Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilisation

Wed, 11/10/2023 - 12:00
Cardiovasc Res. 2023 Oct 11:cvad157. doi: 10.1093/cvr/cvad157. Online ahead of print.ABSTRACTAIM: Empagliflozin (EMPA), a potent inhibitor of the renal sodium-glucose cotransporter 2 (SGLT2) and an effective treatment for type-2 diabetes, has been shown to have cardioprotective effects, independent of improved glycaemic control. Several non-canonical mechanisms have been proposed to explain these cardiac effects, including increasing circulating ketone supply to the heart. This study aims to test whether EMPA directly alters cardiac ketone metabolism independent of supply.METHODS AND RESULTS: The direct effects of EMPA on cardiac function and metabolomics were investigated in Langendorff rat heart perfused in buffer containing 5 mM glucose, 4 mM β-hydroxybutyrate (βHb) and 0.4 mM intralipid, subject to low flow ischaemia/reperfusion. Cardiac energetics were monitored in situ using 31P NMR spectroscopy. Steady-state 13C-labelling was performed by switching 12C substrates for 13C1 glucose or 13C4 βHb, and 13C incorporation into metabolites determined using 2D 1H-13C HSQC NMR spectroscopy. EMPA treatment improved left ventricular developed pressure during ischaemia and reperfusion compared to vehicle-treated hearts. In EMPA-treated hearts, total ATP and PCr levels, and Gibbs free energy for ATP hydrolysis were significantly higher during ischaemia and reperfusion. EMPA treatment did not alter the incorporation of 13C from glucose into glycolytic products lactate or alanine neither during ischaemia nor reperfusion. In ischaemia, EMPA led to a decrease in 13C1 glucose incorporation and a concurrent increase in 13C4 βHb incorporation into TCA intermediates succinate, citrate, and glutamate. During reperfusion, the concentration of metabolites originating from 13C1 glucose was similar to vehicle but those originating from 13C4 βHb remained elevated in EMPA treated hearts.CONCLUSIONS: Our findings indicate that EMPA causes a switch in metabolism away from glucose oxidation towards increased ketone utilisation in the rat heart, thereby improving function and energetics both during ischaemia and recovery during reperfusion. This preference of ketone utilisation over glucose was observed under conditions of constant supply of substrate, suggesting that EMPA acts directly by modulating cardiac substrate preference, independent of substrate availability. The mechanisms underlying our findings are currently unknown, warranting further study.TRANSLATIONAL PERSPECTIVE: Heart failure remains a huge clinical burden. Clinical trials of SGLT2 inhibitors in patients with diabetes and heart failure have reported significant cardio-protection from EMPA treatment that appears independent of improved glycaemic control. The direct cardiac effect of EMPA in modulating ketone metabolism observed in this study raises the potential for EMPA to be used as a therapy for heart failure in both diabetic and non-diabetic patients alike.PMID:37819017 | DOI:10.1093/cvr/cvad157

The R2R3-MYB transcription factor EVER controls the emission of petunia floral volatiles by regulating epicuticular wax biosynthesis in the petal epidermis

Wed, 11/10/2023 - 12:00
Plant Cell. 2023 Oct 11:koad251. doi: 10.1093/plcell/koad251. Online ahead of print.ABSTRACTThe epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by VIGS and CRISPR, and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene-editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. LC/GC-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.PMID:37818992 | DOI:10.1093/plcell/koad251

MRP1-Dependent Extracellular Release of Glutathione Induces Cardiomyocyte Ferroptosis After Ischemia-Reperfusion

