Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Untargeted Metabolomic Profiling of Aqueous and Lyophilized Pooled Human Feces from Two Diet Cohorts Using Two-Dimensional Gas Chromatography Coupled with Time-of-Flight Mass Spectrometry

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 7;13(7):828. doi: 10.3390/metabo13070828.ABSTRACTThe metabolic profiles of human feces are influenced by various genetic and environmental factors, which makes feces an attractive biosample for numerous applications, including the early detection of gut diseases. However, feces is complex, heterogeneous, and dynamic with a significant live bacterial biomass. With such challenges, stool metabolomics has been understudied compared to other biospecimens, and there is a current lack of consensus on methods to collect, prepare, and analyze feces. One of the critical steps required to accelerate the field is having a metabolomics stool reference material available. Fecal samples are generally presented in two major forms: fecal water and lyophilized feces. In this study, two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) was used as an analytical platform to characterize pooled human feces, provided by the National Institute of Standards and Technology (NIST) as Research-Grade Test Materials. The collected fecal samples were derived from eight healthy individuals with two different diets: vegans and omnivores, matched by age, sex, and body mass index (BMI), and stored as fecal water and lyophilized feces. Various data analysis strategies were presented to determine the differences in the fecal metabolomic profiles. The results indicate that the sample storage condition has a major influence on the metabolic profiles of feces such that the impact from storage surpasses the metabolic differences from the diet types. The findings of the current study would contribute towards the development of a stool reference material.PMID:37512535 | DOI:10.3390/metabo13070828

mGWAS-Explorer 2.0: Causal Analysis and Interpretation of Metabolite-Phenotype Associations

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 5;13(7):826. doi: 10.3390/metabo13070826.ABSTRACTMetabolomics-based genome-wide association studies (mGWAS) are key to understanding the genetic regulations of metabolites in complex phenotypes. We previously developed mGWAS-Explorer 1.0 to link single-nucleotide polymorphisms (SNPs), metabolites, genes and phenotypes for hypothesis generation. It has become clear that identifying potential causal relationships between metabolites and phenotypes, as well as providing deep functional insights, are crucial for further downstream applications. Here, we introduce mGWAS-Explorer 2.0 to support the causal analysis between >4000 metabolites and various phenotypes. The results can be interpreted within the context of semantic triples and molecular quantitative trait loci (QTL) data. The underlying R package is released for reproducible analysis. Using two case studies, we demonstrate that mGWAS-Explorer 2.0 is able to detect potential causal relationships between arachidonic acid and Crohn's disease, as well as between glycine and coronary heart disease.PMID:37512533 | DOI:10.3390/metabo13070826

Characterizing the Gut Microbial Metabolic Profile of Mice with the Administration of Berry-Derived Cyanidin-3-Glucoside

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 4;13(7):818. doi: 10.3390/metabo13070818.ABSTRACTDietary modulation of the gut microbiota has recently received considerable attention. It is well established that consumption of berries confers a number of health benefits. We previously reported that a black raspberry (BRB)-rich diet effectively modulates the gut microbiota. Given the role of anthocyanins in the health benefits of berries, coupled with interactions of gut microbial metabolites with host health, the objective of this follow-up study was to further characterize the profile of functional metabolites in the gut microbiome modulated by anthocyanins. We utilized a berry-derived classic anthocyanin, cyanidin-3-glucoside (C3G), combined with a mouse model to probe C3G-associated functional metabolic products of gut bacteria through a mass spectrometry-based metabolomic profiling technique. Results showed that C3G substantially changed the gut microbiota of mice, including its composition and metabolic profile. A distinct metabolic profile in addition to a variety of key microbiota-related metabolites was observed in C3G-treated mice. Microbial metabolites involved in protein digestion and absorption were differently abundant between C3G-treated and control mice, which may be linked to the effects of berry consumption. Results of the present study suggest the involvement of the gut microbiota in the health benefits of C3G, providing evidence connecting the gut microbiota with berry consumption and its beneficial effects.PMID:37512525 | DOI:10.3390/metabo13070818

