0.07). No further changes were detected between both populations. Conclusions: The current study presents a new approach to the research of cSDH. The measurements presented us with new data, which, to date, are without any reference values. Therefore, it is difficult to interpret the information, and our conclusions should be considered to be only speculative. The results do, however, point in the direction of impaired fatty acid oxidation for cases with later recurrence. As fatty acid oxidation plays an important role in inflammatory energy metabolism, the results suggest that inflammatory processes could be aggravated in cases with recurrence. Because our findings are neither proven through further analyses nor offer an obvious therapy option, their implications would not change everyday practice in the management of cSDH. They do, however, present a further possibility of research that might, in the future, be relevant to the therapy.PMID:37958242 | DOI:10.3390/diagnostics13213345

Effect of <em>Hermetia illucens</em> Fat, Compared with That of Soybean Oil and Palm Oil, on Hepatic Lipid Metabolism and Plasma Metabolome in Healthy Rats

Tue, 14/11/2023 - 12:00
Animals (Basel). 2023 Oct 29;13(21):3356. doi: 10.3390/ani13213356.ABSTRACTPalm oil (PO) is currently the most widely used fat source for food production, but insect fat from Hermetia illucens larvae (HF) might be a suitable alternative fat source, because its production is less harmful to the environment. The present study investigated the effect of HF, as compared to PO and soybean oil (SO), on the hepatic lipid metabolism and the plasma metabolome of healthy rats, which were randomly assigned to three groups (n = 10 rats/group), and fed three different semi-synthetic diets containing either SO, PO, or HF as the main fat source for 4 weeks. Feed intake, body weight gain, liver and plasma lipid concentrations, and the hepatic mRNA levels of genes involved in lipid metabolism and inflammation did not differ between groups. Targeted plasma metabolomics revealed 294 out of 630 metabolites analyzed to be different between groups. Principal component analysis showed a clear separation of the plasma metabolomes of the SO group and the other two groups, but no separation of those of the PO and the HF groups. The present study shows that HF exerts no adverse metabolic effects in healthy rats, compared to PO or SO, indicating that HF is a safe alternative fat source to PO for food production.PMID:37958111 | DOI:10.3390/ani13213356

Metabolomic Profiling Reveals Differences in Hypoxia Response between Far Eastern and Siberian Frogs

Tue, 14/11/2023 - 12:00
Animals (Basel). 2023 Oct 27;13(21):3349. doi: 10.3390/ani13213349.ABSTRACTAnoxia is a significant challenge for most animals, as it can lead to tissue damage and death. Among amphibians, the Siberian frog Rana amurensis is the only known species capable of surviving near-zero levels of oxygen in water for a prolonged period. In this study, we aimed to compare metabolomic profiles of the liver, brain, and heart of the Siberian frog exposed to long-term oxygen deprivation (approximately 0.2 mg/L water) with those of the susceptible Far Eastern frog (Rana dybowskii) subjected to short-term hypoxia to the limits of its tolerance. One of the most pronounced features was that the organs of the Far Eastern frog contained more lactate than those of the Siberian frog despite a much shorter exposure time. The amounts of succinate were similar between the two species. Interestingly, glycerol and 2,3-butanediol were found to be significantly accumulated under hypoxia in the Siberian frog, but not in the Far Eastern frog. The role and biosynthesis of these substances are still unclear, but they are most likely formed in certain side pathways of glycolysis. Based on the obtained data, we suggest a pathway for metabolic changes in the Siberian frog under anoxia.PMID:37958105 | DOI:10.3390/ani13213349

Advances and opportunities in unraveling cold-tolerance mechanisms in the world's primary staple food crops

Tue, 14/11/2023 - 12:00
Plant Genome. 2023 Nov 13:e20402. doi: 10.1002/tpg2.20402. Online ahead of print.ABSTRACTTemperatures below or above optimal growth conditions are among the major stressors affecting productivity, end-use quality, and distribution of key staple crops including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays L.). Among temperature stresses, cold stress induces cellular changes that cause oxidative stress and slowdown metabolism, limit growth, and ultimately reduce crop productivity. Perception of cold stress by plant cells leads to the activation of cold-responsive transcription factors and downstream genes, which ultimately impart cold tolerance. The response triggered in crops to cold stress includes gene expression/suppression, the accumulation of sugars upon chilling, and signaling molecules, among others. Much of the information on the effects of cold stress on perception, signal transduction, gene expression, and plant metabolism are available in the model plant Arabidopsis but somewhat lacking in major crops. Hence, a complete understanding of the molecular mechanisms by which staple crops respond to cold stress remain largely unknown. Here, we make an effort to elaborate on the molecular mechanisms employed in response to low-temperature stress. We summarize the effects of cold stress on the growth and development of these crops, the mechanism of cold perception, and the role of various sensors and transducers in cold signaling. We discuss the progress in cold tolerance research at the genome, transcriptome, proteome, and metabolome levels and highlight how these findings provide opportunities for designing cold-tolerant crops for the future.PMID:37957947 | DOI:10.1002/tpg2.20402