Wed, 11/10/2023 - 12:00
Circ Res. 2023 Oct 11. doi: 10.1161/CIRCRESAHA.123.323517. Online ahead of print.ABSTRACTBACKGROUND: The membrane components of cardiomyocytes are rich in polyunsaturated fatty acids, which are easily oxidized. Thus, an efficient glutathione-based lipid redox system is essential for maintaining cellular functions. However, the relationship between disruption of the redox system during ischemia-reperfusion (IR), oxidized lipid production, and consequent cell death (ferroptosis) remains unclear. We investigated the mechanisms underlying the disruption of the glutathione-mediated reduction system related to ferroptosis during IR and developed intervention strategies to suppress ferroptosis.METHODS: In vivo fluctuations of both intra- and extracellular metabolite levels during IR were explored via microdialysis and tissue metabolome analysis. Oxidized phosphatidylcholines were assessed using liquid chromatography high-resolution mass spectrometry. The areas at risk following IR were assessed using triphenyl-tetrazolium chloride/Evans blue stain.RESULTS: Metabolomic analysis combined with microdialysis revealed a significant release of glutathione from the ischemic region into extracellular spaces during ischemia and after reperfusion. The release of glutathione into extracellular spaces and a concomitant decrease in intracellular glutathione concentrations were also observed during anoxia-reperfusion in an in vitro cardiomyocyte model. This extracellular glutathione release was prevented by chemical inhibition or genetic suppression of glutathione transporters, mainly MRP1 (multidrug resistance protein 1). Treatment with MRP1 inhibitor reduced the intracellular reactive oxygen species levels and lipid peroxidation, thereby inhibiting cell death. Subsequent in vivo evaluation of endogenously oxidized phospholipids following IR demonstrated the involvement of ferroptosis, as levels of multiple oxidized phosphatidylcholines were significantly elevated in the ischemic region 12 hours after reperfusion. Inhibition of the MRP1 transporter also alleviated intracellular glutathione depletion in vivo and significantly reduced the generation of oxidized phosphatidylcholines. Administration of MRP1 inhibitors significantly attenuated infarct size after IR injury.CONCLUSIONS: Glutathione was released continuously during IR, primarily in an MRP1-dependent manner, and induced ferroptosis. Suppression of glutathione release attenuated ferroptosis and reduced myocardial infarct size following IR.PMID:37818671 | DOI:10.1161/CIRCRESAHA.123.323517

High-fructose corn syrup aggravates colitis via microbiota dysbiosis-mediated Th17/Treg imbalance

Wed, 11/10/2023 - 12:00
Clin Sci (Lond). 2023 Oct 11:CS20230788. doi: 10.1042/CS20230788. Online ahead of print.ABSTRACTDietary fructose is widely used in beverages, processed foods, and Western diets as food additives, and is closely related to the increased prevalence of multiple diseases, including inflammatory bowel disease (IBD). However, the detailed mechanism by which high fructose disrupts intestinal homeostasis remains elusive. This study showed that high fructose corn syrup (HFCS) administration exacerbated intestinal inflammation and deteriorated barrier integrity. Several in vivo experimental models were utilized to verify the importance of gut microbiota and immune cells in HFCS-mediated dextran sulfate sodium (DSS)-induced colitis. In addition, untargeted metabolomics analysis revealed the imbalance between primary bile acids (PBAs) and secondary bile acids (SBAs) in feces. Hence, high fructose was speculated to modulate gut microbiota community and reduced the relative abundance of Clostridium and Clostridium scindens at genus and species level respectively, followed by a decrease in SBAs, especially isoalloLCA, thereby affecting Th17/Treg cells equilibrium and promoting intestinal inflammation. These findings provide novel insights into the crosstalk between gut flora, bile acids, and mucosal immunity, and highlight potential strategies for precise treatment of IBD.PMID:37818653 | DOI:10.1042/CS20230788

Chemical Profiles of <em>Heterodera glycines</em> Suppressive Soils in Double Cropping Soybean Production

Wed, 11/10/2023 - 12:00
J Nematol. 2023 Aug 29;55(1):20230030. doi: 10.2478/jofnem-2023-0030. eCollection 2023 Feb.ABSTRACTWe previously reported soybean fields double-cropped with winter wheat having reduced soybean cyst nematode (SCN) (Heterodera glycines) counts compared to fallow. A follow-up metagenomics study identified several fungal and bacterial taxa enriched in wheat fields, and some were reported to parasitize SCN. Knowing that phytocompounds with potential nematicidal activity are released via wheat roots and stubble, we implemented a dichloromethane-based extraction method and a gas chromatography-mass spectrometry (GCMS) system to investigate soil chemical profiles of samples collected from these fields and review the potential nematicidal activity of compounds with higher concentration in double cropping fields. 51 compounds were detected during the GCMS analysis, eight with unknown identification. Several compounds, including multiple fatty acids, had larger relative peak areas when double-cropped, compared to fallow samples. This study, along with our previously published one, provided a better understanding of the mechanisms that govern the effect of wheat on SCN populations. Rather than driven by a single mechanism, the suppression of SCN in soybean fields double-cropped with winter wheat was potentially linked to enriched microbial communities, increased populations of beneficial organisms, and higher concentrations of chemicals with potential nematicidal activity. To our knowledge, this is the first study using GCMS to characterize soil chemical profiles in soybean fields double-cropped with winter wheat regarding the suppression of SCN populations.PMID:37818528 | PMC:PMC10561077 | DOI:10.2478/jofnem-2023-0030

