Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Regulatory Effects of <em>Ganoderma lucidum</em>, <em>Grifola frondosa</em>, and <em>American ginseng</em> Extract Formulation on Gut Microbiota and Fecal Metabolomics in Mice

Sat, 28/10/2023 - 12:00
Foods. 2023 Oct 17;12(20):3804. doi: 10.3390/foods12203804.ABSTRACTThe bioactivities of Ganoderma lucidum, Grifola frondosa, and American ginseng have been extensively studied and documented. However, the effects of their complexes on the structural properties of intestinal microbiota and fecal metabolism remain unclear. Therefore, this paper aims to present a preliminary study to shed light on this aspect. In this study, an immunocompromised mouse model was induced using cyclophosphamide, and Ganoderma lucidum, Grifola frondosa, and American ginseng extract formulation (referred to as JGGA) were administered via gavage to investigate their modulatory effects on gut microbiota and fecal metabolism in mice. The effects of JGGA on immune enhancement were explored using serum test kits, hematoxylin-eosin staining, 16SrDNA high-throughput sequencing, and UHPLC-QE-MS metabolomics. The findings revealed potential mechanisms underlying the immune-enhancing effects of JGGA. Specifically, JGGA administration resulted in an improved body weight, thymic index, splenic index, carbon scavenging ability, hypersensitivity, and cellular inflammatory factor expression levels in mice. Further analysis demonstrated that JGGA reduced the abundance of Firmicutes, Proteobacteria, and Actinobacteria, while increasing the abundance of Bacteroidetes. Additionally, JGGA modulated the levels of 30 fecal metabolites. These results suggest that the immune enhancement observed with JGGA may be attributed to the targeted modulation of gut microbiota and fecal metabolism, thus promoting increased immunity in the body.PMID:37893697 | DOI:10.3390/foods12203804

The Rising Role of Omics and Meta-Omics in Table Olive Research

Sat, 28/10/2023 - 12:00
Foods. 2023 Oct 15;12(20):3783. doi: 10.3390/foods12203783.ABSTRACTTable olives are often the result of fermentation, a process where microorganisms transform raw materials into the final product. The microbial community can significantly impact the organoleptic characteristics and safety of table olives, and it is influenced by various factors, including the processing methods. Traditional culture-dependent techniques capture only a fraction of table olives' intricate microbiota, prompting a shift toward culture-independent methods to address this knowledge gap. This review explores recent advances in table olive research through omics and meta-omics approaches. Genomic analysis of microorganisms isolated from table olives has revealed multiple genes linked to technological and probiotic attributes. An increasing number of studies concern metagenomics and metabolomics analyses of table olives. The former offers comprehensive insights into microbial diversity and function, while the latter identifies aroma and flavor determinants. Although proteomics and transcriptomics studies remain limited in the field, they have the potential to reveal deeper layers of table olives' microbiome composition and functionality. Despite the challenges associated with implementing multi-omics approaches, such as the reliance on advanced bioinformatics tools and computational resources, they hold the promise of groundbreaking advances in table olive processing technology.PMID:37893676 | DOI:10.3390/foods12203783

Editorial for the Special Issue "NMR- and MS-Based Metabolomics Approaches for Local and Traditional Foods' Characterization"

Sat, 28/10/2023 - 12:00
Foods. 2023 Oct 14;12(20):3776. doi: 10.3390/foods12203776.ABSTRACTMetabolomics is a powerful tool in food sciences, widely used in food analysis for authenticity and traceability assessment and regulatory compliance, processing, quality, and safety [...].PMID:37893669 | DOI:10.3390/foods12203776

Effect of Thermostable Enzymes Produced by Psychrotrophic Bacteria in Raw Milk on the Quality of Ultra-High Temperature Sterilized Milk

