Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Shoot Cultures of <em>Vitis vinifera</em> (Vine Grape) Different Cultivars as a Promising Innovative Cosmetic Raw Material-Phytochemical Profiling, Antioxidant Potential, and Whitening Activity

Sat, 14/10/2023 - 12:00
Molecules. 2023 Sep 29;28(19):6868. doi: 10.3390/molecules28196868.ABSTRACTThe primary purpose of this work was the initiation and optimization of shoot cultures of different Vitis vinifera L. cultivars: cv. Chardonnay, cv. Hibernal, cv. Riesling, cv. Johanniter, cv. Solaris, cv. Cabernet Cortis, and cv. Regent. Cultures were maintained on 30-day growth cycles using two media, Murashige and Skoog (MS) and Schenk and Hildebrandt (SH), with various concentrations of plant growth regulators. Tested media ('W1'-'W4') contained varying concentrations of 6-benzylaminopurine (BA) in addition to indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA). High performance liquid chromatography coupled with mass spectrometry (UPLC-MS) was used for metabolomic profiling. In all tested extracts, 45 compounds were identified (6 amino acids, 4 phenolic acids, 13 flavan-3-ols, 3 flavonols, and 19 stilbenoids). Principal component analysis (PCA) was performed to assess the influence of the genotype and medium on metabolic content. PCA showed that metabolic content was mainly influenced by genotype and to a lesser extent by medium composition. MS media variants induced the amino acid, procyanidin, and flavan-3-ol production. In addition, the antioxidant potential and anti-tyrosinase activity was measured spectrophotometrically. The studies on antioxidant activity clearly reveal very high efficiency in reducing free radicals in the tested extracts. The strongest tyrosinase inhibition capacity was proved for shoots cv. Hibernal cultured in SH medium and supplemented with NAA, with an inhibition of 17.50%. These studies show that in vitro cultures of V. vinifera cvs. can be proposed as an alternative source of plant material that can be potentially used in cosmetic industry.PMID:37836711 | DOI:10.3390/molecules28196868

Residue of Chlormequat and Regulatory Effects on the Specialized Metabolites of Astragali Radix

Sat, 14/10/2023 - 12:00
Molecules. 2023 Sep 22;28(19):6754. doi: 10.3390/molecules28196754.ABSTRACTPresently, the utilization of chlormequat in Astragalus mongholicus Bunge (Leguminosae) cultivation is prevalent for augmenting rhizome (Astragali Radix) yield. However, indiscriminate and excessive chlormequat employment can detrimentally influence Astragali Radix quality and safety. This research aimed to comprehensively comprehend chlormequat risks and its influence on Astragali Radix metabolites. Diverse chlormequat concentrations were employed in Astragalus mongholicus cultivation, with subsequent analysis of residual chlormequat levels in Astragali Radix across treatment groups. Astragali Radix metabolic profiling was conducted through UPLC-QTOF-MS, and thirteen principal active components were quantified via UFLC-MS/MS. Findings revealed a direct correlation between chlormequat residue levels in Astragali Radix and application concentration, with high-dose residue surpassing 5.0 mg/kg. Metabolomics analysis identified twenty-six distinct saponin and flavonoid metabolites. Notably, the application of chlormequat led to the upregulation of seven saponins (e.g., astragaloside I and II) and downregulation of six flavonoids (e.g., methylnissolin-3-O-glucoside and astraisoflavan-7-O-β-d-glucoside). Quantitative analysis demonstrated variable contents of active ingredients due to differing chlormequat concentrations, leading to astragaloside I increase (14.59-62.55%) and isoastragaloside II increase (4.8-55.63%), while methylnissolin-3-O-glucoside decreased (22.18-41.69%), as did astraisoflavan-7-O-β-d-glucoside (21.09-47.78%). In conclusion, chlormequat application influenced multiple active components in Astragali Radix, causing constituent proportion variations. Elevated chlormequat concentrations led to increased active components alongside heightened chlormequat residues in Astragali Radix. Consequently, prudent chlormequat application during Astragali Radix production is imperative to avert potential detriments to its quality and safety.PMID:37836597 | DOI:10.3390/molecules28196754