Markers of Glucagon Resistance Improve With Reductions in Hepatic Steatosis and Body Weight in Type 2 Diabetes

Wed, 11/10/2023 - 12:00
J Endocr Soc. 2023 Sep 21;7(11):bvad122. doi: 10.1210/jendso/bvad122. eCollection 2023 Oct 9.ABSTRACTCONTEXT: Hyperglucagonemia may develop in type 2 diabetes due to obesity-prone hepatic steatosis (glucagon resistance). Markers of glucagon resistance (including the glucagon-alanine index) improve following diet-induced weight loss, but the partial contribution of lowering hepatic steatosis vs body weight is unknown.OBJECTIVE: This work aimed to investigate the dependency of body weight loss following a reduction in hepatic steatosis on markers of glucagon resistance in type 2 diabetes.METHODS: A post hoc analysis was conducted from 2 previously published randomized controlled trials. We investigated the effect of weight maintenance (study 1: isocaloric feeding) or weight loss (study 2: hypocaloric feeding), both of which induced reductions in hepatic steatosis, on markers of glucagon sensitivity, including the glucagon-alanine index measured using a validated enzyme-linked immunosorbent assay and metabolomics in 94 individuals (n = 28 in study 1; n = 66 in study 2). Individuals with overweight or obesity with type 2 diabetes were randomly assigned to a 6-week conventional diabetes (CD) or carbohydrate-reduced high-protein (CRHP) diet within both isocaloric and hypocaloric feeding-interventions.RESULTS: By design, weight loss was greater after hypocaloric compared to isocaloric feeding, but both diets caused similar reductions in hepatic steatosis, allowing us to investigate the effect of reducing hepatic steatosis with or without a clinically relevant weight loss on markers of glucagon resistance. The glucagon-alanine index improved following hypocaloric, but not isocaloric, feeding, independently of macronutrient composition.CONCLUSION: Improvements in glucagon resistance may depend on body weight loss in patients with type 2 diabetes.PMID:37818402 | PMC:PMC10561012 | DOI:10.1210/jendso/bvad122

Integrated transcriptomic and metabolomic analysis reveals the metabolic programming of GM-CSF- and M-CSF- differentiated mouse macrophages

Wed, 11/10/2023 - 12:00
Front Immunol. 2023 Sep 25;14:1230772. doi: 10.3389/fimmu.2023.1230772. eCollection 2023.ABSTRACTMacrophages play a critical role in the inflammatory response and tumor development. Macrophages are primarily divided into pro-inflammatory M1-like and anti-inflammatory M2-like macrophages based on their activation status and functions. In vitro macrophage models could be derived from mouse bone marrow cells stimulated with two types of differentiation factors: GM-CSF (GM-BMDMs) and M-CSF (M-BMDMs), to represent M1- and M2-like macrophages, respectively. Since macrophage differentiation requires coordinated metabolic reprogramming and transcriptional rewiring in order to fulfill their distinct roles, we combined both transcriptome and metabolome analysis, coupled with experimental validation, to gain insight into the metabolic status of GM- and M-BMDMs. The data revealed higher levels of the tricarboxylic acid cycle (TCA cycle), oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and urea and ornithine production from arginine in GM-BMDMs, and a preference for glycolysis, fatty acid storage, bile acid metabolism, and citrulline and nitric oxide (NO) production from arginine in M-BMDMs. Correlation analysis with the proteomic data showed high consistency in the mRNA and protein levels of metabolic genes. Similar results were also obtained when compared to RNA-seq data of human monocyte derived macrophages from the GEO database. Furthermore, canonical macrophage functions such as inflammatory response and phagocytosis were tightly associated with the representative metabolic pathways. In the current study, we identified the core metabolites, metabolic genes, and functional terms of the two distinct mouse macrophage populations. We also distinguished the metabolic influences of the differentiation factors GM-CSF and M-CSF, and wish to provide valuable information for in vitro macrophage studies.PMID:37818352 | PMC:PMC10560851 | DOI:10.3389/fimmu.2023.1230772

Metabolomic and transcriptomic analyses of rice plant interaction with invasive weed <em>Leptochloa chinensis</em>