Sat, 28/10/2023 - 12:00
Foods. 2023 Oct 12;12(20):3752. doi: 10.3390/foods12203752.ABSTRACTUltra-high temperature sterilized milk (UHT) is a popular dairy product known for its long shelf life and convenience. However, protein gel aging and fat quality defects like creaming and flavor deterioration may arise during storage. These problems are primarily caused by thermostable enzymes produced by psychrotrophic bacteria. In this study, four representative psychrotrophic bacteria strains which can produce thermostable enzymes were selected to contaminate UHT milk artificially. After 11, 11, 13, and 17 weeks of storage, the milk samples, which were contaminated with Pseudomonas fluorescens, Chryseobacterium carnipullorum, Lactococcus raffinolactis and Acinetobacter guillouiae, respectively, demonstrated notable whey separation. The investigation included analyzing the protein and fat content in the upper and bottom layers of the milk, as well as examining the particle size, Zeta potential, and pH in four sample groups, indicating that the stability of UHT milk decreases over time. Moreover, the spoiled milk samples exhibited a bitter taste, with the dominant odor being attributed to ketones and acids. The metabolomics analysis revealed that three key metabolic pathways, namely ABC transporters, butanoate metabolism, and alanine, aspartate, and glutamate metabolism, were found to be involved in the production of thermostable enzymes by psychrotrophic bacteria. These enzymes greatly impact the taste and nutrient content of UHT milk. This finding provides a theoretical basis for further investigation into the mechanism of spoilage.PMID:37893644 | DOI:10.3390/foods12203752

Tart Cherry (<em>Prunus cerasus</em> L.) Pit Extracts Protect Human Skin Cells against Oxidative Stress: Unlocking Sustainable Uses for Food Industry Byproducts

Sat, 28/10/2023 - 12:00
Foods. 2023 Oct 12;12(20):3748. doi: 10.3390/foods12203748.ABSTRACTIndustrial processing of tart cherries (Prunus cerasus L.) produces bioproducts like cherry pits (CP), which contribute to adverse environmental effects. To identify sustainable strategies to minimize the environmental impact of cherry processing, we investigated their potential value as antioxidants for prospective utilization within cosmeceutical applications. Untargeted metabolomic analyses of water and water: ethanol CP extracts using an eco-friendly technique revealed significant enrichment in coumaroyl derivatives and flavonoids with congruent metabolite representation regardless of the extraction solvent. The antioxidant activity of tart CP extracts was evaluated on human skin cells exposed to H2O2 or LPS, modeling environmentally induced oxidants. Notably, both CP extracts provide antioxidant activity by reducing H2O2 or LPS-induced ROS in human skin keratinocytes without affecting cell viability. The CP extracts increased the expression of CAT and SOD1 genes encoding antioxidant regulatory enzymes while decreasing the expression of NOS2, a pro-oxidant regulator. These findings reveal the antioxidant properties of tart CP, offering new opportunities to produce natural-based skin care products and adding economic value while providing sustainable options to reduce the environmental impact of food byproducts.PMID:37893640 | DOI:10.3390/foods12203748

Metabolomic Phenotype of Hepatic Steatosis and Fibrosis in Mexican Children Living with Obesity

Sat, 28/10/2023 - 12:00
Medicina (Kaunas). 2023 Oct 7;59(10):1785. doi: 10.3390/medicina59101785.ABSTRACTBackground and Objectives: Metabolic-dysfunction-associated steatotic liver disease or MASLD is the main cause of chronic liver diseases in children, and it is estimated to affect 35% of children living with obesity. This study aimed to identify metabolic phenotypes associated with two advanced stages of MASLD (hepatic steatosis and hepatic steatosis plus fibrosis) in Mexican children with obesity. Materials and Methods: This is a cross-sectional analysis derived from a randomized clinical trial conducted in children and adolescents with obesity aged 8 to 16 years. Anthropometric and biochemical data were measured, and targeted metabolomic analyses were carried out using mass spectrometry. Liver steatosis and fibrosis were estimated using transient elastography (Fibroscan® Echosens, Paris, France). Three groups were studied: a non-MASLD group, an MASLD group, and a group for MASLD + fibrosis. A partial least squares discriminant analysis (PLS-DA) was performed to identify the discrimination between the study groups and to visualize the differences between their heatmaps; also, Variable Importance Projection (VIP) plots were graphed. A VIP score of >1.5 was considered to establish the importance of metabolites and biochemical parameters that characterized each group. Logistic regression models were constructed considering VIP scores of >1.5, and the receiver operating characteristic (ROC) curves were estimated to evaluate different combinations of variables. Results: The metabolic MASLD phenotype was associated with increased concentrations of ALT and decreased arginine, glycine, and acylcarnitine (AC) AC5:1, while MASLD + fibrosis, an advanced stage of MASLD, was associated with a phenotype characterized by increased concentrations of ALT, proline, and alanine and a decreased Matsuda Index. Conclusions: The metabolic MASLD phenotype changes as this metabolic dysfunction progresses. Understanding metabolic disturbances in MASLD would allow for early identification and the development of intervention strategies focused on limiting the progression of liver damage in children and adolescents.PMID:37893503 | DOI:10.3390/medicina59101785