Nutrition, Metabolites, and Human Health

Sat, 14/10/2023 - 12:00
Nutrients. 2023 Oct 8;15(19):4286. doi: 10.3390/nu15194286.ABSTRACTThe field of metabolomics and related "omics" techniques allows for the identification of a vast array of molecules within biospecimens [...].PMID:37836568 | DOI:10.3390/nu15194286

The Southern European Atlantic Diet and Its Supplements: The Chemical Bases of Its Anticancer Properties

Sat, 14/10/2023 - 12:00
Nutrients. 2023 Oct 6;15(19):4274. doi: 10.3390/nu15194274.ABSTRACTScientific evidence increasingly supports the strong link between diet and health, acknowledging that a well-balanced diet plays a crucial role in preventing chronic diseases such as obesity, diabetes, cardiovascular issues, and certain types of cancer. This perspective opens the door to developing precision diets, particularly tailored for individuals at risk of developing cancer. It encompasses a vast research area and involves the study of an expanding array of compounds with multilevel "omics" compositions, including genomics, transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics. We review here the components of the Southern European Atlantic Diet (SEAD) from both a chemical and pharmacological standpoint. The information sources consulted, complemented by crystallographic data from the Protein Data Bank, establish a direct link between the SEAD and its anticancer properties. The data collected strongly suggest that SEAD offers an exceptionally healthy profile, particularly due to the presence of beneficial biomolecules in its foods. The inclusion of olive oil and paprika in this diet provides numerous health benefits, and scientific evidence supports the anticancer properties of dietary supplements with biomolecules sourced from vegetables of the brassica genus. Nonetheless, further research is warranted in this field to gain deeper insights into the potential benefits of the SEAD's bioactive compounds against cancer.PMID:37836558 | DOI:10.3390/nu15194274

Differential Metabolites in Osteoarthritis: A Systematic Review and Meta-Analysis

Sat, 14/10/2023 - 12:00
Nutrients. 2023 Sep 28;15(19):4191. doi: 10.3390/nu15194191.ABSTRACT(1) Many studies have attempted to utilize metabolomic approaches to explore potential biomarkers for the early detection of osteoarthritis (OA), but consistent and high-level evidence is still lacking. In this study, we performed a systematic review and meta-analysis of differential small molecule metabolites between OA patients and healthy individuals to screen promising candidates from a large number of samples with the aim of informing future prospective studies. (2) Methods: We searched the EMBASE, the Cochrane Library, PubMed, Web of Science, Wan Fang Data, VIP Date, and CNKI up to 11 August 2022, and selected relevant records based on inclusion criteria. The risk of bias was assessed using the Newcastle-Ottawa quality assessment scale. We performed qualitative synthesis by counting the frequencies of changing directions and conducted meta-analyses using the random effects model and the fixed-effects model to calculate the mean difference and 95% confidence interval. (3) Results: A total of 3798 records were identified and 13 studies with 495 participants were included. In the 13 studies, 132 kinds of small molecule differential metabolites were extracted, 58 increased, 57 decreased and 17 had direction conflicts. Among them, 37 metabolites appeared more than twice. The results of meta-analyses among four studies showed that three metabolites increased, and eight metabolites decreased compared to healthy controls (HC). (4) Conclusions: The main differential metabolites between OA and healthy subjects were amino acids (AAs) and their derivatives, including tryptophan, lysine, leucine, proline, phenylalanine, glutamine, dimethylglycine, citrulline, asparagine, acetylcarnitine and creatinine (muscle metabolic products), which could be potential biomarkers for predicting OA.PMID:37836475 | DOI:10.3390/nu15194191

Gut Microbiota Combined with Serum Metabolomics to Investigate the Hypoglycemic Effect of <em>Actinidia arguta</em> Leaves