Wed, 11/10/2023 - 12:00
Front Plant Sci. 2023 Sep 25;14:1271303. doi: 10.3389/fpls.2023.1271303. eCollection 2023.ABSTRACTINTRODUCTION: Leptochloa chinensis is an annual weed in paddy fields, which can engage in competition with rice, leading to a severe yield reduction. However, theunderlying mechanism governing this interaction remain unknown.METHODS: In this study, we investigated the mutual inhibition between rice and the weed undermono-culture and co-culture conditions. We found that the root exudates of both species played essential roles in mediating the mutual inhibition. Further metabolomic analysis identified a significant number of differential metabolites. These metabolites were predominantly enriched in the phenylpropanoid and flavonoid biosynthesis pathways in weed and rice. Transcriptomic analysis revealed that the differentially expressed genes responding to the interaction were also enriched in these pathways.RESULTS: Phenylpropanoid and flavonoid biosynthesis pathways are associated with allelopathy, indicating their pivotal role in the response of rice-weed mutual inhibition.DISCUSSION: Our findings shed light on the conserved molecular responses of rice and L. chinensis during theirinteraction, provide evidence to dissect the mechanisms underlying the allelopathic interaction and offer potential strategies for weed management in rice paddies.PMID:37818319 | PMC:PMC10560989 | DOI:10.3389/fpls.2023.1271303

Editorial: Developing high-yielding plant cell bio-factories for high-value low-volume phytochemicals

Wed, 11/10/2023 - 12:00
Front Plant Sci. 2023 Sep 25;14:1281385. doi: 10.3389/fpls.2023.1281385. eCollection 2023.NO ABSTRACTPMID:37818317 | PMC:PMC10561325 | DOI:10.3389/fpls.2023.1281385

A metabolome and transcriptome survey to tap the dynamics of fruit prolonged shelf-life and improved quality within Greek tomato germplasm

Wed, 11/10/2023 - 12:00
Front Plant Sci. 2023 Sep 25;14:1267340. doi: 10.3389/fpls.2023.1267340. eCollection 2023.ABSTRACTINTRODUCTION: Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored.METHODS: Herein, a detailed evaluation of 130 tomato Greek accessions for postharvest and nutritional characteristics was performed, using metabolomics and transcriptomics, leading to the selection of accessions with these interesting traits.RESULTS: The results showed remarkable differences among tomato Greek accessions for overall ripening parameters (color, firmness) and weight loss. On the basis of their postharvest performance, a balance between short shelf life (SSL) and long shelf life (LSL) accessions was revealed. Metabolome analysis performed on 14 selected accessions with contrasting shelf-life potential identified a total of 206 phytonutrients and volatile compounds. In turn, transcriptome analysis in fruits from the best SSL and the best LSL accessions revealed remarkable differences in the expression profiles of transcripts involved in key metabolic pathways related to fruit quality and postharvest potential.DISCUSSION: The pathways towards cell wall synthesis, polyamine synthesis, ABA catabolism, and steroidal alkaloids synthesis were mostly induced in the LSL accession, whereas those related to ethylene biosynthesis, cell wall degradation, isoprenoids, phenylpropanoids, ascorbic acid and aroma (TomloxC) were stimulated in the SSL accession. Overall, these data would provide valuable insights into the molecular mechanism towards enhancing shelf-life and improving flavor and aroma of modern tomato cultivars.PMID:37818313 | PMC:PMC10560995 | DOI:10.3389/fpls.2023.1267340

Integrated network analysis and metabolomics reveal the molecular mechanism of Yinchen Sini decoction in CCl<sub>4</sub>-induced acute liver injury

