Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Serum metabolomics of treatment response in myasthenia gravis

Tue, 10/10/2023 - 12:00
PLoS One. 2023 Oct 10;18(10):e0287654. doi: 10.1371/journal.pone.0287654. eCollection 2023.ABSTRACTOBJECTIVE: High-dose prednisone use, lasting several months or longer, is the primary initial therapy for myasthenia gravis (MG). Upwards of a third of patients do not respond to treatment. Currently no biomarkers can predict clinical responsiveness to corticosteroid treatment. We conducted a discovery-based study to identify treatment responsive biomarkers in MG using sera obtained at study entry to the thymectomy clinical trial (MGTX), an NIH-sponsored randomized, controlled study of thymectomy plus prednisone versus prednisone alone.METHODS: We applied ultra-performance liquid chromatography coupled with electro-spray quadrupole time of flight mass spectrometry to obtain comparative serum metabolomic and lipidomic profiles at study entry to correlate with treatment response at 6 months. Treatment response was assessed using validated outcome measures of minimal manifestation status (MMS), MG-Activities of Daily Living (MG-ADL), Quantitative MG (QMG) score, or a strictly defined composite measure of response.RESULTS: Increased serum levels of phospholipids were associated with treatment response as assessed by QMG, MMS, and the Responders classification, but all measures showed limited overlap in metabolomic profiles, in particular the MG-ADL. A panel including histidine, free fatty acid (13:0), γ-cholestenol and guanosine was highly predictive of the strictly defined treatment response measure. The AUC in Responders' prediction for these markers was 0.90 irrespective of gender, age, thymectomy or baseline prednisone use. Pathway analysis suggests that xenobiotic metabolism could play a major role in treatment resistance. There was no association with outcome and gender, age, thymectomy or baseline prednisone use.INTERPRETATION: We have defined a metabolomic and lipidomic profile that can now undergo validation as a treatment predictive marker for MG patients undergoing corticosteroid therapy. Metabolomic profiles of outcome measures had limited overlap consistent with their assessing distinct aspects of treatment response and supporting unique biological underpinning for each outcome measure. Interindividual variation in prednisone metabolism may be a determinate of how well patients respond to treatment.PMID:37816000 | DOI:10.1371/journal.pone.0287654

Assessing Metabolic Differences Associated with Exposure to Polybrominated Biphenyl and Polychlorinated Biphenyls in the Michigan PBB Registry

Tue, 10/10/2023 - 12:00
Environ Health Perspect. 2023 Oct;131(10):107005. doi: 10.1289/EHP12657. Epub 2023 Oct 10.ABSTRACTBACKGROUND: Polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) are persistent organic pollutants with potential endocrine-disrupting effects linked to adverse health outcomes.OBJECTIVES: In this study, we utilize high-resolution metabolomics (HRM) to identify internal exposure and biological responses underlying PCB and multigenerational PBB exposure for participants enrolled in the Michigan PBB Registry.METHODS: HRM profiling was conducted on plasma samples collected from 2013 to 2014 from a subset of participants enrolled in the Michigan PBB Registry, including 369 directly exposed individuals (F0) who were alive when PBB mixtures were accidentally introduced into the food chain and 129 participants exposed to PBB in utero or through breastfeeding, if applicable (F1). Metabolome-wide association studies were performed for PBB-153 separately for each generation and ΣPCB (PCB-118, PCB-138, PCB-153, and PCB-180) in the two generations combined, as both had direct PCB exposure. Metabolite and metabolic pathway alterations were evaluated following a well-established untargeted HRM workflow.RESULTS: Mean levels were 1.75 ng/mL [standard deviation (SD): 13.9] for PBB-153 and 1.04 ng/mL (SD: 0.788) for ΣPCB. Sixty-two and 26 metabolic features were significantly associated with PBB-153 in F0 and F1 [false discovery rate (FDR) p<0.2], respectively. There were 2,861 features associated with ΣPCB (FDR p<0.2). Metabolic pathway enrichment analysis using a bioinformatics tool revealed perturbations associated with ΣPCB in numerous oxidative stress and inflammation pathways (e.g., carnitine shuttle, glycosphingolipid, and vitamin B9 metabolism). Metabolic perturbations associated with PBB-153 in F0 were related to oxidative stress (e.g., pentose phosphate and vitamin C metabolism) and in F1 were related to energy production (e.g., pyrimidine, amino sugars, and lysine metabolism). Using authentic chemical standards, we confirmed the chemical identity of 29 metabolites associated with ΣPCB levels (level 1 evidence).CONCLUSIONS: Our results demonstrate that serum PBB-153 is associated with alterations in inflammation and oxidative stress-related pathways, which differed when stratified by generation. We also found that ΣPCB was associated with the downregulation of important neurotransmitters, serotonin, and 4-aminobutanoate. These findings provide novel insights for future investigations of molecular mechanisms underlying PBB and PCB exposure on health. https://doi.org/10.1289/EHP12657.PMID:37815925 | DOI:10.1289/EHP12657

MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer

Tue, 10/10/2023 - 12:00
Cell Rep. 2023 Oct 9;42(10):113221. doi: 10.1016/j.celrep.2023.113221. Online ahead of print.ABSTRACTAdvanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.PMID:37815914 | DOI:10.1016/j.celrep.2023.113221

Whole-genome sequence and mass spectrometry study of the snow blight fungus Phacidium infestans (Karsten) DSM 5139 growing at freezing temperatures

Tue, 10/10/2023 - 12:00
Mol Genet Genomics. 2023 Oct 10. doi: 10.1007/s00438-023-02073-7. Online ahead of print.ABSTRACTPhacidium infestans (synonym Gremmenia infestans) is a significant pathogen that impacts Pinus species across the northern regions of Europe and Asia. This study introduces the genome sequence of P. infestans Karsten DSM 5139 (Phain), obtained through Pacbio technology. The assembly resulted in 44 contigs, with a total genome size of 36,805,277 bp and a Guanine-Cytosine content of 46.4%. Genome-mining revealed numerous putative biosynthetic gene clusters that code for virulence factors and fungal toxins. The presence of the enzyme pisatin demethylase was indicative of the potential of Phain to detoxify its environment from the terpenoid phytoalexins produced by its host as a defense mechanism. Proteomic analysis revealed the potential survival strategies of Phain under the snow, which included the production of antifreeze proteins, trehalose synthesis enzymes, desaturases, proteins related to elongation of very long-chain fatty acids, and stress protein responses. Study of protein GH11 endoxylanase expressed in Escherichia coli showed an acidic optimum pH (pH 5.0) and a low optimum temperature (45 °C), which is reflective of the living conditions of the fungus. Mass spectrometry analysis of the methanol extract of Phain, incubated at - 3 °C and 22 °C, revealed differences in the produced metabolites. Both genomic and mass spectrometry analyses showed the ability of Phain to adapt its metabolic processes and secretome to freezing temperatures through the production of osmoprotectant and cryoprotectant metabolites. This comprehensive exploration of Phain's genome sequence, proteome, and secretome not only advances our understanding of its unique adaptive mechanisms but also expands the possibilities of biotechnological applications.PMID:37815644 | DOI:10.1007/s00438-023-02073-7

Exploring the mechanism of clomiphene citrate to improve ovulation disorder in PCOS rats based on follicular fluid metabolomics