Sat, 14/10/2023 - 12:00
Nutrients. 2023 Sep 23;15(19):4115. doi: 10.3390/nu15194115.ABSTRACTActinidia arguta leaves (AAL) are an excellent source of bioactive components for the food industry and possess many functional properties. However, the hypoglycemic effect and mechanism of AAL remain unclear. The aim of this work was to investigate the potential hypoglycemic effect of AAL and explore its possible mechanism using 16S rRNA sequencing and serum metabolomics in diabetic mice induced by high-fat feeding in combination with streptozotocin injection. A total of 25 flavonoids from AAL were isolated and characterized, and the contents of the extract from the AAL ranged from 0.14 mg/g DW to 8.97 mg/g DW. The compound quercetin (2) had the highest content of 8.97 ± 0.09 mg/g DW, and the compound kaempferol-3-O-(2'-O-D-glucopyl)-β-D-rutinoside (12) had the lowest content of 0.14 ± 0.01 mg/g DW. In vivo experimental studies showed that AAL reduced blood glucose and cholesterol levels, improved insulin sensitivity, and ameliorated oxidative stress and liver and kidney pathological damage. In addition, gut microbiota analysis found that AAL significantly reduced the F/B ratio, enriched the beneficial bacteria Bacteroides and Bifidobacterium, and inhibited the harmful bacteria Lactobacillus and Desulfovibrio, thereby playing an active role in intestinal imbalance. In addition, metabolomics analysis showed that AAL could improve amino acid metabolism and arachidonic acid metabolism, thereby exerting a hypoglycemic effect. This study confirmed that AAL can alleviate type 2 diabetes mellitus (T2DM) by regulating intestinal flora and interfering with related metabolic pathways, providing a scientific basis for its use as a dietary supplement and for further exploration of the mechanism of AAL against T2DM.PMID:37836402 | DOI:10.3390/nu15194115

Comparative Transcriptome and Metabolome Profiling Reveal Mechanisms of Red Leaf Color Fading in <em>Populus</em> × <em>euramericana</em> cv. 'Zhonghuahongye'

Sat, 14/10/2023 - 12:00
Plants (Basel). 2023 Oct 9;12(19):3511. doi: 10.3390/plants12193511.ABSTRACTAnthocyanins are among the flavonoids that serve as the principal pigments affecting the color of plants. During leaf growth, the leaf color of 'Zhonghuahongye' gradually changes from copper-brown to yellow-green. At present, the mechanism of color change at different stages has not yet been discovered. To find this, we compared the color phenotype, metabolome, and transcriptome of the three leaf stages. The results showed that the anthocyanin content of leaves decreased by 62.5% and the chlorophyll content increased by 204.35%, 69.23%, 155.56% and 60%, respectively. Differential metabolites and genes were enriched in the pathway related to the synthesis of 'Zhonghuahongye' flavonoids and anthocyanins and to the biosynthesis of secondary metabolites. Furthermore, 273 flavonoid metabolites were detected, with a total of eight classes. DFR, FLS and ANS downstream of anthocyanin synthesis may be the key structural genes in reducing anthocyanin synthesis and accumulation in the green leaf of 'Zhonghuahongye'. The results of multi-omics analysis showed that the formation of color was primarily affected by anthocyanin regulation and its related synthesis-affected genes. This study preliminarily analyzed the green regression gene and metabolic changes in 'Zhonghuahongye' red leaves and constitutes a reference for the molecular breeding of 'Zhonghuahongye' red leaves.PMID:37836251 | DOI:10.3390/plants12193511

Transcriptome and Metabolome Provide Insights into Fruit Ripening of Cherry Tomato (<em>Solanum lycopersicum</em> var. <em>cerasiforme</em>)

Sat, 14/10/2023 - 12:00
Plants (Basel). 2023 Oct 9;12(19):3505. doi: 10.3390/plants12193505.ABSTRACTInsights into flavor formation during fruit ripening can guide the development of breeding strategies that balance consumer and producer needs. Cherry tomatoes possess a distinctive taste, yet research on quality formation is limited. Here, metabolomic and transcriptomic analyses were conducted on different ripening stages. The results revealed differentially accumulated metabolites during fruit ripening, providing candidate metabolites related to flavor. Interestingly, several key flavor-related metabolites already reached a steady level at the mature green stage. Transcriptomic analysis revealed that the expression levels of the majority of genes tended to stabilize after the pink stage. Enrichment analysis demonstrated that changes in metabolic and biosynthetic pathways were evident throughout the entire process of fruit ripening. Compared to disease resistance and fruit color genes, genes related to flavor and firmness may have a broader impact on the accumulation of metabolites. Furthermore, we discovered the interconversion patterns between glutamic acid and glutamine, as well as the biosynthesis patterns of flavonoids. These findings contribute to our understanding of fruit quality formation mechanisms and support breeding programs aimed at improving fruit quality traits.PMID:37836245 | DOI:10.3390/plants12193505