Stable Isotope-Assisted Untargeted Metabolomics Identifies ALDH1A1-Driven Erythronate Accumulation in Lung Cancer Cells

Sat, 28/10/2023 - 12:00
Biomedicines. 2023 Oct 19;11(10):2842. doi: 10.3390/biomedicines11102842.ABSTRACTUsing an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer.PMID:37893215 | DOI:10.3390/biomedicines11102842

Stratification of Amniotic Fluid Cells and Amniotic Fluid by Sex Opens Up New Perspectives on Fetal Health

Sat, 28/10/2023 - 12:00
Biomedicines. 2023 Oct 18;11(10):2830. doi: 10.3390/biomedicines11102830.ABSTRACTAmniotic fluid is essential for fetus wellbeing and is used to monitor pregnancy and predict fetal outcomes. Sex affects health and medicine from the beginning of life, but knowledge of its influence on cell-depleted amniotic fluid (AF) and amniotic fluid cells (AFCs) is still neglected. We evaluated sex-related differences in AF and in AFCs to extend personalized medicine to prenatal life. AFCs and AF were obtained from healthy Caucasian pregnant women who underwent amniocentesis at the 16th-18th week of gestation for advanced maternal age. In the AF, inflammation biomarkers (TNFα, IL6, IL8, and IL4), malondialdehyde, nitrites, amino acids, and acylcarnitines were measured. Estrogen receptors and cell fate (autophagy, apoptosis, senescence) were measured in AFCs. TNFα, IL8, and IL4 were higher in female AF, whereas IL6, nitrites, and MDA were similar. Valine was higher in male AF, whereas several acylcarnitines were sexually different, suggesting a mitochondrial involvement in establishing sex differences. Female AFCs displayed higher expression of ERα protein and a higher ERα/ERβ ratio. The ratio of LC3II/I, an index of autophagy, was higher in female AFCs, while LC3 gene was similar in both sexes. No significant sex differences were found in the expression of the lysosomal protein LAMP1, while p62 was higher in male AFCs. LAMP1 gene was upregulated in male AFCs, while p62 gene was upregulated in female ones. Finally, caspase 9 activity and senescence linked to telomeres were higher in female AFCs, while caspase 3 and β-galactosidase activities were similar. This study supports the idea that sex differences start very early in prenatal life and influence specific parameters, suggesting that it may be relevant to appreciate sex differences to cover knowledge gaps. This might lead to improving the diagnosis of risk prediction for pregnancy complications and achieving a more satisfactory monitoring of fetus health, even preventing future diseases in adulthood.PMID:37893203 | DOI:10.3390/biomedicines11102830

Metabolic profiling of Mytilus coruscus mantle in response of shell repairing under acute acidification

Fri, 27/10/2023 - 12:00
PLoS One. 2023 Oct 27;18(10):e0293565. doi: 10.1371/journal.pone.0293565. eCollection 2023.ABSTRACTMytilus coruscus is an economically important marine bivalve mollusk found in the Yangtze River estuary, which experiences dramatic pH fluctuations due to seasonal freshwater input and suffer from shell fracture or injury in the natural environment. In this study, we used intact-shell and damaged-shell M. coruscus and performed metabolomic analysis, free amino acids analysis, calcium-positive staining, and intracellular calcium level tests in the mantle to investigate whether the mantle-specific metabolites can be induced by acute sea-water acidification and understand how the mantle responds to acute acidification during the shell repair process. We observed that both shell damage and acute acidification induced alterations in phospholipids, amino acids, nucleotides, organic acids, benzenoids, and their analogs and derivatives. Glycylproline, spicamycin, and 2-aminoheptanoic acid (2-AHA) are explicitly induced by shell damage. Betaine, aspartate, and oxidized glutathione are specifically induced by acute acidification. Our results show different metabolic patterns in the mussel mantle in response to different stressors, which can help elucidate the shell repair process under ocean acidification. furthermore, metabolic processes related to energy supply, cell function, signal transduction, and amino acid synthesis are disturbed by shell damage and/or acute acidification, indicating that both shell damage and acute acidification increased energy consumption, and disturb phospholipid synthesis, osmotic regulation, and redox balance. Free amino acid analysis and enzymatic activity assays partially confirmed our findings, highlighting the adaptation of M. coruscus to dramatic pH fluctuations in the Yangtze River estuary.PMID:37889901 | DOI:10.1371/journal.pone.0293565