Tue, 10/10/2023 - 12:00
Naunyn Schmiedebergs Arch Pharmacol. 2023 Oct 10. doi: 10.1007/s00210-023-02750-9. Online ahead of print.ABSTRACTTo examine the effects of clomiphene citrate (CC) on follicular fluid metabolites and related metabolic pathways in rats with polycystic ovary syndrome (PCOS) using non-targeted metabolomics and determine how CC treats ovulation disorder in PCOS. The Sprague Dawley rats were randomly divided into control, model, and CC groups. A PCOS model was established with letrozole. Body weight, ovarian weight, estrus cycles, serum hormone levels, and ovary histopathology of the rats were collected for further evaluation. Moreover, through ultra-performance liquid chromatography-mass spectrometry, the study of follicular fluid metabolites revealed the mechanism of action of CC. CC reduced ovarian weight and regulated estrous cycles and serum hormone levels in PCOS rats but did not affect their body weight. Moreover, the metabolomic results showed that CC adjusted 153 metabolites, among which 16 cross metabolites like testosterone, androstenedione, 17α-hydroxyprogesterone, and cholic acid were considered as potential biomarkers for CC to improve ovulation disorders in PCOS rats. Kyoto Encyclopedia of Genes and Genomes pathway enrichment also showed that the CC group mainly engaged in tryptophan metabolism and steroid hormone biosynthesis. CC can improve ovulation disorders in rats, and its mechanism is related to the regulation of the secretion of serum hormone and follicular fluid metabolites and the amelioration of multi-metabolic pathways.PMID:37815607 | DOI:10.1007/s00210-023-02750-9

Metabolite diversity among representatives of divergent <em>Prochlorococcus</em> ecotypes

Tue, 10/10/2023 - 12:00
mSystems. 2023 Oct 10:e0126122. doi: 10.1128/msystems.01261-22. Online ahead of print.ABSTRACTThe euphotic zone of the surface ocean contains distinct physical-chemical regimes that vary in light and nutrient concentrations as an inverse function of depth. The most numerous phytoplankter of the mid- and low-latitude ocean is the picocyanobacterium Prochlorococcus, which consists of ecologically distinct subpopulations (i.e., "ecotypes"). Ecotypes have different temperature, light, and nutrient optima and display distinct relative abundances along gradients of these niche dimensions. As a primary producer, Prochlorococcus fixes and releases organic carbon to neighboring microbes as part of the microbial loop. However, little is known about the specific molecules Prochlorococcus accumulates and releases or how these processes vary among its ecotypes. Here, we characterize the metabolite diversity of Prochlorococcus by profiling three ecologically distinct cultured strains: MIT9301, representing a high-light-adapted ecotype dominating shallow tropical and sub-tropical waters; MIT0801, representing a low-light-adapted ecotype found throughout the euphotic zone; and MIT9313, representing a low-light-adapted ecotype relatively most abundant at the base of the euphotic zone. In both intracellular and extracellular metabolite profiles, we observe striking differences across strains in the accumulation and release of molecules, such as the DNA methylating agent S-adenosyl-methionine (intracellular) and the branched-chain amino acids (intracellular) and their precursors (extracellular). While some differences reflect variable genome content across the strains, others likely reflect variable regulation of conserved pathways. In the extracellular profiles, we identify molecules such as pantothenic acid and aromatic amino acids that may serve as currencies in Prochlorococcus' interactions with neighboring microbes and, therefore, merit further investigation. IMPORTANCE Approximately half of the annual carbon fixation on Earth occurs in the surface ocean through the photosynthetic activities of phytoplankton such as the ubiquitous picocyanobacterium Prochlorococcus. Ecologically distinct subpopulations (or ecotypes) of Prochlorococcus are central conduits of organic substrates into the ocean microbiome, thus playing important roles in surface ocean production. We measured the chemical profile of three cultured ecotype strains, observing striking differences among them that have implications for the likely chemical impact of Prochlorococcus subpopulations on their surroundings in the wild. Subpopulations differ in abundance along gradients of temperature, light, and nutrient concentrations, suggesting that these chemical differences could affect carbon cycling in different ocean strata and should be considered in models of Prochlorococcus physiology and marine carbon dynamics.PMID:37815355 | DOI:10.1128/msystems.01261-22

A metabolomic perspective on the mechanisms by which environmental pollutants and lifestyle lead to male infertility