Flavonoid Biosynthesis Pathway May Indirectly Affect Outcrossing Rate of Cytoplasmic Male-Sterile Lines of Soybean

Sat, 14/10/2023 - 12:00
Plants (Basel). 2023 Oct 1;12(19):3461. doi: 10.3390/plants12193461.ABSTRACT(1) Background: Cytoplasmic male sterility (CMS) is important for exploiting heterosis. Soybean (Glycine max L.) has a low outcrossing rate that is detrimental for breeding sterile lines and producing hybrid seeds. Therefore, the molecular mechanism controlling the outcrossing rate should be elucidated to increase the outcrossing rate of soybean CMS lines; (2) Methods: The male-sterile soybean lines JLCMS313A (with a high outcrossing rate; HL) and JLCMS226A (with a low outcrossing rate; LL) were used for a combined analysis of the transcriptome (RNA-seq) and the targeted phenol metabolome; (3) Results: The comparison between HL and LL detected 5946 differentially expressed genes (DEGs) and 81 phenolic metabolites. The analysis of the DEGs and differentially abundant phenolic metabolites identified only one common KEGG pathway related to flavonoid biosynthesis. The qRT-PCR expression for eight DEGs was almost consistent with the transcriptome data. The comparison of the cloned coding sequence (CDS) regions of the SUS, FLS, UGT, and F3H genes between HL and LL revealed seven single nucleotide polymorphisms (SNPs) only in the F3H CDS. Moreover, five significant differentially abundant phenolic metabolites between HL and LL were associated with flavonoid metabolic pathways. Finally, on the basis of the SNPs in the F3H CDS, one derived cleaved amplified polymorphic sequence (dCAPS) marker was developed to distinguish between HL and LL soybean lines; (4) Conclusions: The flavonoid biosynthesis pathway may indirectly affect the outcrossing rate of CMS sterile lines in soybean.PMID:37836201 | DOI:10.3390/plants12193461

Integrated Analysis of Transcriptome and Metabolome Reveals Molecular Mechanisms of Rice with Different Salinity Tolerances

Sat, 14/10/2023 - 12:00
Plants (Basel). 2023 Sep 22;12(19):3359. doi: 10.3390/plants12193359.ABSTRACTRice is a crucial global food crop, but it lacks a natural tolerance to high salt levels, resulting in significant yield reductions. To gain a comprehensive understanding of the molecular mechanisms underlying rice's salt tolerance, further research is required. In this study, the transcriptomic and metabolomic differences between the salt-tolerant rice variety Lianjian5 (TLJIAN) and the salt-sensitive rice variety Huajing5 (HJING) were examined. Transcriptome analysis revealed 1518 differentially expressed genes (DEGs), including 46 previously reported salt-tolerance-related genes. Notably, most of the differentially expressed transcription factors, such as NAC, WRKY, MYB, and EREBP, were upregulated in the salt-tolerant rice. Metabolome analysis identified 42 differentially accumulated metabolites (DAMs) that were upregulated in TLJIAN, including flavonoids, pyrocatechol, lignans, lipids, and trehalose-6-phosphate, whereas the majority of organic acids were downregulated in TLJIAN. The interaction network of 29 differentially expressed transporter genes and 19 upregulated metabolites showed a positive correlation between the upregulated calcium/cation exchange protein genes (OsCCX2 and CCX5_Ath) and ABC transporter gene AB2E_Ath with multiple upregulated DAMs in the salt-tolerant rice variety. Similarly, in the interaction network of differentially expressed transcription factors and 19 upregulated metabolites in TLJIAN, 6 NACs, 13 AP2/ERFs, and the upregulated WRKY transcription factors were positively correlated with 3 flavonoids, 3 lignans, and the lipid oleamide. These results suggested that the combined effects of differentially expressed transcription factors, transporter genes, and DAMs contribute to the enhancement of salt tolerance in TLJIAN. Moreover, this study provides a valuable gene-metabolite network reference for understanding the salt tolerance mechanism in rice.PMID:37836098 | DOI:10.3390/plants12193359

Developmental Mapping of Hair Follicles in the Embryonic Stages of Cashmere Goats Using Proteomic and Metabolomic Construction