Metabolite Changes of <em>Perna canaliculus</em> Following a Laboratory Marine Heatwave Exposure: Insights from Metabolomic Analyses

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jul 3;13(7):815. doi: 10.3390/metabo13070815.ABSTRACTTemperature is considered to be a major abiotic factor influencing aquatic life. Marine heatwaves are emerging as threats to sustainable shellfish aquaculture, affecting the farming of New Zealand's green-lipped mussel [Perna canaliculus (Gmelin, 1791)]. In this study, P. canaliculus were gradually exposed to high-temperature stress, mimicking a five-day marine heatwave event, to better understand the effects of heat stress on the metabolome of mussels. Following liquid chromatography-tandem mass spectrometry analyses of haemolymph samples, key sugar-based metabolites supported energy production via the glycolysis pathway and TCA cycle by 24 h and 48 h of heat stress. Anaerobic metabolism also fulfilled the role of energy production. Antioxidant molecules acted within thermally stressed mussels to mitigate oxidative stress. Purine metabolism supported tissue protection and energy replenishment. Pyrimidine metabolism supported the protection of nucleic acids and protein synthesis. Amino acids ensured balanced intracellular osmolality at 24 h and ammonia detoxification at 48 h. Altogether, this work provides evidence that P. canaliculus has the potential to adapt to heat stress up to 24 °C by regulating its energy metabolism, balancing nucleotide production, and implementing oxidative stress mechanisms over time. The data reported herein can also be used to evaluate the risks of heatwaves and improve mitigation strategies for aquaculture.PMID:37512522 | DOI:10.3390/metabo13070815

Construction of a Bacterial Lipidomics Analytical Platform: Pilot Validation with Bovine Paratuberculosis Serum

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jun 29;13(7):809. doi: 10.3390/metabo13070809.ABSTRACTLipidomics analyses of bacteria offer the potential to detect and monitor infections in a host since many bacterial lipids are not present in mammals. To evaluate this omics approach, we first built a database of bacterial lipids for representative Gram-positive and Gram-negative bacteria. Our lipidomics analysis of the reference bacteria involved high-resolution mass spectrometry and electrospray ionization with less than a 1.0 ppm mass error. The lipidomics profiles of bacterial cultures clearly distinguished between Gram-positive and Gram-negative bacteria. In the case of bovine paratuberculosis (PTB) serum, we monitored two unique bacterial lipids that we also monitored in Mycobacterium avian subspecies PTB. These were PDIM-B C82, a phthiodiolone dimycocerosate, and the trehalose monomycolate hTMM 28:1, constituents of the bacterial cell envelope in mycolic-containing bacteria. The next step will be to determine if lipidomics can detect subclinical PTB infections which can last 2-to-4 years in bovine PTB. Our data further suggest that it will be worthwhile to continue building our bacterial lipidomics database and investigate the further utility of this approach in other infections of veterinary and human clinical interest.PMID:37512516 | DOI:10.3390/metabo13070809

Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension

Sat, 29/07/2023 - 12:00
Metabolites. 2023 Jun 28;13(7):802. doi: 10.3390/metabo13070802.ABSTRACTHigh-dimensional metabolomics analyses may identify convergent and divergent markers, potentially representing aligned or orthogonal disease pathways that underly conditions such as pulmonary arterial hypertension (PAH). Using a comprehensive PAH metabolomics dataset, we applied six different conventional and statistical learning techniques to identify analytes associated with key outcomes and compared the results. We found that certain conventional techniques, such as Bonferroni/FDR correction, prioritized metabolites that tended to be highly intercorrelated. Statistical learning techniques generally agreed with conventional techniques on the top-ranked metabolites, but were also more inclusive of different metabolite groups. In particular, conventional methods prioritized sterol and oxylipin metabolites in relation to idiopathic versus non-idiopathic PAH, whereas statistical learning methods tended to prioritize eicosanoid, bile acid, fatty acid, and fatty acyl ester metabolites. Our findings demonstrate how conventional and statistical learning techniques can offer both concordant or discordant results. In the case of a rare yet morbid condition, such as PAH, convergent metabolites may reflect common pathways to shared disease outcomes whereas divergent metabolites could signal either distinct etiologic mechanisms, different sub-phenotypes, or varying stages of disease progression. Notwithstanding the need to investigate the mechanisms underlying the observed results, our main findings suggest that a multi-method approach to statistical analyses of high-dimensional human metabolomics datasets could effectively broaden the scientific yield from a given study design.PMID:37512509 | DOI:10.3390/metabo13070802

