Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolite Profiling in a Diet-Induced Obesity Mouse Model and Individuals with Diabetes: A Combined Mass Spectrometry and Proton Nuclear Magnetic Resonance Spectroscopy Study

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 23;13(7):874. doi: 10.3390/metabo13070874.ABSTRACTMass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy techniques have been used extensively for metabolite profiling. Although combining these two analytical modalities has the potential of enhancing metabolite coverage, such studies are sparse. In this study we test the hypothesis that combining the metabolic information obtained using liquid chromatography (LC) MS and 1H NMR spectroscopy improves the discrimination of metabolic disease development. We induced metabolic syndrome in male mice using a high-fat diet (HFD) exposure and performed LC-MS and NMR spectroscopy on plasma samples collected after 1 and 8 weeks of dietary intervention. In an orthogonal projection to latent structures (OPLS) analysis, we observed that combining MS and NMR was stronger than each analytical method alone at determining effects of both HFD feeding and time-on-diet. We then tested our metabolomics approach on plasma from 56 individuals from the Malmö Diet and Cancer Study (MDCS) cohort. All metabolic pathways impacted by HFD feeding in mice were confirmed to be affected by diabetes in the MDCS cohort, and most prominent HFD-induced metabolite concentration changes in mice were also associated with metabolic syndrome parameters in humans. The main drivers of metabolic disease discrimination emanating from the present study included plasma levels of xanthine, hippurate, 2-hydroxyisovalerate, S-adenosylhomocysteine and dimethylguanidino valeric acid. In conclusion, our combined NMR-MS approach provided a snapshot of metabolic imbalances in humans and a mouse model, which was improved over employment of each analytical method alone.PMID:37512581 | DOI:10.3390/metabo13070874

Mucosal Metabolomic Signatures in Chronic Colitis: Novel Insights into the Pathophysiology of Inflammatory Bowel Disease

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 23;13(7):873. doi: 10.3390/metabo13070873.ABSTRACTInflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The goals of this study were twofold: to test the hypothesis that gut microbial dysbiosis from chronic intestinal inflammation leads to mucosal metabolic alterations suitable for therapeutic targeting, and to address gaps in metabolomic studies of intestinal inflammation that have overlooked the mucosal metabolome. The chronic DSS colitis was induced for five weeks in 7-9-week-old wild-type C57BL/6J male mice followed by microbial profiling with targeted 16srRNA sequencing service. Mucosal metabolite measurements were performed by Metabolon (Morrisville, NC). The data were analyzed using the bioinformatic tools Pathview, MetOrigin, and Metaboanalyst. The novel findings demonstrated increases in several host- and microbe-derived purine, pyrimidine, endocannabinoid, and ceramide metabolites in colitis. Origin analysis revealed that microbial-related tryptophan metabolites kynurenine, anthranilate, 5-hydroxyindoleacetate, and C-glycosyltryptophan were significantly increased in colon mucosa during chronic inflammation and strongly correlated with disease activity. These findings offer new insights into the pathophysiology of IBD and provide novel potential targets for microbial-based therapeutics.PMID:37512580 | DOI:10.3390/metabo13070873

Evaluating Metabolite-Based Biomarkers for Early Diagnosis of Pancreatic Cancer: A Systematic Review

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 22;13(7):872. doi: 10.3390/metabo13070872.ABSTRACTPancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with five-year survival rates around 10%. The only curative option remains complete surgical resection, but due to the delay in diagnosis, less than 20% of patients are eligible for surgery. Therefore, discovering diagnostic biomarkers for early detection is crucial for improving clinical outcomes. Metabolomics has become a powerful technology for biomarker discovery, and several metabolomic-based panels have been proposed for PDAC diagnosis, but these advances have not yet been translated into the clinic. Therefore, this review focused on summarizing metabolites identified for the early diagnosis of PDAC in the last five years. Bibliographic searches were performed in the PubMed, Scopus and WOS databases, using the terms "Biomarkers, Tumor", "Pancreatic Neoplasms", "Early Diagnosis", "Metabolomics" and "Lipidome" (January 2018-March 2023), and resulted in the selection of fourteen original studies that compared PDAC patients with subjects with other pancreatic diseases. These investigations showed amino acid and lipid metabolic pathways as the most commonly altered, reflecting their potential for biomarker research. Furthermore, other relevant metabolites such as glucose and lactate were detected in the pancreas tissue and body fluids from PDAC patients. Our results suggest that the use of metabolomics remains a robust approach to improve the early diagnosis of PDAC. However, these studies showed heterogeneity with respect to the metabolomics techniques used and further studies will be needed to validate the clinical utility of these biomarkers.PMID:37512579 | DOI:10.3390/metabo13070872