Imaging Plant Metabolism in situ

Fri, 27/10/2023 - 12:00
J Exp Bot. 2023 Oct 27:erad423. doi: 10.1093/jxb/erad423. Online ahead of print.ABSTRACTMass spectrometry imaging (MSI) has emerged as an invaluable analytical technique for investigating the spatial distribution of molecules within biological systems. In the realm of plant science, MSI is increasingly employed to explore metabolic processes across a wide array of plant tissues, including those in leaves, fruits, stems, roots, and seeds, spanning various plant systems such as model species, staple and energy crops, and medicinal plants. By generating spatial maps of metabolites, MSI has elucidated the distribution patterns of diverse metabolites and phytochemicals, encompassing lipids, carbohydrates, amino acids, organic acids, phenolics, terpenes, alkaloids, vitamins, pigments, and others, thereby providing insights into their metabolic pathways and functional roles. In this review, we present recent MSI studies that demonstrate the advances made in visualizing the plant spatial metabolome. Moreover, we emphasize the technical progresses that enhance the identification and interpretation of spatial metabolite maps. Within a mere decade since the inception of plant MSI studies, this robust technology is poised to continue as a vital tool for tackling complex challenges in plant metabolism.PMID:37889862 | DOI:10.1093/jxb/erad423

Effect of Acute Melatonin Injection on Metabolomic and Testicular Artery Hemodynamic Changes and Circulating Hormones in Shiba Goats under Sub-Tropical Environmental Conditions

Fri, 27/10/2023 - 12:00
Animals (Basel). 2023 May 29;13(11):1794. doi: 10.3390/ani13111794.ABSTRACTThe beneficial effects of melatonin were investigated to mitigate various detrimental effects and toxicity on reproductive performance. The present study aimed, for the first time, to explore the effect of intravenous melatonin injection on testicular artery hemodynamics (TH) and metabolomic changes, reproductive hormones in heat-stressed bucks. Ten bucks were randomly split into two groups (five each): (1) the melatonin group, treated with a single intravenous dose of melatonin solution containing 10 mg melatonin each, and (2) the control group, which was treated with 10 mL of the vehicle without melatonin. Changes in the TH at the level of the supra testicular artery (STA) were assessed by triplex ultrasonography just before (0 h) and at 0.5, 2, 7, 24, and 168 h after melatonin or vehicle administration. Doppler velocity parameters of peak systolic velocity (PSV; cm/s), end-diastolic velocity (EDV; cm/s), and time average maximum velocity (TAMAX; cm/s) were measured. Doppler indices (resistive index; RI and pulsatility index; PI), systole/diastole (S/D) ratio and total arterial blood flow volume (TABFV; ml/minute) were measured. Peripheral concentrations of FSH, LH, inhibin, melatonin, testosterone (T), estradiol (E2), and cortisol were measured just before injection (0 h) and at 0.5, 2, 7, and 24 h and daily up to day 7 post administration in both groups. Results revealed reductions in the RI values and increases in the TABFV in the melatonin group compared to the control one, especially 2 h after administration. Significant increases in concentrations of FSH, T, E2, and melatonin and decreases in cortisol and inhibin in the melatonin group compared to the control one. Plasma metabolomic analysis at 2 h indicated the up-regulation of L-glutamine, L-arginine, sorbitol, D-glucose, ascorbic acid, and ornithine and the down-regulation of D-xylose, D-arabitol, ribitol, and oleic acid in the melatonin versus the control group. In conclusion, acute administration of melatonin (10 mg IV) enhanced testicular artery blood flow and plasma reproductive hormones in the Shiba goat under heat-stress circumstances.PMID:37889744 | DOI:10.3390/ani13111794