Wed, 11/10/2023 - 12:00
Front Pharmacol. 2023 Sep 25;14:1221046. doi: 10.3389/fphar.2023.1221046. eCollection 2023.ABSTRACTObjective: Yinchen Sini decoction (YCSND), a traditional Chinese medicine (TCM) formula, plays a crucial role in the treatment of liver disease. However, the bioactive constituents and pharmacological mechanisms of action remain unclear. The present study aimed to reveal the molecular mechanism of YCSND in the treatment of acute liver injury (ALI) using integrated network analysis and metabolomics. Methods: Ultra-high-performance liquid chromatography coupled with Q-Exactive focus mass spectrum (UHPLC-QE-MS) was utilized to identify metabolites in YCSND, and high-performance liquid chromatography (HPLC) was applied to evaluate the quality of four botanical drugs in YCSND. Cell damage and ALI models in mice were established using CCl4. 1H-NMR metabolomics approach, along with histopathological observation using hematoxylin and eosin (H&E), biochemical measurements, and reverse transcription quantitative real-time PCR (RT-qPCR), was applied to evaluate the effect of YCSND on CCl4- induced ALI. Network analysis was conducted to predict the potential targets of YCSND in ALI. Result: Our results showed that 89 metabolites in YCSND were identified using UHPLC-QE-MS. YCSND protected against ALI by reducing the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) contents and increasing those of superoxide dismutase (SOD), and glutathione (GSH) both in vivo and in vitro. The 1H-NMRmetabolic pattern revealed that YCSND reversed CCl4-induced metabolic abnormalities in the liver. Additionally, the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis identified five pathways related to liver injury, including the PI3K-AKT, MAPK, HIF-1, apoptosis, and TNF signaling pathways. Moreover, RT-qPCR showed YCSND regulated the inflammatory response (Tlr4, Il6, Tnfα, Nfκb1, Ptgs2, and Mmp9) and apoptosis (Bcl2, Caspase3, Bax, and Mapk3), and inhibited PI3K-AKT signaling pathway (Pi3k and Akt1). Combined network analysis and metabolomics showed a link between the key targets (Tlr4, Ptgs2, and Mmp9) and vital metabolites (choline, xanthine, lactate, and 3-hydroxybutyric acid) of YCSND in ALI. Conclusion: Overall, the results contribute to the understanding of the therapeutic effects of YCSND on ALI, and indicate that the integrated network analysis and metabolomics could be a powerful strategy to reveal the pharmacological effects of TCM.PMID:37818184 | PMC:PMC10561237 | DOI:10.3389/fphar.2023.1221046

Equine maternal aging affects the metabolomic profile of oocytes and follicular cells during different maturation time points

Wed, 11/10/2023 - 12:00
Front Cell Dev Biol. 2023 Sep 25;11:1239154. doi: 10.3389/fcell.2023.1239154. eCollection 2023.ABSTRACTIntroduction: Oocyte quality and fertility decline with advanced maternal age. During maturation within the ovarian follicle, the oocyte relies on the associated somatic cells, specifically cumulus and granulosa cells, to acquire essential components for developmental capacity. Methods: A nontargeted metabolomics approach was used to investigate the effects of mare age on different cell types within the dominant, follicular-phase follicle at three time points during maturation. Metabolomic analyses from single oocytes and associated cumulus and granulosa cells allowed correlations of metabolite abundance among cell types. Results and Discussion: Overall, many of the age-related changes in metabolite abundance point to Impaired mitochondrial metabolic function and oxidative stress in oocytes and follicular cells. Supporting findings include a higher abundance of glutamic acid and triglycerides and lower abundance of ceramides in oocytes and somatic follicular cells from old than young mares. Lower abundance of alanine in all follicular cell types from old mares, suggests limited anaerobic energy metabolism. The results also indicate impaired transfer of carbohydrate and free fatty acid substrates from cumulus cells to the oocytes of old mares, potentially related to disruption of transzonal projections between the cell types. The identification of age-associated alterations in the abundance of specific metabolites and their correlations among cells contribute to our understanding of follicular dysfunction with maternal aging.PMID:37818125 | PMC:PMC10561129 | DOI:10.3389/fcell.2023.1239154

<em>Clethra fimbriata</em> hexanic extract triggers alteration in the energy metabolism in epimastigotes of <em>Trypanosoma cruzi</em>