Anti-Obesity Effect of a Tea Mixture Nano-Formulation on Rats Occurs via the Upregulation of AMP-Activated Protein Kinase/Sirtuin-1/Glucose Transporter Type 4 and Peroxisome Proliferator-Activated Receptor Gamma Pathways

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 21;13(7):871. doi: 10.3390/metabo13070871.ABSTRACTWhite, green, and oolong teas are produced from the tea plant (Camellia sinensis (L.) Kuntze) and are reported to have anti-obesity and hypolipidemic effects. The current study aims to investigate the anti-obesity effects of a tea mixture nano-formulation by targeting the AMPK/Sirt-1/GLUT-4 axis in rats. In vitro lipase and α-amylase inhibition assays were used to determine the active sample, which was then incorporated into a nanoparticle formulation subjected to in vivo anti-obesity testing in rats by measuring the expression level of different genes implicated in adipogenesis and inflammation using qRT-PCR. Moreover, metabolomic analysis was performed for each tea extract using LC/ESI MS/MS coupled to chemometrics in an attempt to find a correlation between the constituents of the extracts and their biological activity. The in vitro pancreatic lipase and α-amylase inhibition assays demonstrated more effective activity in the tea mixture than the standards, orlistat and acarbose, respectively, and each tea alone. Thus, the herbal tea mixture and its nanoparticle formulation were evaluated for their in vivo anti-obesity activity. Intriguingly, the tea mixture significantly decreased the serum levels of glucose and triglycerides and increased the mRNA expression of GLUT-4, P-AMPK, Sirt-1, and PPAR-γ, which induce lipolysis while also decreasing the mRNA expression of TNF-α and ADD1/SREBP-1c, thereby inhibiting the inflammation associated with obesity. Our study suggests that the tea mixture nano-formulation is a promising therapeutic agent in the treatment of obesity and may also be beneficial in other metabolic disorders by targeting the AMPK/Sirt-1/Glut-4 pathway.PMID:37512578 | DOI:10.3390/metabo13070871

Metabolomics-Based Investigation on the Metabolic Changes in <em>Crassostrea gigas</em> Experimentally Exposed to Galvanic Anodes

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 20;13(7):869. doi: 10.3390/metabo13070869.ABSTRACTCathodic protection is widely used to protect metal structures from corrosion in marine environments using sacrificial galvanic anodes. These anodes, either in Zinc, or preferentially nowadays in Al-Zn-In alloys, are expected to corrode instead of the metal structures. This leads to the release of dissolved species, Zn2+, Al3+, and In3+, and solid phases such as Al(OH)3. Few studies have been conducted on their effects on marine organisms, and they concluded that further investigations are needed. We therefore evaluated the effects of Zn and Al-Zn-In anodes on oysters stabulated in tanks, under controlled conditions defined through a comparison with those prevailing in a given commercial seaport used as reference. We analyzed the entire metabolome of gills with a non-targeted metabolomic approach HRMS. A modelling study of the chemical species, corresponding to the degradation products of the anodes, likely to be present near the exposed oysters, was also included. We identified 16 and two metabolites modulated by Zn- and Al-Zn-In-anodes, respectively, that were involved in energy metabolism, osmoregulation, oxidative stress, lipid, nucleotide nucleoside and amino acid metabolisms, defense and signaling pathways. The combination of chemical modelling and metabolomic approach, used here for the first time, enlightened the influence of Zn present in the Al-Zn-In anodes.PMID:37512576 | DOI:10.3390/metabo13070869

The Dynamic Change in Aromatic Compounds and Their Relationship with <em>CsAAAT</em> Genes during the Post-Harvest Process of Oolong Tea