Investigation of Ginseng-Ophiopogon Injection on Enhancing Physical Function by Pharmacogenomics and Metabolomics Evaluation

Tue, 14/11/2023 - 12:00
Comb Chem High Throughput Screen. 2023 Nov 7. doi: 10.2174/0113862073244102231020050502. Online ahead of print.ABSTRACTBACKGROUND: Ginseng-ophiopogon injection (GOI) is a clinically commonly used drug for Qi deficiency syndrome characterized by decreased physical function in China. This study aimed to clarify common pharmacological mechanisms of GOI in enhancing physical function.METHODS: We performed an integrative strategy of weight-loaded swimming tests in cold water (5.5 °C), hepatic glycogen and superoxide dismutase (SOD) detections, GC-TOF/MS-based metabolomics, multivariate statistical techniques, network pharmacology of known targets and constituents, and KEGG pathway analysis of GOI.RESULTS: Compared with the control group, GOI showed significant increases in the weightloaded swimming time, hepatic levels of glycogen and SOD. Additionally, 34 significantly differential serum metabolites referred to glycolysis, gluconeogenesis and arginine biosynthesis were affected by GOI. The target collection revealed 98 metabolic targets and 50 experimentreported drug targets of ingredients in GOI involved in enhancing physical function. Further, the PPI network analysis revealed that 8 ingredients of GOI, such as ginsenoside Re, ginsenoside Rf, ginsenoside Rg1, and notoginsenoside R1, were well-associated with 48 hub targets, which had good ability in enhancing physical function. Meanwhile, nine hub proteins, such as SOD, mechanistic target of Rapamycin (mTOR), and nitric oxide synthases, were confirmed to be affected by GOI. Finally, 98 enriched KEGG pathways (P<0.01 and FDR<0.001) of GOI were obtained from 48 hub targets of the PPI network. Among them, pathways in cancer, Chagas disease, lipid and atherosclerosis, and PI3K-Akt signaling pathway ranked top four.CONCLUSIONS: This study provided an integrative and efficient approach to understanding the molecular mechanism of GOI in enhancing physical function.PMID:37957852 | DOI:10.2174/0113862073244102231020050502

Exploring the feasibility of using long-term stored newborn dried blood spots to identify metabolic features for congenital heart disease screening

Tue, 14/11/2023 - 12:00
Biomark Res. 2023 Nov 13;11(1):97. doi: 10.1186/s40364-023-00536-y.ABSTRACTCongenital heart disease (CHD) represents a significant contributor to both morbidity and mortality in neonates and children. There's currently no analogous dried blood spot (DBS) screening for CHD immediately after birth. This study was set to assess the feasibility of using DBS to identify reliable metabolite biomarkers with clinical relevance, with the aim to screen and classify CHD utilizing the DBS. We assembled a cohort of DBS datasets from the California Department of Public Health (CDPH) Biobank, encompassing both normal controls and three pre-defined CHD categories. A DBS-based quantitative metabolomics method was developed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). We conducted a correlation analysis comparing the absolute quantitated metabolite concentration in DBS against the CDPH NBS records to verify the reliability of metabolic profiling. For hydrophilic and hydrophobic metabolites, we executed significant pathway and metabolite analyses respectively. Logistic and LightGBM models were established to aid in CHD discrimination and classification. Consistent and reliable quantification of metabolites were demonstrated in DBS samples stored for up to 15 years. We discerned dysregulated metabolic pathways in CHD patients, including deviations in lipid and energy metabolism, as well as oxidative stress pathways. Furthermore, we identified three metabolites and twelve metabolites as potential biomarkers for CHD assessment and subtypes classifying. This study is the first to confirm the feasibility of validating metabolite profiling results using long-term stored DBS samples. Our findings highlight the potential clinical applications of our DBS-based methods for CHD screening and subtype classification.PMID:37957758 | DOI:10.1186/s40364-023-00536-y

Sensitive and Specific Global Cell Surface <em>N</em>-Glycoproteomics Shows Profound Differences Between Glycosylation Sites and Subcellular Components