Progesterone and Androstenedione Are Important Follicular Fluid Factors Regulating Porcine Oocyte Maturation Quality

Fri, 27/10/2023 - 12:00
Animals (Basel). 2023 May 30;13(11):1811. doi: 10.3390/ani13111811.ABSTRACTOocytes matured in vitro are useful for assisted human and farm animal reproduction. However, the quality of in vitro matured oocytes is usually lower than that of in vivo matured oocytes, possibly due to the absence of some important signal regulators in vitro. In this study, untargeted metabolomics was used to detect the changes in the metabolites in the follicular fluid (FF) during in vivo pig oocyte maturation and in the culture medium during in vitro maturation. Our results showed that the total metabolite changing profile of the in vivo FF was different from that of the in vitro maturation medium, but the levels of 23 differentially expressed metabolites (DEMs) changed by following the same trend during both in vivo and in vitro pig oocyte maturation. These 23 metabolites may be important regulators of porcine oocyte maturation. We found that progesterone and androstenedione, two factors in the ovarian steroidogenesis pathway enriched from the DEMs, were upregulated in the FF during in vivo pig oocyte maturation. The levels of these two factors were 31 and 20 fold, respectively, and they were higher in the FF than in the culture medium at the oocyte mature stage. The supplementation of progesterone and androstenedione during in vitro maturation significantly improved the pig oocyte maturation rate and subsequent embryo developmental competence. Our finding suggests that a metabolic abnormality during in vitro pig oocyte maturation affects the quality of the matured oocytes. This study identified some important metabolites that regulate oocyte maturation and their developmental potential, which will be helpful to improve assisted animal and human reproduction.PMID:37889685 | DOI:10.3390/ani13111811

Multi-omic prediction of incident type 2 diabetes

Fri, 27/10/2023 - 12:00
Diabetologia. 2023 Oct 27. doi: 10.1007/s00125-023-06027-x. Online ahead of print.ABSTRACTAIMS/HYPOTHESIS: The identification of people who are at high risk of developing type 2 diabetes is a key part of population-level prevention strategies. Previous studies have evaluated the predictive utility of omics measurements, such as metabolites, proteins or polygenic scores, but have considered these separately. The improvement that combined omics biomarkers can provide over and above current clinical standard models is unclear. The aim of this study was to test the predictive performance of genome, proteome, metabolome and clinical biomarkers when added to established clinical prediction models for type 2 diabetes.METHODS: We developed sparse interpretable prediction models in a prospective, nested type 2 diabetes case-cohort study (N=1105, incident type 2 diabetes cases=375) with 10,792 person-years of follow-up, selecting from 5759 features across the genome, proteome, metabolome and clinical biomarkers using least absolute shrinkage and selection operator (LASSO) regression. We compared the predictive performance of omics-derived predictors with a clinical model including the variables from the Cambridge Diabetes Risk Score and HbA1c.RESULTS: Among single omics prediction models that did not include clinical risk factors, the top ten proteins alone achieved the highest performance (concordance index [C index]=0.82 [95% CI 0.75, 0.88]), suggesting the proteome as the most informative single omic layer in the absence of clinical information. However, the largest improvement in prediction of type 2 diabetes incidence over and above the clinical model was achieved by the top ten features across several omic layers (C index=0.87 [95% CI 0.82, 0.92], Δ C index=0.05, p=0.045). This improvement by the top ten omic features was also evident in individuals with HbA1c <42 mmol/mol (6.0%), the threshold for prediabetes (C index=0.84 [95% CI 0.77, 0.90], Δ C index=0.07, p=0.03), the group in whom prediction would be most useful since they are not targeted for preventative interventions by current clinical guidelines. In this subgroup, the type 2 diabetes polygenic risk score was the major contributor to the improvement in prediction, and achieved a comparable improvement in performance when added onto the clinical model alone (C index=0.83 [95% CI 0.75, 0.90], Δ C index=0.06, p=0.002). However, compared with those with prediabetes, individuals at high polygenic risk in this group had only around half the absolute risk for type 2 diabetes over a 20 year period.CONCLUSIONS/INTERPRETATION: Omic approaches provided marginal improvements in prediction of incident type 2 diabetes. However, while a polygenic risk score does improve prediction in people with an HbA1c in the normoglycaemic range, the group in whom prediction would be most useful, even individuals with a high polygenic burden in that subgroup had a low absolute type 2 diabetes risk. This suggests a limited feasibility of implementing targeted population-based genetic screening for preventative interventions.PMID:37889320 | DOI:10.1007/s00125-023-06027-x