Type A Trichothecene Metabolic Profile Differentiation, Mechanisms, Biosynthetic Pathways, and Evolution in <em>Fusarium</em> Species-A Mini Review

Fri, 28/07/2023 - 12:00
Toxins (Basel). 2023 Jul 5;15(7):446. doi: 10.3390/toxins15070446.ABSTRACTTrichothecenes are the most common Fusarium toxins detected in grains and related products. Type A trichothecenes are among the mycotoxins of greatest concern to food and feed safety due to their high toxicity. Recently, two different trichothecene genotypes within Fusarium species were reported. The available information showed that Tri1 and Tri16 genes are the key determinants of the trichothecene profiles of T-2 and DAS genotypes. In this review, polymorphisms in the Tri1 and Tri16 genes in the two genotypes were investigated. Meanwhile, the functions of genes involved in DAS and NEO biosynthesis are discussed. The possible biosynthetic pathways of DAS and NEO are proposed in this review, which will facilitate the understanding of the synthesis process of trichothecenes in Fusarium strains and may also inspire researchers to design and conduct further research. Together, the review provides insight into trichothecene profile differentiation and Tri gene evolutionary processes responsible for the structural diversification of trichothecene produced by Fusarium.PMID:37505715 | DOI:10.3390/toxins15070446

Identification of urine biomarkers associated with early puberty in children: An untargeted metabolomics analysis

Fri, 28/07/2023 - 12:00
Physiol Behav. 2023 Jul 26:114305. doi: 10.1016/j.physbeh.2023.114305. Online ahead of print.ABSTRACTA trend toward earlier pubertal maturation in both sexes has been shown in many countries. Early puberty affects an increasing proportion of children for reasons that remain obscure. Novel candidate biomarkers are strongly needed. We sought to apply untargeted metabolomic profiling to identify triggering mechanisms and candidate biomarkers in children with early puberty. Participants aged 7 - 12 years old were recruited directly from two elementary schools of Bengbu, Anhui Province, China, from Feb 2021 to May 2021. Early puberty was determined by breast and testicular development at baseline (May 2021) and 6-month later. Ultra-high-performance liquid chromatography-based untargeted metabolomic profiling was performed on urine samples of children with early puberty and control subjects. Metabolomic profiling for early puberty in a sex dependent manner. For boys, we identified several perturbed pathways, including histidine metabolism, glycine, serine and threonine metabolism, and selenoamino acid metabolism, associated with early puberty. In contrast, there were differences in pyruvate metabolism, one carbon pool by folate, and D-glutamine and D-glutamate metabolism pathways in girls with early puberty compared with controls. In addition, 4-hydroxyhippuric acid and 5-methoxytryptophol were shown as potential independent diagnostic biomarker for early puberty in boys, 3-hydroxybenzoic acid and glutaminylproline were shown as early biomarker for early puberty in girls, achieving area under the ROC curve of 0.71 and 0.72 in discriminating early puberty boys, and 0.70 and 0.74 in discriminating early puberty girls from controls. Through metabolomic analysis, we have identified metabolic perturbations and potential biomarkers of early puberty.PMID:37507079 | DOI:10.1016/j.physbeh.2023.114305

Altered generation pattern of reactive oxygen species triggering DNA and plasma membrane damages to human liver cells treated with arsenite