Wed, 11/10/2023 - 12:00
Front Mol Biosci. 2023 Sep 25;10:1206074. doi: 10.3389/fmolb.2023.1206074. eCollection 2023.ABSTRACTChagas disease (ChD), caused by Trypanosoma cruzi, is endemic in American countries and an estimated 8 million people worldwide are chronically infected. Currently, only two drugs are available for therapeutic use against T. cruzi and their use is controversial due to several disadvantages associated with side effects and low compliance with treatment. Therefore, there is a need to search for new tripanocidal agents. Natural products have been considered a potential innovative source of effective and selective agents for drug development to treat T. cruzi infection. Recently, our research group showed that hexanic extract from Clethra fimbriata (CFHEX) exhibits anti-parasitic activity against all stages of T. cruzi parasite, being apoptosis the main cell death mechanism in both epimastigotes and trypomastigotes stages. With the aim of deepening the understanding of the mechanisms of death induced by CFHEX, the metabolic alterations elicited after treatment using a multiplatform metabolomics analysis (RP/HILIC-LC-QTOF-MS and GC-QTOF-MS) were performed. A total of 154 altered compounds were found significant in the treated parasites corresponding to amino acids (Arginine, threonine, cysteine, methionine, glycine, valine, proline, isoleucine, alanine, leucine, glutamic acid, and serine), fatty acids (stearic acid), glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine), sulfur compounds (trypanothione) and carboxylic acids (pyruvate and phosphoenolpyruvate). The most affected metabolic pathways were mainly related to energy metabolism, which was found to be decrease during the evaluated treatment time. Further, exogenous compounds of the triterpene type (betulinic, ursolic and pomolic acid) previously described in C. fimbriata were found inside the treated parasites. Our findings suggest that triterpene-type compounds may contribute to the activity of CFHEX by altering essential processes in the parasite.PMID:37818099 | PMC:PMC10561390 | DOI:10.3389/fmolb.2023.1206074

Sex-specific adipose tissue's dynamic role in metabolic and inflammatory response following peripheral nerve injury

Wed, 11/10/2023 - 12:00
iScience. 2023 Sep 15;26(10):107914. doi: 10.1016/j.isci.2023.107914. eCollection 2023 Oct 20.ABSTRACTEpidemiological data and research highlight increased neuropathy and chronic pain prevalence among females, spanning metabolic and normometabolic contexts, including murine models. Prior findings demonstrated diverse immune and neuroimmune responses between genders in neuropathic pain (NeP), alongside distinct protein expression in sciatic nerves. This study unveils adipose tissue's (AT) role in sex-specific NeP responses after peripheral nerve injury. Metabolic assessments, metabolomics, energy expenditure evaluations, AT proteomic analyses, and adipokine mobilization depict distinct AT reactions to nerve damage. Females exhibit altered lipolysis, fatty acid oxidation, heightened energy expenditure, and augmented steroids secretion affecting glucose and insulin metabolism. Conversely, male neuropathy prompts glycolysis, reduced energy expenditure, and lowered unsaturated fatty acid levels. Males' AT promotes regenerative molecules, oxidative stress defense, and stimulates peroxisome proliferator-activated receptors (PPAR-γ) and adiponectin. This study underscores AT's pivotal role in regulating gender-specific inflammatory and metabolic responses to nerve injuries, shedding light on female NeP susceptibility determinants.PMID:37817933 | PMC:PMC10561049 | DOI:10.1016/j.isci.2023.107914

Dynamic changes of rumen bacteria and their fermentative ability in high-producing dairy cows during the late perinatal period

Wed, 11/10/2023 - 12:00
Front Microbiol. 2023 Sep 25;14:1269123. doi: 10.3389/fmicb.2023.1269123. eCollection 2023.ABSTRACTBACKGROUND: High-producing dairy cows face varying degrees of metabolic stress and challenges during the late perinatal period, resulting in ruminal bacteria abundance and their fermentative ability occurring as a series of changes. However, the dynamic changes are still not clear.AIMS/METHODS: Ten healthy, high-producing Holstein dairy cows with similar body conditions and the same parity were selected, and ruminal fluid from the dairy cows at postpartum 0, 7, 14, and 21 d was collected before morning feeding. 16S rRNA high-throughput sequencing, GC-MS/MS targeted metabolomics, and UPLC-MS/MS untargeted metabolomics were applied in the study to investigate the dynamic changes within 21 d postpartum.RESULTS: The results displayed that the structures of ruminal bacteria were significantly altered from 0 to 7 d postpartum (R = 0.486, P = 0.002), reflecting the significantly declining abundances of Euryarchaeota and Chloroflexi phyla and Christensenellaceae, Methanobrevibacter, and Flexilinea genera (P < 0.05) and the obviously ascending abundances of Ruminococcaceae, Moryella, Pseudobutyrivibrio, and Prevotellaceae genera at 7 d postpartum (P < 0.05). The structures of ruminal bacteria also varied significantly from 7 to 14 d postpartum (R = 0.125, P = 0.022), reflecting the reducing abundances of Christensenellaceae, Ruminococcaceae, and Moryella genera (P < 0.05), and the elevating abundances of Sharpea and Olsenella genera at 14 d postpartum (P < 0.05). The metabolic profiles of ruminal SCFAs were obviously varied from 0 to 7 d postpartum, resulting in higher levels of propionic acid, butyric acid, and valeric acid at 7 d postpartum (P < 0.05); the metabolic profiles of other ruminal metabolites were significantly shifted from 0 to 7 d postpartum, with 27 significantly elevated metabolites and 35 apparently reduced metabolites (P < 0.05). The correlation analysis indicated that propionic acid was positively correlated with Prevotellaceae and Ruminococcaceae (P < 0.05), negatively correlated with Methanobrevibacter (P < 0.01); butyric acid was positively associated with Prevotellaceae, Ruminococcaceae, and Pseudobutyrivibrio (P < 0.05), negatively associated with Christensenellaceae (P < 0.01); valeric acid was positively linked with Prevotellaceae and Ruminococcaceae (P < 0.05); pyridoxal was positively correlated with Flexilinea and Methanobrevibacter (P < 0.05) and negatively correlated with Ruminococcaceae (P < 0.01); tyramine was negatively linked with Ruminococcaceae (P < 0.01).CONCLUSION: The findings contribute to the decision of nutritional management and prevention of metabolic diseases in high-producing dairy cows during the late perinatal period.PMID:37817752 | PMC:PMC10560760 | DOI:10.3389/fmicb.2023.1269123