Tue, 10/10/2023 - 12:00
Andrology. 2023 Oct 10. doi: 10.1111/andr.13530. Online ahead of print.ABSTRACTThe incidence of male infertility (MI) is rising annually. According to epidemiological studies, environmental pollution (e.g., organic, inorganic, and air pollutants), occupational exposure (e.g., high temperature, organic solvents, and pesticides), and poor lifestyle (e.g., diet, sleep, smoking, alcohol consumption, and exercise) are important non-genetic causative factors of MI. Due to multiple and complex causative factors, the dose-effect relationship, and the uncertainty of pathogenicity, the pathogenesis of MI is far from fully clarified. Recent data show that the pathogenesis of MI can be monitored by the metabolites in serum, seminal plasma, urine, testicular tissue, sperm, and other biological samples. It is considered that these metabolites are closely related to MI phenotypes and can directly reflect the individual pathological and physiological conditions. Therefore, qualitative and quantitative analysis of the metabolome, the related metabolic pathways, and the identification of biomarkers will help to explore the MI-related metabolic problems and provide valuable insights into its pathogenic mechanisms. Here, we summarized new findings in MI metabolomics biomarkers research and their abnormal metabolic pathways triggered by the presented non-genetic risk factors, providing a metabolic landscape of semen and seminal plasma in general MI patients. Then, we compared the similarities and differences in semen and seminal plasma biomarkers between MI patients exposed to environmental and poor lifestyle factors and MI patients in general, and summarized some common biomarkers. We provide a better understanding of the biological underpinnings of MI pathogenesis, which might offer novel diagnostic, prognostic, and precise treatment approaches to MI.PMID:37815095 | DOI:10.1111/andr.13530

Exploration of plant metabolomics variation and absorption characteristics of water-extracted Rheum tanguticum and ethanol-extracted Rheum tanguticum by UHPLC-Q-TOF-MS/MS

Tue, 10/10/2023 - 12:00
Phytochem Anal. 2023 Oct 10. doi: 10.1002/pca.3288. Online ahead of print.ABSTRACTBACKGROUND AND OBJECTIVE: The herb Rheum tanguticum (RT), a member of the Polygonaceae family, is listed in the Chinese Pharmacopoeia and has been widely used to treat cardiovascular and gastrointestinal disease. The research aimed to identify the different substances from two kinds of RT extraction methods and the in vivo biotransformation of RT components.METHODS: In this study, by using ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS), we have investigated the metabolomic variation and the in vivo metabolism of RT. A post-acquisition data processing software, PeakView, was applied to an accurate qualitative analysis of the chemical components in RT.RESULTS: Through plant metabolomics analysis, 24 related, differentially expressed metabolites of RT water extract and alcohol extract were obtained. Combined with novel identification strategies and systematic in vivo metabolism analysis, a total of 101 compounds were discovered or tentatively identified in rat serum (including 15 prototype compounds and 86 metabolites).CONCLUSION: In this study, a combination of extraction methods, liquid chromatography-mass spectrometry (LC-MS) technology, and in vivo animal metabolism studies have been established for the screening, identification, and research of chemical active components of natural medicines. LC-MS analysis combined with plant metabolomics was used to study the differential metabolites between different extraction methods of RT. Based on UHPLC-Q-TOF-MS/MS technology, the composition and metabolism of rat plasma before and after RT administration were analysed in vivo, and 15 prototype components and 86 metabolites were detected.PMID:37814999 | DOI:10.1002/pca.3288

Metabolome revealed the potential mechanism of Fusarium wilt resistance in bitter gourd (Momordica charantia) based on liquid chromatography with mass spectrometry

Tue, 10/10/2023 - 12:00
Plant Dis. 2023 Oct 9. doi: 10.1094/PDIS-07-23-1371-RE. Online ahead of print.ABSTRACTFusarium wilt fungus infection of bitter gourd, a major melon vegetable crop, results in massive yield reduction. Through extensive testing, some Fusarium wilt resistant bitter melon varieties have been produced, but the molecular mechanism of their resistance to the fungus remains unknown. Importantly, after bitter melon plants are infected with the Fusarium oxysporum f. sp. momordicae (FOM), apart from altering their gene expression levels, numerous metabolites are produced because of the interaction with the fungus. In the current study, an untargeted metabolomics analysis was performed to investigate the metabolic difference between resistant and susceptible bitter gourd varieties at various timepoints postinoculation with FOM based on liquid chromatography with mass spectrometry. A total of 1595 positive ion mode and 922 negative ion mode metabolites were identified. Between the resistant and susceptible bitter gourd varieties, 213 unique differentially abundant metabolites (DAMs) were identified and they were mainly enriched in alpha-linolenic acid metabolism pathway. By comparing the postinoculation with preinoculation time points in the resistant and susceptible bitter gourd varieties, 93 and 159 DAMs were identified, respectively. These DAMs were mainly related to beta-alanine metabolism among others. Multiple metabolites in the biosynthesis of phenylpropanoids pathway showed greater variability in the susceptible than the resistant varieties, which may be related to senescence and mortality in the susceptible variety. These results provide new insights into the understanding of metabolite changes after FOM infection and a theoretical foundation for the elucidation of the bitter gourd disease resistance mechanism.PMID:37814516 | DOI:10.1094/PDIS-07-23-1371-RE