Fri, 28/07/2023 - 12:00
Sci Total Environ. 2023 Jul 26:165821. doi: 10.1016/j.scitotenv.2023.165821. Online ahead of print.ABSTRACTHuman exposure to arsenic via drinking water is one of globally concerned health issues. Oxidative stress is regarded as the denominator of arsenic-inducing toxicities. Therefore, to identify intracellular source of reactive oxygen species (ROS) could be essential for addressing the detrimental effects of arsenite (iAsIII). In this study, the contributions of different pathways to ROS formation in iAsIII-treated human normal liver cells (L-02) were quantitatively assessed, and then concomitant oxidative impairs were evaluated using metabolomics and lipidomics approaches. Following iAsIII treatment, NADPH oxidase (NOX) activity and expression levels of p47phox and p67phox were upregulated, and NOX-derived ROS contributed to almost 60.0 % of the total ROS. Moreover, iAsIII also induced mitochondrial superoxide anion and impaired mitochondrial respiratory function of L-02 cells with a decreasing ATP production. The inhibition of NOX activity significantly rescued mitochondrial membrane potential in iAsIII-treated L-02 cells. Purine and glycerophospholipids metabolisms in L-02 cells were disrupted by iAsIII, which might be used to represent DNA and plasma membrane damages, respectively. Our study supported that NOX could be the primary pathway of ROS overproduction and revealed the potential mechanisms of iAsIII toxicity related to oxidative stress.PMID:37506919 | DOI:10.1016/j.scitotenv.2023.165821

Unravelling the anti-inflammatory and antioxidant effects of standardized green and black caffeinated coffee, tea, and their mixtures in an obese male rat model: Insights from biochemical, metabolomic, and histopathological analyses

Fri, 28/07/2023 - 12:00
Food Chem Toxicol. 2023 Jul 26:113971. doi: 10.1016/j.fct.2023.113971. Online ahead of print.ABSTRACTObesity is one of the major metabolic syndrome risk factors upon which altered metabolic pathways follow. This study aimed to discern altered metabolic pathways associated with obesity and to pinpoint metabolite biomarkers in serum of obese rats fed on high fructose diet using metabolomics. Further, the effect of standardized green versus black caffeinated aqueous extracts (tea and coffee) in controlling obesity and its comorbidities through monitoring relevant serum biomarkers viz. Leptin, adiponectin, spexin, malondialdehyde, total antioxidant capacity. Liver tissue oxidative stress (catalase, super oxide dismutase and glutathione) and inflammation (IL-1β and IL-6) markers were assessed for green coffee and its mixture with green tea. Results revealed improvement of all parameters upon treatments with more prominence for those treated with green caffeinated extract (coffee and tea) especially in mixture. Upon comparing with obese rat group, the green mixture of coffee and tea exhibited anti-hyperlipidemic action through lowering serum triglycerides by 35.0% and elevating high density lipoprotein by 71.0%. Black tea was likewise effective in lowering serum cholesterol and low density lipoprotein by 28.0 and 50.6%, respectively. GC-MS- based metabolomics of rat serum led to the identification of 34 metabolites with obese rat serum enriched in fatty acids (oleamide).PMID:37506863 | DOI:10.1016/j.fct.2023.113971

Hsa_circ_0000073 promotes lipid synthesis of osteosarcoma through hsa-miR-1184/ FADS2 pathway