Sat, 14/10/2023 - 12:00
Animals (Basel). 2023 Sep 30;13(19):3076. doi: 10.3390/ani13193076.ABSTRACTThe hair follicle (HF) is the fundamental unit for fleece and cashmere production in cashmere goats and is crucial in determining cashmere yield and quality. The mechanisms regulating HF development in cashmere goats during the embryonic period remain unclear. Growing evidence suggests that HF development involves complex developmental stages and critical events, and identifying the underlying factors can improve our understanding of HF development. In this study, samples were collected from embryonic day 75 (E75) to E125, the major HF developmental stages. The embryonic HFs of cashmere goats were subjected to proteomic and metabolomic analyses, which revealed dynamic changes in the key factors and signalling pathways controlling HF development at the protein and metabolic levels. Gene ontology and the Kyoto Encyclopaedia of Genes and Genomes were used to functionally annotate 1784 significantly differentially expressed proteins and 454 significantly differentially expressed metabolites enriched in different HF developmental stages. A joint analysis revealed that the oxytocin signalling pathway plays a sustained role in embryonic HF development by activating the MAPK and Ca2+ signalling pathways, and a related regulatory network map was constructed. This study provides a global perspective on the mechanism of HF development in cashmere goats and enriches our understanding of embryonic HF development.PMID:37835682 | DOI:10.3390/ani13193076

Integrated Analysis of the Effects of Cecal Microbiota and Serum Metabolome on Market Weights of Chinese Native Chickens

Sat, 14/10/2023 - 12:00
Animals (Basel). 2023 Sep 27;13(19):3034. doi: 10.3390/ani13193034.ABSTRACTThe gut microbiota plays an important role in the physiological activities of the host and affects the formation of important economic traits in livestock farming. The effects of cecal microbiota on chicken weights were investigated using the Guizhou yellow chicken as a model. Experimental cohorts from chickens with high- (HC, n = 16) and low-market-weights (LC, n = 16) were collected. Microbial 16S rRNA gene sequencing and non-targeted serum metabolome data were integrated to explore the effect and metabolic mechanism of cecal microbiota on market weight. The genera Lachnoclostridium, Alistipes, Negativibacillus, Sellimonas, and Ruminococcus torques were enriched in the HC group, while Phascolarctobacterium was enriched in the LC group (p < 0.05). Metabolomic analysis determined that pantothenic acid (vitamin B5), luvangetin (2H-1-benzopyran-6-acrylic acid), and menadione (vitamin K3) were significantly higher in HC serum, while beclomethasone dipropionate (a glucocorticoid) and chlorophene (2-benzyl-4-chlorophenol) were present at higher levels in the LC group. The microbes enriched in HC were significantly positively correlated with metabolites, including pantothenic acid and menadione, and negatively correlated with beclomethasone dipropionate and chlorophene. These results indicated that specific cecal bacteria in Guizhou yellow chickens alter the host metabolism and growth performance. This study provides a reference for revealing the mechanism of cecal microbe actions that affect chicken body weight.PMID:37835639 | DOI:10.3390/ani13193034

Analysis of Non-Volatile Compounds in Jasmine Tea and Jasmine Based on Metabolomics and Sensory Evaluation

Sat, 14/10/2023 - 12:00
Foods. 2023 Oct 9;12(19):3708. doi: 10.3390/foods12193708.ABSTRACTScenting tea with Jasminum sambac is beneficial to forming a unique taste of jasmine tea, which is regulated by numerous compounds. To investigate the relationship between metabolites in jasmine and jasmine tea, as well as the impact of metabolites on the characteristic taste of jasmine tea, the liquid chromatography-mass spectrometry, sensory evaluation, and multivariate analysis were applied in this study. A total of 585 and 589 compounds were identified in jasmine tea and jasmine, respectively. After scented, jasmine tea added 70 compounds, which were believed to come from jasmine flowers. Furthermore, seventy-four compounds were identified as key characteristic compounds of jasmine tea, and twenty-two key differential metabolite compounds were believed to be used to distinguish jasmine tea scented differently and contribute to the taste of jasmine tea. Additionally, the relationship between taste compounds and aroma quality was also explored, and it was found that five compounds were positively correlated with the aroma properties of jasmine tea and seven compounds were negatively correlated with the aroma properties of jasmine tea. Overall, these findings provided insights into the future study of the mechanism of taste formation in jasmine tea and provided the theoretical basis for the production of jasmine tea.PMID:37835360 | DOI:10.3390/foods12193708