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 20;13(7):868. doi: 10.3390/metabo13070868.ABSTRACTFormed by L-phenylalanine (L-phe) ammonia under the action of aromatic amino acid aminotransferases (AAATs), volatile benzenoids (VBs) and volatile phenylpropanoids (VPs) are essential aromatic components in oolong tea (Camellia sinensis). However, the key VB/VP components responsible for the aromatic quality of oolong tea need to be revealed, and the formation mechanism of VBs/VPs based on AAAT branches during the post-harvest process of oolong tea remains unclear. Therefore, in this study, raw oolong tea and manufacturing samples were used as the test materials, and targeted metabolomics combined with transcriptome analysis was also conducted. The results showed that thirteen types of VBs/VPs were identified, including nine types of VPs and four types of VBs. Based on the OAV calculation, in raw oolong tea, 2-hydroxy benzoic acid methyl ester and phenylethyl alcohol were identified as key components of the aromatic quality of oolong tea. As for the results from the selection of related genes, firstly, a total of sixteen candidate CsAAAT genes were selected and divided into two sub-families (CsAAAT1 and CsAAAT2); then, six key CsAAAT genes closely related to VB/VP formation were screened. The upregulation of the expression level of CsAAAT2-type genes may respond to light stress during solar-withering as well as the mechanical force of turnover. This study can help to understand the formation mechanism of aromatic compounds during oolong tea processing and provide a theoretical reference for future research on the formation of naturally floral and fruity aromas in oolong tea.PMID:37512575 | DOI:10.3390/metabo13070868

Metabolomics Analysis Reveals Altered Metabolic Pathways and Response to Doxorubicin in Drug-Resistant Triple-Negative Breast Cancer Cells

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 20;13(7):865. doi: 10.3390/metabo13070865.ABSTRACTThis study aimed to investigate metabolic changes following the acquisition of resistance to doxorubicin in the triple-negative breast cancer (TNBC) cell line MDA-MB-231. Two drug-resistant cell lines, DOX-RES-50 and DOX-RES-100, were generated by treating MDA-MB-231 cells with doxorubicin for 24 h and allowing them to recover for six weeks. Both drug-resistant cell lines demonstrated an increase in doxorubicin IC50 values, indicating acquired drug resistance. Metabolomics analysis showed clear separation between the parental MDA-MB-231 cell line and the drug-resistant cell lines. Pathway analysis revealed that arginine and proline metabolism, glutathione metabolism, and beta-alanine metabolism were significantly perturbed in the drug-resistant cell lines compared to the parental cell line. After matching signals to an in-house library of reference standards, significant decreases in short- and medium-chain acylcarnitines and significant increases in long-chain acylcarnitines, 5-oxoproline, and 7-ketodeoxycholic acid were observed in the resistant cell lines as compared to the parental MDA-MB-231 cell line. In addition to baseline metabolic differences, we also investigated differences in metabolic responses in resistant cell lines upon a second exposure at multiple concentrations. Results indicate that whereas the parental MDA-MB-231 cell line had many metabolites that responded to doxorubicin in a dose-dependent manner, the two resistant cell lines lost a dose-dependent response for the majority of these metabolites. The study's findings provide insight into how metabolism is altered during the acquisition of resistance in TNBC cells and how the metabolic response to doxorubicin changes upon repeated treatment. This information can potentially identify novel targets to prevent or reverse multi-drug resistance in TNBC, and also demonstrate the usefulness of metabolomics technology in identifying new mechanisms of drug resistance in cancer and potential drug targets.PMID:37512572 | DOI:10.3390/metabo13070865

The Integration of Metabolomics, Electronic Tongue, and Chromatic Difference Reveals the Correlations between the Critical Compounds and Flavor Characteristics of Two Grades of High-Quality Dianhong Congou Black Tea