Fri, 28/07/2023 - 12:00
Cell Signal. 2023 Jul 26:110829. doi: 10.1016/j.cellsig.2023.110829. Online ahead of print.ABSTRACTPURPOSE: Osteosarcoma is one of the leading causes of cancer mortality in children and teenagers. Dysregulation of lipid metabolism has been reported to involve tumor progression. Our previous evidence has revealed that circular RNA hsa_circ_0000073 enhanced the proliferation and metastasis of osteosarcoma cells. However, the effect of hsa_circ_0000073 on the lipid metabolism of osteosarcoma remains unclear. In this paper, we focused on the effect of hsa_circ_0000073 in lipid metabolism and investigated a network among hsa_circ_0000073/ miR-1184 /FADS2 in osteosarcoma, which provides a new idea to treat osteosarcoma.METHODS: The osteosarcoma and its adjacent tissue samples were collected for further validation. qRT-PCR or western blot was employed to detect the expression of hsa_circ_0000073, miR-1184, and FADS2 in OS cells and tissues. Microarray analysis, mass spectrometry, metabolomics analysis, and bioinformatics analysis were used to explore the potential function and target gene of hsa_circ_0000073. Oil red o, Nile red staining, and Triglyceride content assay were adopted to confirm the effect of hsa_circ_0000073 on the lipid metabolism of OS. Dual-luciferase reporter assays and RNA immunoprecipitation were applied to construct and validate the ceRNA network of hsa_circ_0000073. The xenograft mouse model was taken to verify the effect of hsa_circ_0000073 on lipid metabolism in vivo.RESULTS: The results confirmed that hsa_circ_0000073 was raised in the tumor tissues more than its adjacent tissue. Moreover, the higher expression of hsa_circ_0000073 was associated with worse survival rates, advanced clinical stage, large tumor size, and metastasis. After hsa_circ_0000073 silence, the gene chip and metabolomics result implied that hsa_circ_0000073 expression is positively correlated with a 91 genes signature and 78 metabolites in MG-63 and Saos-2 cells. The bioinformatics analysis indicated that hsa_circ_0000073 might involve in the biological processes of lipid metabolism. Further loss and gain of function experiments affirmed that hsa_circ_0000073 could impact cell lipid synthesis. Mechanically, hsa_circ_0000073 favored the expression of FADS2 genes by sponging miR-1184. Consistent with these observations, silencing of hsa_circ_0000073 inhibited lipid synthesis in vivo xenograft mouse model.CONCLUSIONS: Our study revealed that hsa_circ_0000073 contributed to the lipid synthesis of osteosarcoma by decreasing the expression of miR-1184, thereby increasing FADS2, which provides new insights into treating osteosarcoma.PMID:37506860 | DOI:10.1016/j.cellsig.2023.110829

Long-term effects on liver metabolism induced by ceftriaxone sodium pretreatment

Fri, 28/07/2023 - 12:00
Environ Pollut. 2023 Jul 26:122238. doi: 10.1016/j.envpol.2023.122238. Online ahead of print.ABSTRACTCeftriaxone is an emerging contaminant due to its potential harm, while its effects on liver are still need to be clarified. In this study, we first pretreated the 8-week-old C57BL/6J mice with high dose ceftriaxone sodium (Cef, 400 mg/mL, 0.2 mL per dose) for 8 days to prepare a gut dysbiosis model, then treated with normal feed for a two-month recovery period, and applied non-targeted metabolomics (including lipidomics) to investigate the variations of fecal and liver metabolome, and coupled with targeted determination of fecal short-chain fatty acids (SCFAs) and bile acids (BAs). Lastly, the correlations and mediation analysis between the liver metabolism and gut metabolism/microbes were carried, and the potential mechanisms of the mal-effects on gut-liver axis induced by Cef pretreatment were accordingly discussed. Compared to the control group, Cef pretreatment reduced the rate of weight gain and hepatosomatic index, induced bile duct epithelial cells proliferated around the central vein and appearance of binucleated hepatocytes, decreased the ratio of total branching chains amino acids (BCAAs) to total aromatic amino acids (AAAs) in liver metabolome. In fecal metabolome, the total fecal SCFAs and BAs did not change significantly while butyric acid decreased and the primary BAs increased after Cef pretreatment. Correlation and mediation analysis revealed one potential mechanism that Cef may first change the intestinal microbiota (such as destroying its normal structure, reducing its abundance and the stability of the microbial network or certain microbe abundance like Alistipes), and then change the intestinal metabolism (such as acetate, caproate, propionate), leading to liver metabolic disorder (such as spermidine, inosine, cinnamaldehyde). This study proved the possibility of Cef-induced liver damage, displayed the overall metabolic profile of the liver following Cef pretreatment and provided a theoretical framework for further research into the mechanism of Cef-induced liver damage.PMID:37506808 | DOI:10.1016/j.envpol.2023.122238