A metabolism-based study of the mechanism of action of Scrophularia ningpoensis Hemsl. on nephrogenic edema

Tue, 10/10/2023 - 12:00
Biomed Chromatogr. 2023 Oct 9:e5757. doi: 10.1002/bmc.5757. Online ahead of print.ABSTRACTNephrogenic edema (NE) is a type of edema with hypoproteinemia and water and sodium retention as a result of renal injury. Traditional Chinese medicine has proved that Scrophularia ningpoensis Hemsl. has an effect on NE, but its mechanism is not clear. In this study, the main components and blood components of S. ningpoensis were identified using ultra-high-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS). Pathological section and blood biochemical analysis were used to estimate the therapeutic effect of S. ningpoensis on NE. Network pharmacology was used to predict the potential pathways of S. ningpoensis. The metabolomics method was used to study the changes in small-molecule metabolites in the body. The results showed that S. ningpoensis could relieve NE by regulating relative to renal function and body edema, and its mechanism may be related to the regulation of energy metabolism, recovery of renal injury, and reduction in inflammation. The active component harpagoside may be one of the important compounds of S. ningpoensis in the treatment of NE. We confirmed that S. ningpoensis has a therapeutic effect on NE, which provides a solid scientific research basis for the clinical application of S. ningpoensis.PMID:37814466 | DOI:10.1002/bmc.5757

Lipidome of mammographic breast density in premenopausal women

Mon, 09/10/2023 - 12:00
Breast Cancer Res. 2023 Oct 9;25(1):121. doi: 10.1186/s13058-023-01725-1.ABSTRACTBACKGROUND: High mammographic breast density (MBD) is a strong risk factor for breast cancer development, but the biological mechanisms underlying MBD are unclear. Lipids play important roles in cell differentiation, and perturbations in lipid metabolism are implicated in cancer development. Nevertheless, no study has applied untargeted lipidomics to profile the lipidome of MBD. Through this study, our goal is to characterize the lipidome of MBD in premenopausal women.METHODS: Premenopausal women were recruited during their annual screening mammogram at the Washington University School of Medicine in St. Louis, MO. Untargeted lipidomic profiling for 982 lipid species was performed at Metabolon (Durham, NC®), and volumetric measures of MBD (volumetric percent density (VPD), dense volume (DV), and non-dense volume (NDV)) was assessed using Volpara 1.5 (Volpara Health®). We performed multivariable linear regression models to investigate the associations of lipid species with MBD and calculated the covariate-adjusted least square mean of MBD by quartiles of lipid species. MBD measures were log10 transformed, and lipid species were standardized. Linear coefficients of MBD were back-transformed and considered significant if the Bonferroni corrected p-value was < 0.05.RESULTS: Of the 705 premenopausal women, 72% were non-Hispanic white, and 23% were non-Hispanic black. Mean age, and BMI were 46 years and 30 kg/m2, respectively. Fifty-six lipid species were significantly associated with VPD (52 inversely and 4 positively). The lipid species with positive associations were phosphatidylcholine (PC)(18:1/18:1), lysophosphatidylcholine (LPC)(18:1), lactosylceramide (LCER)(14:0), and phosphatidylinositol (PI)(18:1/18:1). VPD increased across quartiles of PI(18:1/18:1): (Q1 = 7.5%, Q2 = 7.7%, Q3 = 8.4%, Q4 = 9.4%, Bonferroni p-trend = 0.02). The lipid species that were inversely associated with VPD were mostly from the triacylglycerol (N = 43) and diacylglycerol (N = 7) sub-pathways. Lipid species explained some of the variation in VPD. The inclusion of lipid species increased the adjusted R2 from 0.45, for a model that includes known determinants of VPD, to 0.59.CONCLUSIONS: We report novel lipid species that are associated with MBD in premenopausal women. Studies are needed to validate our results and the translational potential.PMID:37814330 | DOI:10.1186/s13058-023-01725-1