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 20;13(7):864. doi: 10.3390/metabo13070864.ABSTRACTTea's biochemical compounds and flavor quality vary depending on its grade ranking. Dianhong Congou black tea (DCT) is a unique tea category produced using the large-leaf tea varieties from Yunnan, China. To date, the flavor characteristics and critical components of two grades of high-quality DCT, single-bud-grade DCT (BDCT), and special-grade DCT (SDCT) manufactured mainly with single buds and buds with one leaf, respectively, are far from clear. Herein, comparisons of two grades were performed by the integration of human sensory evaluation, an electronic tongue, chromatic differences, the quantification of major components, and metabolomics. The BDCT possessed a brisk, umami taste and a brighter infusion color, while the SDCT presented a comprehensive taste and redder liquor color. Quantification analysis showed that the levels of total polyphenols, catechins, and theaflavins (TFs) were significantly higher in the BDCT. Fifty-six different key compounds were screened by metabolomics, including catechins, flavone/flavonol glycosides, amino acids, phenolic acids, etc. Correlation analysis revealed that the sensory features of the BDCT and SDCT were attributed to their higher contents of catechins, TFs, theogallin, digalloylglucose, and accumulations of thearubigins (TRs), flavone/flavonol glycosides, and soluble sugars, respectively. This report is the first to focus on the comprehensive evaluation of the biochemical compositions and sensory characteristics of two grades of high-quality DCT, advancing the understanding of DCT from a multi-dimensional perspective.PMID:37512571 | DOI:10.3390/metabo13070864

Effects of RIPC on the Metabolomical Profile during Lower Limb Digital Subtraction Angiography: A Randomized Controlled Trial

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 18;13(7):856. doi: 10.3390/metabo13070856.ABSTRACTRemote ischemic preconditioning (RIPC) has demonstrated protective effects in patients with lower extremity arterial disease (LEAD) undergoing digital subtraction angiography (DSA) and/or percutaneous transluminal angioplasty (PTA). This study aimed to investigate the impact of RIPC on the metabolomical profile of LEAD patients undergoing these procedures and to elucidate its potential underlying mechanisms. A total of 100 LEAD patients were enrolled and randomly assigned to either the RIPC group (n = 46) or the sham group (n = 54). Blood samples were drawn before and 24 h after intervention. Targeted metabolomics analysis was performed using the AbsoluteIDQ p180 Kit, and changes in metabolite concentrations were compared between the groups. The RIPC group demonstrated significantly different dynamics in nine metabolites compared to the sham group, which generally showed a decrease in metabolite concentrations. The impacted metabolites included glutamate, taurine, the arginine-dimethyl-amide-to-arginine ratio, lysoPC a C24:0, lysoPC a C28:0, lysoPC a C26:1, PC aa C38:1, PC ae C30:2, and PC ae C44:3. RIPC exhibited a 'stabilization' effect, maintaining metabolite levels amidst ischemia-reperfusion injuries, suggesting its role in enhancing metabolic control. This may improve outcomes for LEAD patients. However, additional studies are needed to definitively establish causal relationships among these metabolic changes.PMID:37512563 | DOI:10.3390/metabo13070856

Baseline Serum Biomarkers Predict Response to a Weight Loss Intervention in Older Adults with Obesity: A Pilot Study

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 17;13(7):853. doi: 10.3390/metabo13070853.ABSTRACTCaloric restriction and aerobic and resistance exercise are safe and effective lifestyle interventions for achieving weight loss in the obese older population (>65 years) and may improve physical function and quality of life. However, individual responses are heterogeneous. Our goal was to explore the use of untargeted metabolomics to identify metabolic phenotypes associated with achieving weight loss after a multi-component weight loss intervention. Forty-two older adults with obesity (body mass index, BMI, ≥30 kg/m2) participated in a six-month telehealth-based weight loss intervention. Each received weekly dietitian visits and twice-weekly physical therapist-led group strength training classes with a prescription for aerobic exercise. We categorized responders' weight loss using a 5% loss of initial body weight as a cutoff. Baseline serum samples were analyzed to determine the variable importance to the projection (VIP) of signals that differentiated the responder status of metabolic profiles. Pathway enrichment analysis was conducted in Metaboanalyst. Baseline data did not differ significantly. Weight loss was 7.2 ± 2.5 kg for the 22 responders, and 2.0 ± 2.0 kg for the 20 non-responders. Mummichog pathway enrichment analysis revealed that perturbations were most significant for caffeine and caffeine-related metabolism (p = 0.00028). Caffeine and related metabolites, which were all increased in responders, included 1,3,7-trimethylxanthine (VIP = 2.0, p = 0.033, fold change (FC) = 1.9), theophylline (VIP = 2.0, p = 0.024, FC = 1.8), paraxanthine (VIP = 2.0, p = 0.028, FC = 1.8), 1-methylxanthine (VIP = 1.9, p = 0.023, FC = 2.2), 5-acetylamino-6-amino-3-methyluracil (VIP = 2.2, p = 0.025, FC = 2.2), 1,3-dimethyl uric acid (VIP = 2.1, p = 0.023, FC = 2.3), and 1,7-dimethyl uric acid (VIP = 2.0, p = 0.035, FC = 2.2). Increased levels of phytochemicals and microbiome-related metabolites were also found in responders compared to non-responders. In this pilot weight loss intervention, older adults with obesity and evidence of significant enrichment for caffeine metabolism were more likely to achieve ≥5% weight loss. Further studies are needed to examine these associations in prospective cohorts and larger randomized trials.PMID:37512560 | DOI:10.3390/metabo13070853