Factors Associated With Awareness Of Literate Mothers About Newborn Screening: A Cross-Sectional Study From A Low-Middle-Income Country

Wed, 11/10/2023 - 12:00
J Pak Med Assoc. 2023 Sep;73(9):1805-1810. doi: 10.47391/JPMA.7004.ABSTRACTOBJECTIVES: To explore the awarenesslevel of literate mothersregarding newborn screening programmes, and to evaluate the associated factors.METHODS: The descriptive, cross-sectional study was conducted at the Section of Chemical Pathology, Department of Pathology andLaboratoryMedicine,AgaKhanUniversity,Karachi,fromJanuary toSeptember 2021, andcomprisedmothers aged 18 years or more. Data was collected using a structured questionnaire about newborn screening, and the subjects were compared in terms of age, residential background, education and parity. Data was analysed using SPSS 23.RESULTS: Of the 1016 responses, 896(88.2%) were analysed. The mean age of the sample was 37.7±10.87 years. There were 470(52.4%) mothers aged 31-45 years, 859(95.87%) were from urban areas, 751(84%) had a graduate degree, 652(72.7%) weremultiparous andhad824(91.9%)hadhealthy children.Overall, 386 (43%)mothershadawarenessofnewbornscreening programmes. The main factors associated with awareness were age, education, primiparity, having healthy children, and province ofresidencebeing Sindh andPunjab(p<0.05),while the urban-ruraldividedwas not a significantfactor(p=0.737). Cost of healthcare 417(46.5%) and lack of awareness among physicians 356(39.7%) were identified asthe main challenges in establishing newborn screening servicesin the country.CONCLUSIONS: The awareness among mothers about new born screening programmes was generally low among the subjects studied.PMID:37817688 | DOI:10.47391/JPMA.7004

Untargeted Metabolomic Analyses of Body Fluids to Differentiate TBI DOC and NTBI DOC

Wed, 11/10/2023 - 12:00
Curr Mol Med. 2023 Oct 4. doi: 10.2174/0115665240249826230928104512. Online ahead of print.ABSTRACTOBJECTIVE: To investigate the metabolomic differences between Traumatic brain injury (TBI) disorder of consciousness (DOC) patients and non-traumatic brain injury (NTBI) DOC patients by using cerebrospinal fluid (CSF), serum and urine samples beneficial to understand the pathological mechanism differences between the two etiologies, provide potential clues for the subsequent treatment and prognosis, and investigate the metabolome differences and similarities between TBI and NTBI among three different body fluids.METHODS: In total, 24 TBI DOC subjects and 29 NTBI DOC subjects were enrolled. CSF, serum and urine samples from TBI DOC and NTBI DOC patients were collected and analyzed by performing UPLC-MS. The statistical methods and pathway analyses were applied to discover potential biomarkers and altered metabolic functions.RESULTS: When comparing TBI DOC and NTBI DOC, 36, 31 and 52 differential metabolites were obtained in CSF, serum and urine, respectively. The functional analysis of differential metabolites obtained in CSF, serum and urine were all related to amino acid metabolism. Except for amino acid metabolism, metabolic biomarkers in CSF, serum and urine mainly focus on central function, cognitive function, necrosis and apoptosis and neurological function, respectively. In CSF, the highest AUC was 0.864 (Isoproturon) and 0.816 (Proline betaine). Then, the AUC of NFurfurylformamide in serum was 0.941, while the AUC of Dihydronepetalactone and Doxepin N-oxide glucuronide were 1.0 in urine.CONCLUSION: CSF, serum and urine metabolomic analyses could differentiate TBI DOC from NTBI DOC and functional analyses showed a metabolic change difference between TBI DOC and NTBI DOC.PMID:37817528 | DOI:10.2174/0115665240249826230928104512