Metabolomics profiling: a potential tool for predicting immunoglobulin A nephropathy progression

Mon, 09/10/2023 - 12:00
Kidney Res Clin Pract. 2023 Sep;42(5):539-540. doi: 10.23876/j.krcp.23.129. Epub 2023 Sep 27.NO ABSTRACTPMID:37813521 | DOI:10.23876/j.krcp.23.129

Potential role of Bcl2 in lipid metabolism and synaptic dysfunction of age-related hearing loss

Mon, 09/10/2023 - 12:00
Neurobiol Dis. 2023 Oct 7:106320. doi: 10.1016/j.nbd.2023.106320. Online ahead of print.ABSTRACTAge-related hearing loss (ARHL) is a prevalent condition affecting millions of individuals globally. This study investigated the role of the cell survival regulator Bcl2 in ARHL through in vitro and in vivo experiments and metabolomics analysis. The results showed that the lack of Bcl2 in the auditory cortex affects lipid metabolism, resulting in reduced synaptic function and neurodegeneration. Immunohistochemical analysis demonstrated enrichment of Bcl2 in specific areas of the auditory cortex, including the secondary auditory cortex, dorsal and ventral areas, and primary somatosensory cortex. In ARHL rats, a significant decrease in Bcl2 expression was observed in these areas. RNAseq analysis showed that the downregulation of Bcl2 altered lipid metabolism pathways within the auditory pathway, which was further confirmed by metabolomics analysis. These results suggest that Bcl2 plays a crucial role in regulating lipid metabolism, synaptic function, and neurodegeneration in ARHL; thereby, it could be a potential therapeutic target. We also revealed that Bcl2 probably has a close connection with lipid peroxidation and reactive oxygen species (ROS) production occurring in cochlear hair cells and cortical neurons in ARHL. The study also identified changes in hair cells, spiral ganglion cells, and nerve fiber density as consequences of Bcl2 deficiency, which could potentially contribute to the inner ear nerve blockage and subsequent hearing loss. Therefore, targeting Bcl2 may be a promising potential therapeutic intervention for ARHL. These findings provide valuable insights into the molecular mechanisms underlying ARHL and may pave the way for novel treatment approaches for this prevalent age-related disorder.PMID:37813166 | DOI:10.1016/j.nbd.2023.106320

PGC1α deficiency reverses cholestasis-induced liver injury via attenuating hepatic inflammation and promoting bile duct remodeling