Metabolomics and Self-Reported Depression, Anxiety, and Phobic Symptoms in the VA Normative Aging Study

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 15;13(7):851. doi: 10.3390/metabo13070851.ABSTRACTTraditional approaches to understanding metabolomics in mental illness have focused on investigating a single disorder or comparisons between diagnoses, but a growing body of evidence suggests substantial mechanistic overlap in mental disorders that could be reflected by the metabolome. In this study, we investigated associations between global plasma metabolites and abnormal scores on the depression, anxiety, and phobic anxiety subscales of the Brief Symptom Inventory (BSI) among 405 older males who participated in the Normative Aging Study (NAS). Our analysis revealed overlapping and distinct metabolites associated with each mental health dimension subscale and four metabolites belonging to xenobiotic, carbohydrate, and amino acid classes that were consistently associated across all three symptom dimension subscales. Furthermore, three of these four metabolites demonstrated a higher degree of alteration in men who reported poor scores in all three dimensions compared to men with poor scores in only one, suggesting the potential for shared underlying biology but a differing degree of perturbation when depression and anxiety symptoms co-occur. Our findings implicate pathways of interest relevant to the overlap of mental health conditions in aging veterans and could represent clinically translatable targets underlying poor mental health in this high-risk population.PMID:37512558 | DOI:10.3390/metabo13070851

Assessing the Influence of Propylthiouracil and Phenytoin on the Metabolomes of the Thyroid, Liver, and Plasma in Rats

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 14;13(7):847. doi: 10.3390/metabo13070847.ABSTRACTThe thyroid hormones (THs) regulate various physiological mechanisms in mammals, such as cellular metabolism, cell structure, and membrane transport. The therapeutic drugs propylthiouracil (PTU) and phenytoin are known to induce hypothyroidism and decrease blood thyroid hormone levels. To analyze the impact of these two drugs on systemic metabolism, we focused on metabolic changes after treatment. Therefore, in a rat model, the metabolome of thyroid and liver tissue as well as from the blood plasma, after 2-week and 4-week administration of the drugs and after a following 2-week recovery phase, was investigated using targeted LC-MS/MS and GC-MS. Both drugs were tested at a low dose and a high dose. We observed decreases in THs plasma levels, and higher doses of the drugs were associated with a high decrease in TH levels. PTU administration had a more pronounced effect on TH levels than phenytoin. Both drugs had little or no influence on the metabolomes at low doses. Only PTU exhibited apparent metabolome alterations at high doses, especially concerning lipids. In plasma, acylcarnitines and triglycerides were detected at decreased levels than in the controls after 2- and 4-week exposure to the drug, while sphingomyelins and phosphatidylcholines were observed at increased levels. Interestingly, in the thyroid tissue, triglycerides were observed at increased concentrations in the 2-week exposure group to PTU, which was not observed in the 4-week exposure group and in the 4-week exposure group followed by the 2-week recovery group, suggesting an adaptation by the thyroid tissue. In the liver, no metabolites were found to have significantly changed. After the recovery phase, the thyroid, liver, and plasma metabolomic profiles showed little or no differences from the controls. In conclusion, although there were significant changes observed in several plasma metabolites in PTU/Phenytoin exposure groups, this study found that only PTU exposure led to adaptation-dependent changes in thyroid metabolites but did not affect hepatic metabolites.PMID:37512556 | DOI:10.3390/metabo13070847

Biological Characterization and Metabolic Variations among Cell-Free Supernatants Produced by Selected Plant-Based Lactic Acid Bacteria