FOXO1 regulates the formation of bovine fat by targeting CD36 and STEAP4

Fri, 28/07/2023 - 12:00
Int J Biol Macromol. 2023 Jul 26:126025. doi: 10.1016/j.ijbiomac.2023.126025. Online ahead of print.ABSTRACTIntramuscular fat content is closely related to the quality of beef, where the forkhead box protein O1 (FOXO1) is involved in adipocyte differentiation and lipid metabolism, but the specific mechanism of its involvement is still unclear. In this study, interfering with FOXO1 promoted the G1/S transformation of bovine adipocytes by enhancing the expression of proliferation marker genes PCNA, CDK1, CDK2, CCNA2, CCNB1, and CCNE2, thereby positively regulating the proliferation of bovine adipocytes. Additionally, interfering with FOXO1 negatively regulated the expression of adipogenic differentiation marker genes PPARG and CEBPA, as well as lipid anabolism marker genes ACC, FASN, SCD1, SREBP1, FABP4, ACSL1, LPL, and DGAT1, thus reducing triglyceride (TG) content and inhibiting the generation of lipid droplets in bovine adipocytes. A combination of transcriptomic and metabolomics analyses revealed that FOXO1 could regulate the lipogenesis of cattle by influencing the AMPK and PI3K/AKT pathways. Importantly, chromatin immunoprecipitation (ChIP) and site-directed mutagenesis revealed that FOXO1 could regulate bovine lipogenesis by binding to the promoter regions of the CD36 and STEAP4 genes and affecting their transcriptional activities. These results provide a foundation for studying the role and molecular mechanism of FOXO1 in the bovine adipogenesis.PMID:37506793 | DOI:10.1016/j.ijbiomac.2023.126025

Study on toxicity/efficacy related substances and metabolic mechanism of Tripterygium wilfordii Hook. f based on O2LPS correlation analysis

Fri, 28/07/2023 - 12:00
J Ethnopharmacol. 2023 Jul 26:116949. doi: 10.1016/j.jep.2023.116949. Online ahead of print.ABSTRACTETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii Hook. f (TwHF) has been used as a traditional Chinese medicine for the treatment of rheumatoid arthritis and nephritis for hundreds of years.AIM OF THE STUDY: Although the efficacy of TwHF in the treatment of RA is definite, its serious side effects and toxicity have also received close attention from domestic and international researchers, so the clinical application of TwHF has been controversial. Most of the current TwHF toxicity studies have been conducted with animals in normal body states, but ignore the effects in pathological states. In this study, we aimed to find out the material basis and metabolic mechanism of the "toxicity/effectiveness" of TwHF on rat kidneys in different body states by using two-way orthogonal partial least squares (O2PLS) method.MATERIALS AND METHODS: In the present study, TwHF was extracted by reflux extraction method using ethanol as the extraction solvent. Firstly, the effects of TwHF on rat kidneys in different body states were first evaluated by detecting creatinine and urea nitrogen levels and morphological changes in kidney pathology identified the components of TwHF in rats in different body states using UPLC-Q-TOF/MS technique. Serum and urine metabolomics were used to search for biomarkers and metabolic pathways by which TwHF exerts renal injury and protection, and finally, O2PLS correlation analysis was used to correlate the components with renal protective and injury biomarkers.RESULTS: TwHF was found to have a protective effect on the kidney of RA rats and an injurious effect on the kidney of normal rats at a dose of 11.25 g/kg/d. The UPLC-Q-TOF/MS technique was used to identify 34 components in TwHF extracts; 23 components and 57 metabolites were identified in the administered rats. O2PLS screened three substances as both toxic and pharmacodynamic components of TwHF, namely 3,5-dimethoxyphenyl-2-propenl-ol, kaurane-16,19,20-triol, and demethylzeylasteral + O, and found that these three components may exert nephrotoxic effects via the nicotinic acid and nicotinamide metabolic pathways and nephroprotective effects via the tryptophan metabolic pathway.CONCLUSION: In this study, O2PLS analysis was used for the first time to combine biomarkers and components in vivo and found the material basis and metabolic mechanism of nephrotoxicity and efficacy of TwHF, which provided key clues for further study on the biological mechanism of toxicity and efficacy of TwHF.PMID:37506782 | DOI:10.1016/j.jep.2023.116949

Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection

Fri, 28/07/2023 - 12:00
EBioMedicine. 2023 Jul 26;94:104729. doi: 10.1016/j.ebiom.2023.104729. Online ahead of print.ABSTRACTBACKGROUND: Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology.METHODS: Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients.FINDINGS: IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist.INTERPRETATION: SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology.FUNDING: None.PMID:37506544 | DOI:10.1016/j.ebiom.2023.104729

Vasoactive intestinal peptide exerts therapeutic action by regulating PTEN in a model of Sjögren's disease

Fri, 28/07/2023 - 12:00
Immun Inflamm Dis. 2023 Jul;11(7):e936. doi: 10.1002/iid3.936.ABSTRACTINTRODUCTION: Sjögren's disease (SjD) is a chronic autoimmune disease characterized by the loss of the secretory function of the exocrine glands. At present, drugs that can both correct the immune imbalance and improve exocrine gland function are needed. Meanwhile, vasoactive intestinal peptide (VIP) has been reported as a candidate with anti-inflammatory and immunoregulatory properties for treating autoimmune diseases.METHODS: Nonobese diabetic (NOD) mice and the primary splenic lymphocyte cells (SPLCs) were used to construct the SS model. The therapeutic effects of VIP for SjD by evaluating water consumption, histopathology, T cell subsets, and related cytokines. RT-qPCR and Western blot analysis were used to identify the expression of the PTEN/PI3K/AKT pathway.RESULTS: We found that VIP therapy in NOD mice could increase the expression of PTEN and VIP/VPAC1 receptor, as well as decrease the PI3K/AKT pathway. In vitro, the results showed that the PTEN knockdown decreased the Treg/Th17 ratio and enhanced the phosphorylated PI3K/AKT pathway, which were reversed with VIP treatment.CONCLUSIONS: VIP exerts potential therapeutic action in SjD by upregulating PTEN through the PI3K/AKT pathway and Treg/Th17 cell balance.PMID:37506142 | DOI:10.1002/iid3.936

A blend of medium-chain fatty acids, butyrate, organic acids, and a phenolic compound accelerates microbial maturation in newly weaned piglets

Fri, 28/07/2023 - 12:00
PLoS One. 2023 Jul 28;18(7):e0289214. doi: 10.1371/journal.pone.0289214. eCollection 2023.ABSTRACTInclusion of additive blends is a common dietary strategy to manage post-weaning diarrhea and performance in piglets. However, there is limited mechanistic data on how these additives improve outcomes during this period. To evaluate the effects of Presan FX (MCOA) on the intestinal microbiota and metabolome, diets with or without 0.2% MCOA were compared. Pigs fed MCOA showed improved whole-body metabolism 7 days post-weaning, with decreased (P < 0.05) creatine, creatinine and β-hydroxybutyrate. Alterations in bile-associated metabolites and cholic acid were also observed at the same time-point (P < 0.05), suggesting MCOA increased bile acid production and secretion. Increased cholic acid was accompanied by increased tryptophan metabolites including indole-3-propionic acid (IPA) in systemic circulation (P = 0.004). An accompanying tendency toward increased Lactobacillus sp. in the small intestine was observed (P = 0.05). Many lactobacilli have bile acid tolerance mechanisms and contribute to production of IPA, suggesting increased bile acid production resulted in increased abundance of lactobacilli capable of tryptophan fermentation. Tryptophan metabolism is associated with the mature pig microbiota and many tryptophan metabolites such as IPA are considered beneficial to gut barrier function. In conclusion, MCOA may help maintain tissue metabolism and aid in microbiota re-assembly through bile acid production and secretion.PMID:37506070 | DOI:10.1371/journal.pone.0289214