Mon, 09/10/2023 - 12:00
Acta Histochem. 2023 Oct 7;125(8):152097. doi: 10.1016/j.acthis.2023.152097. Online ahead of print.ABSTRACTOBJECTIVES: Cholestatic liver diseases are characterized by hepatocellular damage, cholangiocyte proliferation, and progressive fibrosis. Bile duct ligation (BDL) is widely used to resemble liver injuries induced by cholestasis. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α) was reported to play a critical role in multiple biological responses. Nevertheless, whether PGC1α is involved in bile acid metabolism and biliary disorders remains unclear. This study aimed to investigate the effect of PGC1α on hepatic responses after cholestatic injury.MATERIALS AND METHODS: Wild-type mice were subjected to BDL or sham surgery for 14 days and human liver specimens from patients with primary biliary cholangitis (PBC) were collected to detect the expression of PGC1α. Hepatic-specific PGC1α knockout mice (HKO) were constructed and subjected to BDL, in which the effects of PGC1α on cholestatic liver injury were demonstrated by biochemical and histopathological assessments, immunoblotting, and metabolomics.RESULTS: The expression of PGC1α was upregulated in the liver of PBC patients and murine models. Both in vivo and in vitro experiments supported the protective effects of PGC1α on cholestasis-induced hepatocyte injury. Infiltrated inflammatory cells after BDL were decreased in HKO mice. Inhibited Wnt/β-Catenin pathway and enhanced Notch signaling promoted transdifferentiation of hepatic progenitor cells (HPC)/ hepatocytes into cholangiocytes, leading to the greater ductular reaction observed in the HKO mice. But bile acids metabolism and mitochondrial function were not affected due to hepatic PGC1α deficiency in cholestasis.CONCLUSIONS: Hepatic-specific deletion of PGC1α regulated liver regeneration by promoting ductular reactions, thereby exerting protective effects against BDL-induced liver injury, which could be a new potential therapeutic target.PMID:37813066 | DOI:10.1016/j.acthis.2023.152097

Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass...

Mon, 09/10/2023 - 12:00
Food Chem. 2023 Oct 5;435:137504. doi: 10.1016/j.foodchem.2023.137504. Online ahead of print.ABSTRACTPanax quinquefolius is a natural homology medicine and food that is rich in bioactive ingredients, such as ginsenosides and polysaccharides. The combination of ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry (UPLC-Q-TOF/MS) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used for the first time in a spatial metabolomics analysis to comprehensively evaluate the differential components in different microregions of P. quinquefolius. UPLC-Q-TOF/MS and DESI-MSI combined with principal component analysis and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. UPLC-Q-TOF/MS and DESI-MSI screened 27 and 23 differential metabolites, respectively, among which 15 differential metabolites were identified by both methods. It was found that some components, such as ginsenoside Rg1 and malonyl-ginsenoside Rc, were mainly distributed in P of the transverse slice of P. quinquefolius roots, while ginsenoside Ro and malonyl-ginsenoside Rd were mainly distributed in C. The methods and results of this study could be used to understand the precise localization, biosynthesis, and biological functions of special metabolites in P. quinquefolius.PMID:37813026 | DOI:10.1016/j.foodchem.2023.137504

Transcriptomics and metabolomics profiling reveals involvement of flavonoids in early nodulation of Caucasian clover (Trifolium ambiguum)

Mon, 09/10/2023 - 12:00
Plant Physiol Biochem. 2023 Oct 4;203:108050. doi: 10.1016/j.plaphy.2023.108050. Online ahead of print.ABSTRACTCaucasian clover (Trifolium ambiguum) is a perennial rooted and tillering leguminous forage with strong adaptability, outstanding stress tolerance and other preferable traits. However, the specificity with rhizobia limits the extended application of Caucasian clover. Therefore, it is important to study the changes of genes and metabolites in the early process of nodulation in Caucasian clover to improve its nodulation and nitrogen fixation ability. In this study, we used Caucasian clover as the experimental material to investigate its nodulation mechanism using transcriptomic and metabolomic approaches, such that to break the nitrogen fixation barrier for the promotion of Caucasian clover. Metabolomic and transcriptomic profiling revealed that both DAMs and DEGs were significantly enriched in the phenylpropanoid and flavonoid biosynthetic pathways, with DEGs showing up-regulation at 3 days and 6 days post inoculation (dpi) with rhizobia, and some DEGs showing down-regulation at 9 dpi. Accumulation of flavonoids was significantly increased at both 3 dpi and 6 dpi, and some compounds were significantly decreased at 9 dpi. A total of 35 DEGs were involved in flavonoid synthesis by WGCNA analysis, among which HCT, CCR, COMT and F3H played an important role. This study provides insights in understanding the molecular mechanism of nodulation and nitrogen fixation in Caucasian clover.PMID:37812991 | DOI:10.1016/j.plaphy.2023.108050

Metabolome and transcriptome reprogramming underlying tomato drought resistance triggered by a Pseudomonas strain