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 13;13(7):849. doi: 10.3390/metabo13070849.ABSTRACTThe aim of this research was to assess the antibacterial and antioxidant properties as well as the variation in metabolites of the cell-free supernatant (CFS) produced by lactic acid bacteria (LAB) from local plants: Lactiplantibacillus plantarum ngue16, L. plantarum ng10, Enterococcus durans w3, and Levilactobacillus brevis w6. The tested strains exhibited inhibitory effects against pathogens, including Bacillus cereus, B. subtilis, Cronobacter sakazakii, Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus using the agar spot assay and well diffusion method. The CFS from all four strains displayed antibacterial activity against these pathogens with minimum inhibitory concentration (MIC) values ranging from 3.12 to 12.5 mg/mL and minimal bactericidal concentration (MBC) values ranging from 6.25 to 25.0 mg/mL. Moreover, the CFS demonstrated resilience within specific pH (3-8) and temperature (60-100 °C) ranges and lost its activity when treated with enzymes, such as Proteinase K and pepsin. Furthermore, the CFS exhibited antioxidant properties as evidenced by their ability to inhibit the formation of two radicals (1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) compared to the negative control, De Man, Rogosa, and Sharpe (MRS) broth. The use of proton-based nuclear magnetic resonance (1H-NMR) spectroscopy revealed the presence and quantification of 48 metabolites in both the CFS and MRS broths. Principal Component Analysis (PCA) effectively differentiated between CFS and MRS broth by identifying the specific metabolites responsible for the observed differences. The partial least squares (PLS) model demonstrated a significant correlation between the metabolites in the LAB supernatant and the tested antibacterial and antioxidant activities. Notably, anserine, GABA, acetic acid, lactic acid, uracil, uridine, propylene glycol, isopropanol, serine, histidine, and indol-3-lactate were identified as the compounds contributing the most to the highest antibacterial and antioxidant activities in the supernatant. These findings suggest that the LAB strains investigated have the potential to be utilized in the production of functional foods and the development of pharmaceutical products.PMID:37512555 | DOI:10.3390/metabo13070849

Crosstalk between Breast Milk N-Acetylneuraminic Acid and Infant Growth in a Gut Microbiota-Dependent Manner

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 13;13(7):846. doi: 10.3390/metabo13070846.ABSTRACTThe healthy growth of infants during early life is associated with lifelong consequences. Breastfeeding has positive impacts on reducing obesity risk, which is likely due to the varied components of breast milk, such as N-acetylneuraminic acid (Neu5Ac). However, the effect of breast milk Neu5Ac on infant growth has not been well studied. In this study, targeted metabolomic and metagenomic analyses were performed to illustrate the association between breast milk Neu5Ac and infant growth. Results demonstrated that Neu5Ac was significantly abundant in breast milk from infants with low obesity risk in two independent Chinese cohorts. Neu5Ac from breast milk altered infant gut microbiota and bile acid metabolism, resulting in a distinct fecal bile acid profile in the high-Neu5Ac group, which was characterized by reduced levels of primary bile acids and elevated levels of secondary bile acids. Taurodeoxycholic acid 3-sulfate and taurochenodeoxycholic acid 3-sulfate were correlated with high breast milk Neu5Ac and low obesity risk in infants, and their associations with healthy growth were reproduced in mice colonized with infant-derived microbiota. Parabacteroides might be linked to bile acid metabolism and act as a mediator between Neu5Ac and infant growth. These results showed the gut microbiota-dependent crosstalk between breast milk Neu5Ac and infant growth.PMID:37512553 | DOI:10.3390/metabo13070846

Quantitative Analytical and Computational Workflow for Large-Scale Targeted Plasma Metabolomics