Mon, 13/11/2023 - 12:00
Anal Chem. 2023 Nov 13. doi: 10.1021/acs.analchem.3c03626. Online ahead of print.ABSTRACTCell surface glycans are essential for establishing cell communication, adhesion, and migration. However, it remains challenging to obtain cell surface-specific information about glycoconjugate structures. Acquiring this information is essential for unraveling the functional role of glycans and for exploiting them as clinical targets. To specifically analyze the N-glycoprotein forms expressed at the cell surface, we developed a C18 liquid chromatography (LC)-mass spectrometry (MS)-based glycoproteomics method in combination with highly specific cell surface protein labeling and enrichment using a biotin label. The surface-specificity of the method was validated by MS-based proteomics of subcellular component marker proteins. Using the human keratinocytes N/TERT-1 as a model system, we identified and quantified the glycosylation of hundreds of cell surface N-glycosylation sites. This approach allowed us to study the glycoforms present at the functional relevant cell surface, omitting immaturely glycosylated proteins present in the secretory pathway. Interestingly, the different stages of N-glycan processing at individual sites displayed at the cell surface were found to correlate with their accessibility for ER-residing processing enzymes, as investigated through molecular dynamics simulations. Using the new approach, we compared N-glycosylation sites of proteins expressed on the cell surface to their counterparts in a total cell lysate, showing profound differences in glycosylation between the subcellular components and indicating the relevance of the method for future studies in understanding contextual glycan functions.PMID:37956981 | DOI:10.1021/acs.analchem.3c03626

Metabolic engineering of Paenibacillus polymyxa for effective production of 2,3-butanediol from poplar hydrolysate

Mon, 13/11/2023 - 12:00
Bioresour Technol. 2023 Nov 11:130002. doi: 10.1016/j.biortech.2023.130002. Online ahead of print.ABSTRACT2,3-Butanediol is an essential renewable fuel. The synthesis of 2,3-butanediol using Paenibacillus polymyxa has attracted increasing attention. In this study, the glucose-derived 2,3-butanediol pathway and its related genes were identified in P. polymyxa using combined transcriptome and metabolome analyses. The functions of two distinct genes ldh1 and ldh3 encoding lactate dehydrogenase, the gene bdh encoding butanediol dehydrogenase, and the spore-forming genes spo0A and spoIIE were studied and directly knocked out or overexpressed in the genome sequence to improve the production of 2,3-butanediol. A raw hydrolysate of poplar wood containing 27 g/L glucose and 15 g/L xylose was used to produce 2,3-butanediol with a maximum yield of 0.465 g/g and 93 % of the maximum theoretical value, and the total production of 2,3-butanediol and ethanol reached 21.7 g/L. This study provides a new scheme for engineered P. polymyxa to produce renewable fuels using raw poplar wood hydrolysates.PMID:37956945 | DOI:10.1016/j.biortech.2023.130002

Rice foliar-adapted Pantoea species: Promising microbial biostimulants enhancing rice resilience against foliar pathogens, Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae

Mon, 13/11/2023 - 12:00
Microb Pathog. 2023 Nov 11:106445. doi: 10.1016/j.micpath.2023.106445. Online ahead of print.ABSTRACTFoliar fungal blast and bacterial leaf blight have significant impacts on rice production, and their management through host resistance and agrochemicals has proven inadequate. To achieve their sustainable management, innovative approaches like leveraging the foliar microbiome, which collaborates with plants and competes against pathogens, are essential. In our study, we isolated three Pantoea bacterial strains (P. agglomerans Os-Ep-PPA-1b, P. vagans Os-Ep-PPA-3b, and P. deleyi Os-Ep-VPA-9a) from the rice phylloplane. These isolates exhibited antimicrobial action through their metabolome and volatilome, while also promoting rice growth.Our analysis, using Gas Chromatography-Mass Spectrometry (GC-MS), revealed the presence of various antimicrobial compounds such as esters and fatty acids produced by these Pantoea isolates. Inoculating rice seedlings with P. agglomerans and P. vagans led to increased root and shoot growth. Additionally, bacterized seedlings displayed enhanced immunocompetence, as evidenced by upregulated expressions of defense genes (OsEDS1, OsFLS2, OsPDF2.2, ACO4, ICS OsPR1a, OsNPR1.3, OsPAD4, OsCERK1.1), along with heightened activities of defense enzymes like Polyphenol Oxidase and Peroxidase. These plants also exhibited elevated levels of total phenols.In field trials, the Pantoea isolates contributed to improved plant growth, exemplified by increased flag-leaf length, panicle number, and grains per panicle, while simultaneously reducing the incidence of chaffy grains. Hypersensitivity assays performed on a model plant, tobacco, confirmed the non-pathogenic nature of these Pantoea isolates.In summary, our study underscores the potential of Pantoea bacteria in combatting rice foliar diseases. Coupled with their remarkable growth-promoting and biostimulant capabilities, these findings position Pantoea as promising agents for enhancing rice cultivation.PMID:37956936 | DOI:10.1016/j.micpath.2023.106445

Pages