Program for Integration and Rapid Analysis of Mass Isotopomer Distributions (PIRAMID)

Fri, 27/10/2023 - 12:00
Bioinformatics. 2023 Oct 27:btad661. doi: 10.1093/bioinformatics/btad661. Online ahead of print.ABSTRACTThe analysis of stable isotope labeling experiments requires accurate, efficient, and reproducible quantification of mass isotopomer distributions (MIDs), which is not a core feature of general-purpose metabolomics software tools that are optimized to quantify metabolite abundance. Here we present PIRAMID, a MATLAB-based tool that addresses this need by offering a user-friendly, graphical user interface (GUI)-driven program to automate the extraction of isotopic information from mass spectrometry (MS) data sets. This tool can simultaneously extract ion chromatograms for various metabolites from multiple data files in common vendor-agnostic file formats, locate chromatographic peaks based on a targeted list of characteristic ions and retention times, and integrate MIDs for each target ion. These MIDs can be corrected for natural isotopic background based on the user-defined molecular formula of each ion. PIRAMID offers support for datasets acquired from low- or high-resolution (HR) MS, and single (MS) or tandem (MS/MS) instruments. It also enables the analysis of single or dual labeling experiments using a variety of isotopes (i.e., 2H, 13C, 15N, 18O, 34S).AVAILABILITY: MATLAB p-code files are freely available for non-commercial use and can be downloaded from https://mfa.vueinnovations.com/. Commercial licenses are also available.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.PMID:37889279 | DOI:10.1093/bioinformatics/btad661

Screening the NCI diversity set V for anti-MRSA activity: cefoxitin synergy and LC-MS/MS confirmation of folate/thymidine biosynthesis inhibition

Fri, 27/10/2023 - 12:00
Microbiol Spectr. 2023 Oct 27:e0054123. doi: 10.1128/spectrum.00541-23. Online ahead of print.ABSTRACTNew antibacterial agents and agent combinations are urgently needed to combat antimicrobial resistance. A multidimensional chemical library screening strategy was used to identify compounds in the National Cancer Institute (NCI) diversity set V library (1,593 compounds) with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity. In this effort, library compounds were screened for anti-MRSA activity in both their original [un-metabolized (UM)] and human liver microsome-metabolized [post-metabolized (PM)] forms and in the absence and presence of sub-minimum inhibitory concentration (MIC) levels of cefoxitin. This strategy allows for the identification of intrinsically active agents, agents with active metabolites, and agents that can act synergistically with cefoxitin. Sixteen UM compounds with MICs ≤ 12.5 µM were identified. No agents with substantially enhanced activity after microsomal metabolism were found. Several agents showed significant apparent synergy with cefoxitin, and checkerboard assays were used to confirm synergy for four of these (celastrol, porfiromycin, 4-quinazolinediamine, and teniposide). A follow-up comparative screen in the absence and presence of 4-µM thymidine was used to identify three agents as likely folate/thymidine biosynthesis inhibitors. A liquid chromatography-mass spectrometry (LC-MS/MS) assay for deoxythymidine triphosphate (dTTP) was used to confirm these three as suppressing dTTP biosynthesis in MRSA. Bactericidal vs bacteriostatic activity was also evaluated. This study further demonstrates the utility of comparative library screening to identify novel bioactive agents with interesting synergies and biological activities. The identification of several folate/thymidine biosynthesis inhibitors from this small screen indicates that this pathway is a viable target for new drug discovery efforts. IMPORTANCE New antibacterial agents are urgently needed to counter increasingly resistant bacteria. One approach to this problem is library screening for new antibacterial agents. Library screening efforts can be improved by increasing the information content of the screening effort. In this study, we screened the National Cancer Institute diversity set V against methicillin-resistant Staphylococcus aureus (MRSA) with several enhancements. One of these is to screen the library before and after microsomal metabolism as means to identify potential active metabolites. A second enhancement is to screen the library in the absence and presence of sub-minimum inhibitory concentration levels of another antibiotic, such as cefoxitin in this study. This identified four agents with synergistic activity with cefoxitin out of 16 agents with good MRSA activity alone. Finally, active agents from this effort were counter-screened in the presence of thymidine, which quickly identified three folate/thymidine biosynthesis inhibitors, and also screened for bactericidal vs bacteriostatic activity.PMID:37888993 | DOI:10.1128/spectrum.00541-23