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 13;13(7):844. doi: 10.3390/metabo13070844.ABSTRACTQuantifying metabolites from various biological samples is necessary for the clinical and biomedical translation of metabolomics research. One of the ongoing challenges in biomedical metabolomics studies is the large-scale quantification of targeted metabolites, mainly due to the complexity of biological sample matrices. Furthermore, in LC-MS analysis, the response of compounds is influenced by their physicochemical properties, chromatographic conditions, eluent composition, sample preparation, type of MS ionization source, and analyzer used. To facilitate large-scale metabolite quantification, we evaluated the relative response factor (RRF) approach combined with an integrated analytical and computational workflow. This approach considers a compound's individual response in LC-MS analysis relative to that of a non-endogenous reference compound to correct matrix effects. We created a quantitative LC-MS library using the Skyline/Panorama web platform for data processing and public sharing of data. In this study, we developed and validated a metabolomics method for over 280 standard metabolites and quantified over 90 metabolites. The RRF quantification was validated and compared with conventional external calibration approaches as well as literature reports. The Skyline software environment was adapted for processing such metabolomics data, and the results are shared as a "quantitative chromatogram library" with the Panorama web application. This new workflow was found to be suitable for large-scale quantification of metabolites in human plasma samples. In conclusion, we report a novel quantitative chromatogram library with a targeted data analysis workflow for biomedical metabolomic applications.PMID:37512551 | DOI:10.3390/metabo13070844

MESSES: Software for Transforming Messy Research Datasets into Clean Submissions to Metabolomics Workbench for Public Sharing

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 12;13(7):842. doi: 10.3390/metabo13070842.ABSTRACTIn recent years, the FAIR guiding principles and the broader concept of open science has grown in importance in academic research, especially as funding entities have aggressively promoted public sharing of research products. Key to public research sharing is deposition of datasets into online data repositories, but it can be a chore to transform messy unstructured data into the forms required by these repositories. To help generate Metabolomics Workbench depositions, we have developed the MESSES (Metadata from Experimental SpreadSheets Extraction System) software package, implemented in the Python 3 programming language and supported on Linux, Windows, and Mac operating systems. MESSES helps transform tabular data from multiple sources into a Metabolomics Workbench specific deposition format. The package provides three commands, extract, validate, and convert, that implement a natural data transformation workflow. Moreover, MESSES facilitates richer metadata capture than is typically attempted by manual efforts. The source code and extensive documentation is hosted on GitHub and is also available on the Python Package Index for easy installation.PMID:37512549 | DOI:10.3390/metabo13070842

Metabolic Regulation of Copper Toxicity during Marine Mussel Embryogenesis

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 11;13(7):838. doi: 10.3390/metabo13070838.ABSTRACTThe development of new tools for assessing the health of cultured shellfish larvae is crucial for aquaculture industries to develop and refine hatchery methodologies. We established a large-volume ecotoxicology/health stressor trial, exposing mussel (Perna canaliculus) embryos to copper in the presence of ethylenediaminetetraacetic acid (EDTA). GC/MS-based metabolomics was applied to identify potential biomarkers for monitoring embryonic/larval health and to characterise mechanisms of metal toxicity. Cellular viability, developmental abnormalities, larval behaviour, mortality, and a targeted analysis of proteins involved in the regulation of reactive oxygen species were simultaneously evaluated to provide a complementary framework for interpretative purposes and authenticate the metabolomics data. Trace metal analysis and speciation modelling verified EDTA as an effective copper chelator. Toxicity thresholds for P. canaliculus were low, with 10% developmental abnormalities in D-stage larvae being recorded upon exposure to 1.10 μg·L-1 bioavailable copper for 66 h. Sublethal levels of bioavailable copper (0.04 and 1.10 μg·L-1) caused coordinated fluctuations in metabolite profiles, which were dependent on development stage, treatment level, and exposure duration. Larvae appeared to successfully employ various mechanisms involving the biosynthesis of antioxidants and a restructuring of energy-related metabolism to alleviate the toxic effects of copper on cells and developing tissues. These results suggest that regulation of trace metal-induced toxicity is tightly linked with metabolism during the early ontogenic development of marine mussels. Lethal-level bioavailable copper (50.3 μg·L-1) caused severe metabolic dysregulation after 3 h of exposure, which worsened with time, substantially delayed embryonic development, induced critical oxidative damage, initiated the apoptotic pathway, and resulted in cell/organism death shortly after 18 h of exposure. Metabolite profiling is a useful approach to (1) assess the health status of marine invertebrate embryos and larvae, (2) detect early warning biomarkers for trace metal contamination, and (3) identify novel regulatory mechanisms of copper-induced toxicity.PMID:37512545 | DOI:10.3390/metabo13070838

Exploration of Potential Breath Biomarkers of Chronic Kidney Disease through Thermal Desorption-Gas Chromatography/Mass Spectrometry