Mon, 09/10/2023 - 12:00
Plant Physiol Biochem. 2023 Oct 4;203:108080. doi: 10.1016/j.plaphy.2023.108080. Online ahead of print.ABSTRACTAlthough amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.PMID:37812990 | DOI:10.1016/j.plaphy.2023.108080

Dual function of magnetic field in enhancing antibiotic wastewater treatment by an integrated photocatalysis and fluidized bed biofilm reactor (FBBR)

Mon, 09/10/2023 - 12:00
J Environ Manage. 2023 Oct 7;347:119249. doi: 10.1016/j.jenvman.2023.119249. Online ahead of print.ABSTRACTThe integrated photocatalysis and fluidized bed biofilm reactor (FBBR) is an attractive wastewater treatment technique for managing wastewater containing antibiotics. However, the fast recombination of photoinduced charge and low microbial activity limit the degradation and mineralization efficiency for antibiotics. To address this, we attempt to introduce magnetic field (MF) to the integrated system with B-doped Bi3O4Cl as the photocatalysts to effectively improve removal and mineralization of ciprofloxacin (CIP). As a consequence, the degradation rate reaches 96% after 40 d in integrated system with MF. The biofilm inside the integrated system with MF carrier can mineralize the photocatalytic products, thereby increasing the total organic carbon (TOC) degradation rate by more than 32%. The electrochemical experiment indicates the Lorentz force generated by MF can accelerate charge separation, increasing the electron concentration. Simultaneously, the increased amounts of electrons lead to the generation of more ·OH and ·O2-. MF addition also results in increased biomass, increased biological respiratory activity, microbial community evolution and accelerated microbial metabolism, enabling more members to biodegrade photocatalytic intermediates. Therefore, applied MF is an efficient method to enhance CIP degradation and mineralization by the integrated system.PMID:37812897 | DOI:10.1016/j.jenvman.2023.119249

Exploring the differences in serum metabolite profiles after intake of red meat in women with rheumatoid arthritis and a matched control group

Mon, 09/10/2023 - 12:00
Eur J Nutr. 2023 Oct 9. doi: 10.1007/s00394-023-03257-y. Online ahead of print.ABSTRACTPURPOSE: Studies have suggested that women with RA tend to avoid red meat more often than women without RA, based on their perception that it exacerbates their symptoms. Therefore, the aim of this study is to investigate and compare the postprandial metabolic response following the consumption of a red meat meal in patients with RA and a matched control group.METHODS: Participants were challenged with a meal with red meat and blood samples were collected before and at 0.5, 1, 2, 3 and 5 h after the meal. Serum metabolites were quantified by Nuclear Magnetic Resonance (NMR) analysis. Orthogonal Projections to Latent Structures with Discriminant Analysis (OPLS-DA) was used to evaluate separation by metabolites due to diagnosis of RA or not and to identify changes in metabolites related to RA. Incremental area under the curve was calculated for univariate comparisons for 23 metabolites.RESULTS: The matched groups, including 22 women with RA and 22 women without RA, did not differ significantly in age, body mass index, diet quality or reported physical activity. OPLS-DA models had a limited quality indicating that there were no differences in metabolite patterns between the groups. However, phenylalanine was significantly higher in concentration in women with RA compared to controls in both fasting and postprandial samples.CONCLUSION: To conclude, this well-controlled postprandial intervention study found a significantly higher concentration of phenylalanine in both fasting and postprandial samples of women with RA compared to matched women without RA. These findings warrant further investigation in larger studies.TRIAL REGISTRATION: The PIRA (Postprandial Inflammation in Rheumatoid Arthritis) trial is Registered at Clinicaltrials.gov (NCT04247009).PMID:37814020 | DOI:10.1007/s00394-023-03257-y

The malate shuttle detoxifies ammonia in exhausted T cells by producing 2-ketoglutarate

Mon, 09/10/2023 - 12:00
Nat Immunol. 2023 Oct 9. doi: 10.1038/s41590-023-01636-5. Online ahead of print.ABSTRACTThe malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.PMID:37813964 | DOI:10.1038/s41590-023-01636-5

Pages