Untargeted Metabolomics and Physicochemical Analysis Revealed the Quality Formation Mechanism in Fermented Milk Inoculated with <em>Lactobacillus brevis</em> and <em>Kluyveromyces marxianus</em> Isolated from Traditional Fermented Milk

Sat, 14/10/2023 - 12:00
Foods. 2023 Oct 9;12(19):3704. doi: 10.3390/foods12193704.ABSTRACTTraditional fermented milk from the western Sichuan plateau of China has a unique flavor and rich microbial diversity. This study explored the quality formation mechanism in fermented milk inoculated with Lactobacillus brevis NZ4 and Kluyveromyces marxianus SY11 (MFM), the dominant microorganisms isolated from traditional dairy products in western nan. The results indicated that MFM displayed better overall quality than the milk fermented with L. brevis NZ4 (LFM) and K. marxianus SY11 (KFM), respectively. MFM exhibited good sensory quality, more organic acid types, more free amino acids and esters, and moderate acidity and ethanol concentrations. Non-targeted metabolomics showed a total of 885 metabolites annotated in the samples, representing 204 differential metabolites between MFM and LFM and 163 between MFM and KFM. MFM displayed higher levels of N-acetyl-L-glutamic acid, cysteinyl serine, glaucarubin, and other substances. The differential metabolites were mainly enriched in pathways such as glycerophospholipid metabolism, arginine biosynthesis, and beta-alanine metabolism. This study speculated that L. brevis affected K. marxianus growth via its metabolites, while the mixed fermentation of these strains significantly changed the metabolism pathway of flavor-related substances, especially glycerophospholipid metabolism. Furthermore, mixed fermentation modified the flavor and quality of fermented milk by affecting cell growth and metabolic pathways.PMID:37835356 | DOI:10.3390/foods12193704

Traceability Research on <em>Dendrobium devonianum</em> Based on SWATHtoMRM

Sat, 14/10/2023 - 12:00
Foods. 2023 Sep 28;12(19):3608. doi: 10.3390/foods12193608.ABSTRACTSWATHtoMRM technology was used in this experiment to further identify and trace the sources of Dendrobium devonianum and Dendrobium officinale produced in the same area using TOF and MS-MRM. After the conversion of the R package of SWATHtoMRM, 191 MRM pairs of positive ions and 96 pairs of negative ions were obtained. Dendrobium devonianum and Dendrobium officinale can be separated very well using the PCA and PLS-DA analysis of MRM ion pairs; this shows that there are obvious differences in chemical composition between Dendrobium devonianum and Dendrobium officinale, which clearly proves that the pseudotargeted metabolomics method based on SWATHtoMRM can be used for traceability identification research. A total of 146 characteristic compounds were obtained, with 20 characteristic compounds in Dendrobium devonianum. The enrichment pathways of the characteristic compounds were mainly concentrated in lipids and atherosclerosis, chagas disease, fluid shear stress and atherosclerosis, proteoglycans in cancer, the IL-17 signaling pathway, the sphingolipid signaling pathway, diabetic cardiomyopathy, arginine and proline metabolism, etc., among which the lipid and atherosclerosis pathways were more enriched, and 11 characteristic compounds affected the expression levels of IL-1, TNFα, CD36, IL-1β, etc. These can be used as a reference for research on variety improvement and active substance accumulation in Dendrobium devonianum and Dendrobium officinale.PMID:37835262 | DOI:10.3390/foods12193608

Effect of Thermal Inactivation on Antioxidant, Anti-Inflammatory Activities and Chemical Profile of Postbiotics