Adenosine monophosphate enhances callus regeneration competence for de novo plant organogenesis

Wed, 11/10/2023 - 12:00
Mol Plant. 2023 Oct 9:S1674-2052(23)00318-0. doi: 10.1016/j.molp.2023.10.004. Online ahead of print.NO ABSTRACTPMID:37817411 | DOI:10.1016/j.molp.2023.10.004

Mendelian Randomization with Incomplete Measurements on the Exposure in the Hispanic Community Health Study/Study of Latinos

Wed, 11/10/2023 - 12:00
HGG Adv. 2023 Oct 9:100245. doi: 10.1016/j.xhgg.2023.100245. Online ahead of print.ABSTRACTMendelian randomization has been widely used to assess the causal effect of a heritable exposure variable on an outcome of interest, using genetic variants as instrumental variables. In practice, data on the exposure variable can be incomplete due to high cost of measurement and technical limits of detection. In this paper, we propose a valid and efficient method to handle both unmeasured and undetectable values of the exposure variable in one-sample Mendelian randomization analysis with individual-level data. We estimate the causal effect of the exposure variable on the outcome using maximum likelihood estimation and develop an expectation-maximization algorithm for the computation of the estimator. Simulation studies show that the proposed method performs well in making inference on the causal effect. We apply our method to the Hispanic Community Health Study/Study of Latinos, a community-based prospective cohort study, and estimate the causal effect of several metabolites on phenotypes of interest.PMID:37817410 | DOI:10.1016/j.xhgg.2023.100245

Compound Bacillus alleviates diarrhea by regulating gut microbes, metabolites, and inflammatory responses in pet cats

Wed, 11/10/2023 - 12:00
Anim Microbiome. 2023 Oct 10;5(1):49. doi: 10.1186/s42523-023-00270-8.ABSTRACTBACKGROUND: Pet cats frequently have diarrhea in their daily life. Bacillus has a protective role that has crucial beneficial functions on intestinal homeostasis. The aim of this research was to investigate the effects of the compound Bacillus on the prevention of diarrhea, microbiota and metabolism in pet cats. A total of 20 pet cats (1-2 years old, 3.91 ± 0.92 kg) were randomly divided into two groups and fed with a basal diet (Control group), or a basal diet supplemented with 3 × 109 CFU/kg compound Bacillus (Probiotics group). The experiment lasted 33 days.RESULTS: Results showed that the compound Bacillus significantly reduced the rate of soft stools and diarrhea in pet cats compared with the control group (P < 0.05, n = 10). Meanwhile, compared with the control group, the probiotics group significantly decreased the content of IL-1β and IL-6 and significantly increased IL-10 (P < 0.05, n = 6) in the serum. In addition, feeding probiotics significantly increased the abundance of p_Patescibacter and g_Plectosphaerella, decreased the abundance of p_Firmicutes, p_Gemmatimonadetes, g_Ruminococcaceae_UCG-005, g_Ascochytahe and g_Saccharomyces in the feces of the pet cats (P < 0.05, n = 6). And it also can significantly increase the content of total SCFAs, acetic acid and butyric acid in the feces (P < 0.05, n = 6). The fecal and serum metabolomics analyses revealed that most fecal and serum compounds were involved in metabolism, particularly in chemical structure transformation maps and amino acid metabolism. Also, eugenitol and methyl sulfate were the most significantly increased serum metabolites, and log2FC were 38.73 and 37.12, respectively. Pearson's correlation analysis showed that changes in serum metabolism and fecal microbiota were closely related to immune factors. There was also a strong correlation between serum metabolites and microbiota composition.CONCLUSIONS: The results of this research highlight the potential of the compound Bacillus as a dietary supplement to alleviate diarrhea in pet cats.PMID:37817260 | DOI:10.1186/s42523-023-00270-8

Pages