Role of oral microbiota in irreversible pulpitis - Current strategies and future perspectives

Fri, 28/07/2023 - 12:00
Acta Microbiol Immunol Hung. 2023 Jul 28. doi: 10.1556/030.2023.02082. Online ahead of print.ABSTRACTIrreversible pulpitis is an inflammation of the tooth pulp caused by an opportunity-driven invasion of the pulp space by oral microbiota typically prevalent in the oral cavity. Microbial organisms are extensively recognised to be the fundamental cause of endodontic infections and treatment failures. Previously, bacterial species responsible for these infections were largely recognised using conventional microbial culture techniques, lending credence to the widely held belief that anaerobic Gram-negative bacteria frequently enter the pulp space and trigger endodontic infections. The advent of novel technologies grants the advantage of detecting and studying microbial populations via an amalgamation of the modern "Omics" techniques and meticulous bioinformatics analysis, additionally detecting the metatranscriptome, metaproteome and metabolome along with the metagenome. Amongst these analytical strategies, metagenomic analyses are essentially pragmatic for investigating the oral microbiome. Metagenomics favor not only assessment of microbial composition in diseased conditions, but also contributes to detection of novel, potentially pathogenic species inclusive of non-viable bacteria. The present review describes current knowledge of root canal microbiome, including its composition and functional attributes, the novel strategies available for detection of microbiome as well as challenges associated and provides some crucial pointers for areas of future research.PMID:37505986 | DOI:10.1556/030.2023.02082

Effects of Anemoside B4 on Plasma Metabolites in Cows with Clinical Mastitis

Fri, 28/07/2023 - 12:00
Vet Sci. 2023 Jul 5;10(7):437. doi: 10.3390/vetsci10070437.ABSTRACTAnemoside B4 has a good curative effect on cows with CM; however, its impact on their metabolic profiles is unclear. Based on similar somatic cell counts and clinical symptoms, nine healthy dairy cows and nine cows with CM were selected, respectively. Blood samples were collected from cows with mastitis on the day of diagnosis. Cows with mastitis were injected with anemoside B4 (0.05 mL/kg, once daily) for three consecutive days, and healthy cows were injected with the same volume of normal saline. Subsequently, blood samples were collected. The plasma metabolic profiles were analyzed using untargeted mass spectrometry, and the concentrations of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were evaluated via ELISA. The cows with CM showed increased concentrations of IL-1β, IL-6, and TNF-α (p < 0.05). After treatment with anemoside B4, the concentrations of IL-1β, IL-6, and TNF-α were significantly decreased (p < 0.01). Untargeted metabolomics analysis showed that choline, glycocholic acid, PC (18:0/18:1), 20-HETE, PGF3α, and oleic acid were upregulated in cows with CM. After treatment with anemoside B4, the concentrations of PC (16:0/16:0), PC (18:0/18:1), linoleic acid, eicosapentaenoic acid, phosphorylcholine, and glycerophosphocholine were downregulated, while the LysoPC (14:0), LysoPC (18:0), LysoPC (18:1), and cis-9-palmitoleic acid were upregulated. This study indicated that anemoside B4 alleviated the inflammatory response in cows with CM mainly by regulating lipid metabolism.PMID:37505842 | DOI:10.3390/vetsci10070437

Mechanisms of Toxicity: Metabolomics Promises New Clarity on Air Pollution

Fri, 28/07/2023 - 12:00
Environ Health Perspect. 2023 Jul;131(7):74004. doi: 10.1289/EHP13275. Epub 2023 Jul 28.NO ABSTRACTPMID:37505745 | DOI:10.1289/EHP13275

Pages