Sat, 14/10/2023 - 12:00
Foods. 2023 Sep 26;12(19):3579. doi: 10.3390/foods12193579.ABSTRACTInactivation is a crucial step in the production of postbiotics, with thermal inactivation being the prevailing method employed. Nevertheless, the impact of thermal treatment on bioactivity and chemical composition remains unexplored. The objective of this study was to assess the influence of heating temperature on the antioxidant, anti-inflammatory properties and the chemical composition of ET-22 and BL-99 postbiotics. The findings revealed that subjecting ET-22 and BL-99 to thermal treatment ranging from 70 °C to 121 °C for a duration of 10 min effectively deactivated them, leading to the disruption of cellular structure and release of intracellular contents. The antioxidant and anti-inflammatory activity of ET-22 and BL-99 postbiotics remained unaffected by mild heating temperatures (below 100 °C). However, excessive heating at 121 °C diminished the antioxidant activity of the postbiotic. To further investigate the impact of thermal treatments on chemical composition, non-targeted metabolomics was conducted to analyze the cell-free supernatants derived from ET-22 and BL-99. The results revealed that compared to mild inactivation at temperatures below 100 °C, the excessive temperature of 121 °C significantly altered the chemical profile of the postbiotic. Several bioactive components with antioxidant and anti-inflammatory properties, including zomepirac, flumethasone, 6-hydroxyhexanoic acid, and phenyllactic acid, exhibited a significant reduction in their levels following exposure to a temperature of 121 °C. This decline in their abundance may be associated with a corresponding decrease in their antioxidant and anti-inflammatory activities. The cumulative evidence gathered strongly indicates that heating temperatures exert a discernible influence on the properties of postbiotics, whereby excessive heating leads to the degradation of heat-sensitive active constituents and subsequent diminishment of their biological efficacy.PMID:37835233 | DOI:10.3390/foods12193579

Measuring the Phytochemical Richness of Meat: Effects of Grass/Grain Finishing Systems and Grapeseed Extract Supplementation on the Fatty Acid and Phytochemical Content of Beef

Sat, 14/10/2023 - 12:00
Foods. 2023 Sep 24;12(19):3547. doi: 10.3390/foods12193547.ABSTRACTGrass-finished beef (GFB) can provide beneficial bioactive compounds to healthy diets, including omega-3 polyunsaturated fatty acids (n-3 PUFAs), conjugated linoleic acid (CLA), and secondary bioactive compounds, such as phytochemicals. The objective of this study was to compare fatty acids (FAs), micronutrients, and phytochemicals of beef fed a biodiverse pasture (GRASS), a total mixed ration (GRAIN), or a total mixed ration with 5% grapeseed extract (GRAPE). This was a two-year study involving fifty-four Red Angus steers (n = 54). GFB contained higher levels of n-3 PUFAs, vitamin E, iron, zinc, stachydrine, hippuric acid, citric acid, and succinic acid than beef from GRAIN and GRAPE (p < 0.001 for all). No differences were observed in quantified phytochemicals between beef from GRAIN and GRAPE (p > 0.05). Random forest analysis indicated that phytochemical and FA composition of meat can predict cattle diets with a degree of certainty, especially for GFB (5.6% class error). In conclusion, these results indicate that GFB contains higher levels of potentially beneficial bioactive compounds, such as n-3 PUFAs, micronutrients, and phytochemicals, compared to grain-finished beef. Additionally, the n-6:n-3 ratio was the most crucial factor capable of separating beef based on finishing diets.PMID:37835200 | DOI:10.3390/foods12193547

Microbial Diversity and Characteristic Quality Formation of Qingzhuan Tea as Revealed by Metagenomic and Metabolomic Analysis during Pile Fermentation

Sat, 14/10/2023 - 12:00
Foods. 2023 Sep 22;12(19):3537. doi: 10.3390/foods12193537.ABSTRACTIn order to analyze the changes in the microbial community structure during the pile fermentation of Qingzhuan tea and their correlation with the formation of quality compounds in Qingzhuan tea, this study carried out metagenomic and metabolomic analyses of tea samples during the fermentation process of Qingzhuan tea. The changes in the expression and abundance of microorganisms during the pile fermentation were investigated through metagenomic assays. During the processing of Qingzhuan tea, there is a transition from a bacterial dominated ecosystem to an ecosystem enriched with fungi. The correlation analyses of metagenomics and metabolomics showed that amino acids and polyphenol metabolites with relatively simple structures exhibited a significant negative correlation with target microorganisms, while the structurally complicated B-ring dihydroxy puerin, B-ring trihydroxy galloyl puerlin, and other compounds showed a significant positive correlation with target microorganisms. Aspergillus niger, Aspergillus glaucus, Penicillium in the Aspergillaceae family, and Talaromyces and Rasamsonia emersonii in Trichocomaceae were the key microorganisms involved in the formation of the characteristic qualities of Qingzhuan tea.PMID:37835190 | DOI:10.3390/foods12193537