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 11;13(7):837. doi: 10.3390/metabo13070837.ABSTRACTBreath volatile organic compound (VOC) analysis is a non-invasive tool for assessing health status; the compositional profile of these compounds in the breath of patients with chronic kidney disease is believed to change with decreasing renal function. We aimed to identify breath VOCs for recognizing patients with chronic kidney disease. Using thermal desorption-gas chromatography/mass spectrometry, untargeted analysis of breath markers was performed using breath samples of healthy controls (n = 18) versus non-dialysis (n = 21) and hemodialysis (n = 12) patients with chronic kidney disease in this cross-sectional study. A total of 303 VOCs alongside 12 clinical variables were used to determine the breath VOC profile. Metabolomic analysis revealed that age, systolic blood pressure, and fifty-eight breath VOCs differed significantly between the chronic kidney disease group (non-dialysis + hemodialysis) and healthy controls. Thirty-six VOCs and two clinical variables that showed significant associations with chronic kidney disease in the univariate analysis were further analyzed. Different spectra of breath volatile organic compounds between the control and chronic kidney disease groups were obtained. A multivariate model incorporating age, 2-methyl-pentane, and cyclohexanone showed high performance (accuracy, 86%) in identifying patients with chronic kidney disease with odds ratios of 0.18 (95% CI, 0.07-2.49, p = 0.013); 2.10 (0.94-2.24, p = 0.025); and 2.31 (0.88-2.64, p = 0.008), respectively. Hence, this study showed that renal dysfunction induces a characteristic profile of breath VOCs that can be used as non-invasive potential biomarkers in screening tests for CKD.PMID:37512544 | DOI:10.3390/metabo13070837

The Effect of MSTN Mutation on Bile Acid Metabolism and Lipid Metabolism in Cattle

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 11;13(7):836. doi: 10.3390/metabo13070836.ABSTRACTMyostatin (MSTN) is a negative regulator of skeletal muscle genesis during development. MSTN mutation leads to increased lean meat production and reduced fat deposition in livestock. However, the mechanism by which MSTN promotes myogenesis by regulating metabolism is not clear. In this study, we compared the metabolomics of the livers of wild-type (WT) and MSTN mutation cattle (MT), and found changes in the content and proportion of fatty acids and bile acids in MT cattle. The differential metabolites were enriched in sterol synthesis and primary bile acid synthesis. We further analyzed the expression of genes involved in the regulation of lipid and bile acid metabolism, and found that the loss of MSTN may alter lipid synthesis and bile acid metabolism. This study provides new basic data for MSTN mutations in beef cattle breeding.PMID:37512543 | DOI:10.3390/metabo13070836

Targeted Metabolomics in High Performance Sports: Differences between the Resting Metabolic Profile of Endurance- and Strength-Trained Athletes in Comparison with Sedentary Subjects over the Course of a Training Year

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 10;13(7):833. doi: 10.3390/metabo13070833.ABSTRACTLittle is known about the metabolic differences between endurance and strength athletes in comparison with sedentary subjects under controlled conditions and about variation of the metabolome throughout one year. We hypothesized that (1) the resting metabolic profile differs between sedentary subjects and athletes and between perennially endurance- and strength-trained athletes and (2) varies throughout one year of training. We performed quantitative, targeted metabolomics (Biocrates MxP® Quant 500, Biocrates Life Sciences AG, Innsbruck, Austria) in plasma samples at rest in three groups of male adults, 12 strength-trained (weightlifters, 20 ± 3 years), 10 endurance-trained athletes (runners, 24 ± 3 years), and 12 sedentary subjects (25 ± 4 years) at the end of three training phases (regeneration, preparation, and competition) within one training year. Performance and anthropometric data showed significant (p < 0.05) differences between the groups. Metabolomic analysis revealed different resting metabolic profiles between the groups with acetylcarnitines, di- and triacylglycerols, and glycerophospho- and sphingolipids, as well as several amino acids as the most robust metabolites. Furthermore, we observed changes in free carnitine and 3-methylhistidine in strength-trained athletes throughout the training year. Regular endurance or strength training induces changes in the concentration of several metabolites associated with adaptations of the mitochondrial energy and glycolytic metabolism with concomitant changes in amino acid metabolism and cell signaling.PMID:37512540 | DOI:10.3390/metabo13070833

Pages