The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice

Fri, 27/10/2023 - 12:00
Toxics. 2023 Oct 1;11(10):833. doi: 10.3390/toxics11100833.ABSTRACTInorganic arsenic in drinking water is prioritized as a top environmental contaminant by the World Health Organization, with over 230 million people potentially being exposed. Arsenic toxicity has been well documented and is associated with a plethora of human diseases, including diabetes, as established in numerous animal and epidemiological studies. Our previous study revealed that arsenic exposure leads to the inhibition of nuclear receptors, including LXR/RXR. To this end, FXR is a nuclear receptor central to glucose and lipid metabolism. However, limited studies are available for understanding arsenic exposure-FXR interactions. Herein, we report that FXR knockout mice developed more profound glucose intolerance than wild-type mice upon arsenic exposure, supporting the regulatory role of FXR in arsenic-induced glucose intolerance. We further exposed mice to arsenic and tested if GW4064, a FXR agonist, could improve glucose intolerance and dysregulation of hepatic proteins and serum metabolites. Our data showed arsenic-induced glucose intolerance was remarkably diminished by GW4064, accompanied by a significant ratio of alleviation of dysregulation in hepatic proteins (83%) and annotated serum metabolites (58%). In particular, hepatic proteins "rescued" from arsenic toxicity by GW4064 featured members of glucose and lipid utilization. For instance, the expression of PCK1, a candidate gene for diabetes and obesity that facilitates gluconeogenesis, was repressed under arsenic exposure in the liver, but revived with the GW4064 supplement. Together, our comprehensive dataset indicates FXR plays a key role and may serve as a potential therapeutic for arsenic-induced metabolic disorders.PMID:37888683 | DOI:10.3390/toxics11100833

Metabolite Profiling in the Liver, Plasma and Milk of Dairy Cows Exposed to Tansy Ragwort (<em>Senecio jacobae</em>) Pyrrolizidine Alkaloids

Fri, 27/10/2023 - 12:00
Toxins (Basel). 2023 Oct 6;15(10):601. doi: 10.3390/toxins15100601.ABSTRACTBACKGROUND: Plant-derived pyrrolizidine alkaloids (PAs) in feed cause metabolic disturbances in farm animals resulting in high economic losses worldwide. The molecular pathways affected by these PAs in cells and tissues are not yet fully understood. The objective of the study was to examine the dose-dependent effects of orally applied PAs derived from tansy ragwort in midlactation dairy cows.METHODS: Twenty Holstein dairy cows were treated with target exposures of 0, 0.47, 0.95 and 1.91 mg of total PA/kg of body weight/d in control, PA1, PA2 and PA3, respectively, for 28 days. Liver tissue biopsy and plasma and milk samples were taken at day 28 of treatment to assess changes in metabolic pathways. A targeted metabolomics approach was performed to detect the metabolite profiles in all compartments.RESULTS: The PA-affected metabolite profiling in liver tissue, plasma and milk revealed changes in three substrate classes: acylcarnitines (ACs), phosphatidylcholines (PCs) and sphingomyelins (SMs). In addition, in the plasma, amino acid concentrations were affected by PA exposure.CONCLUSIONS: PA exposure disturbed liver metabolism at many sites, especially devastating pathways related to energy metabolism and to amino acid utilization, most likely based on mitochondrial oxidative stress. The effects on the milk metabolite profile may have consequences for milk quality.PMID:37888632 | DOI:10.3390/toxins15100601