Bacteriocin-Producing <em>Enterococcus faecium</em> OV3-6 as a Bio-Preservative Agent to Produce Fermented <em>Houttuynia cordata</em> Thunb. Beverages: A Preliminary Study

Sat, 14/10/2023 - 12:00
Foods. 2023 Sep 22;12(19):3520. doi: 10.3390/foods12193520.ABSTRACTMicrobial contamination affects the quality of the fermented Houttuynia cordata Thunb. (H. cordata) beverage (FHB). The present study aimed to assess the bio-preservative property of Enterococcus faecium OV3-6 (E. faecium OV3-6) during the production of FHB. The antimicrobial activity against Escherichia coli, Salmonella, Bacillus cereus, and Staphylococcus aureus and the survival of E. faecium OV3-6 were studied. Then, FHB fermentation was performed with different preservatives (non-preservative, E. faecium OV3-6, cell-free supernatant of E. faecium OV3-6, and nisin) with and without representative pathogens. The maximum antimicrobial activity against S. aureus and B. cereus was observed after 18 h of cultivation in an MRS medium. E. faecium OV3-6 was used as a starter to produce the FHB, and the strain survived up to 48 h in the fermented beverage. E. faecium OV3-6 and its cell-free supernatant inhibited the growth of E. coli, Salmonella, B. cereus, and S. aureus in the stimulated FHB. The non-preservatives and nisin-containing FHB showed inhibition against Gram-positive pathogens. The FHB treated with E. faecium OV3-6 was rich in lactic acid bacteria, and the product was at an acceptable level of pH (less than 4.3). Certain limitations were identified in the study, such as lack of nutritional, metabolomics analysis, and safety and consumer acceptability of FHB. The results suggested that E. faecium OV3-6 could be used as a bio-preservative to produce fermented plant beverages (FPBs).PMID:37835173 | DOI:10.3390/foods12193520

Multi-Omic Candidate Screening for Markers of Severe Clinical Courses of COVID-19

Sat, 14/10/2023 - 12:00
J Clin Med. 2023 Sep 27;12(19):6225. doi: 10.3390/jcm12196225.ABSTRACTBACKGROUND: Severe coronavirus disease 2019 (COVID-19) disease courses are characterized by immuno-inflammatory, thrombotic, and parenchymal alterations. Prediction of individual COVID-19 disease courses to guide targeted prevention remains challenging. We hypothesized that a distinct serologic signature precedes surges of IL-6/D-dimers in severely affected COVID-19 patients.METHODS: We performed longitudinal plasma profiling, including proteome, metabolome, and routine biochemistry, on seven seropositive, well-phenotyped patients with severe COVID-19 referred to the Intensive Care Unit at the German Heart Center. Patient characteristics were: 65 ± 8 years, 29% female, median CRP 285 ± 127 mg/dL, IL-6 367 ± 231 ng/L, D-dimers 7 ± 10 mg/L, and NT-proBNP 2616 ± 3465 ng/L.RESULTS: Based on time-series analyses of patient sera, a prediction model employing feature selection and dimensionality reduction through least absolute shrinkage and selection operator (LASSO) revealed a number of candidate proteins preceding hyperinflammatory immune response (denoted ΔIL-6) and COVID-19 coagulopathy (denoted ΔD-dimers) by 24-48 h. These candidates are involved in biological pathways such as oxidative stress/inflammation (e.g., IL-1alpha, IL-13, MMP9, C-C motif chemokine 23), coagulation/thrombosis/immunoadhesion (e.g., P- and E-selectin), tissue repair (e.g., hepatocyte growth factor), and growth factor response/regulatory pathways (e.g., tyrosine-protein kinase receptor UFO and low-density lipoprotein receptor (LDLR)). The latter are host- or co-receptors that promote SARS-CoV-2 entry into cells in the absence of ACE2.CONCLUSIONS: Our novel prediction model identified biological and regulatory candidate networks preceding hyperinflammation and coagulopathy, with the most promising group being the proteins that explain changes in D-dimers. These biomarkers need validation. If causal, our work may help predict disease courses and guide personalized treatment for COVID-19.PMID:37834869 | DOI:10.3390/jcm12196225

Pages