Molecular Mechanism of Labelling Functional Cysteines by Heterocyclic Thiones

Fri, 27/10/2023 - 12:00
Chemphyschem. 2023 Oct 27:e202300596. doi: 10.1002/cphc.202300596. Online ahead of print.ABSTRACTHeterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.PMID:37888491 | DOI:10.1002/cphc.202300596

Mining Xanthine Oxidase Inhibitors from an Edible Seaweed <em>Pterocladiella capillacea</em> by Using In Vitro Bioassays, Affinity Ultrafiltration LC-MS/MS, Metabolomics Tools, and In Silico Prediction

Fri, 27/10/2023 - 12:00
Mar Drugs. 2023 Sep 22;21(10):502. doi: 10.3390/md21100502.ABSTRACTThe prevalence of gout and the adverse effects of current synthetic anti-gout drugs call for new natural and effective xanthine oxidase (XOD) inhibitors to target this disease. Based on our previous finding that an edible seaweed Pterocladiella capillacea extract inhibits XOD, XOD-inhibitory and anti-inflammatory activities were used to evaluate the anti-gout potential of different P. capillacea extract fractions. Through affinity ultrafiltration coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS), feature-based molecular networking (FBMN), and database mining of multiple natural products, the extract's bioactive components were traced and annotated. Through molecular docking and ADMET analysis, the possibility and drug-likeness of the annotated XOD inhibitors were predicted. The results showed that fractions F4, F6, F4-2, and F4-3 exhibited strong XOD inhibition activity, among which F4-3 reached an inhibition ratio of 77.96% ± 4.91% to XOD at a concentration of 0.14 mg/mL. In addition, the P. capillacea extract and fractions also displayed anti-inflammatory activity. Affinity ultrafiltration LC-MS/MS analysis and molecular networking showed that out of the 20 annotated compounds, 8 compounds have been previously directly or indirectly reported from seaweeds, and 4 compounds have been reported to exhibit anti-gout activity. Molecular docking and ADMET showed that six seaweed-derived compounds can dock with the XOD activity pocket and follow the Lipinski drug-like rule. These results support the value of further investigating P. capillacea as part of the development of anti-gout drugs or related functional foods.PMID:37888437 | DOI:10.3390/md21100502

Metabolomics Analysis of Sporulation-Associated Metabolites of <em>Metarhizium anisopliae</em> Based on Gas Chromatography-Mass Spectrometry

Fri, 27/10/2023 - 12:00
J Fungi (Basel). 2023 Oct 13;9(10):1011. doi: 10.3390/jof9101011.ABSTRACTMetarhizium anisopliae, an entomopathogenic fungus, has been widely used for the control of agricultural and forestry pests. However, sporulation degeneration occurs frequently during the process of successive culture, and we currently lack a clear understanding of the underlying mechanisms. In this study, the metabolic profiles of M. anisopliae were comparatively analyzed based on the metabolomics approach of gas chromatography-mass spectrometry (GC-MS). A total of 74 metabolites were detected in both normal and degenerate strains, with 40 differential metabolites contributing significantly to the model. Principal component analysis (PCA) and potential structure discriminant analysis (PLS-DA) showed a clear distinction between the sporulation of normal strains and degenerate strains. Specifically, 23 metabolites were down-regulated and 17 metabolites were up-regulated in degenerate strains compared to normal strains. The KEGG enrichment analysis identified 47 significant pathways. Among them, the alanine, aspartate and glutamate metabolic pathways and the glycine, serine and threonine metabolism had the most significant effects on sporulation, which revealed that significant changes occur in the metabolic phenotypes of strains during sporulation and degeneration processes. Furthermore, our subsequent experiments have substantiated that the addition of amino acids could improve M. anisopliae's spore production. Our study shows that metabolites, especially amino acids, which are significantly up-regulated or down-regulated during the sporulation and degeneration of M. anisopliae, may be involved in the sporulation process of M. anisopliae, and amino acid metabolism (especially glutamate, aspartate, serine, glycine, arginine and leucine) may be an important part of the sporulation mechanism of M. anisopliae. This study provides a foundation and technical support for rejuvenation and production improvement strategies for M. anisopliae.PMID:37888267 | DOI:10.3390/jof9101011

Pages