Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Metabolite Profiling and Bioactivities of Leaves, Stems, and Flowers of <em>Rumex usambarensis</em> (Dammer) Dammer, a Traditional African Medicinal Plant

Sat, 11/02/2023 - 12:00
Plants (Basel). 2023 Jan 20;12(3):482. doi: 10.3390/plants12030482.ABSTRACTThe comprehensive identification of secondary metabolites represents a fundamental step for the assessment of bioactivities and pharmacological properties of traditional herbal drugs. Rumex usambarensis (Dammer) Dammer has been described as a multipurpose remedy in different African traditional pharmacopoeias, but its phytochemical profile has not been properly investigated. Herein we report a high throughput metabolomic screening, based on ultra-high performance liquid chromatography-travelling wave ion mobility spectrometry quadrupole time-of-flight (UHPLC-TWINS-QTOF), which was performed for the first time on different R. usambarensis plant parts. By applying high-resolution mass spectrometry-based metabolomics and chemometric analysis, a complete discrimination of different aerial parts was obtained, with the annotation of 153 significant metabolites in leaves, stems, and flowers, suggesting an easy authentication and discrimination route. Phytochemical data were correlated to antimicrobial and antioxidant properties. Flavonoids, benzopyranes, chromones, and xanthones derivatives, along with a richer phytocomplex, might be responsible for the stronger bioactivities obtained from flowers.PMID:36771567 | DOI:10.3390/plants12030482

Metabolomic Profiling, Antibacterial, and Molluscicidal Properties of the Medicinal Plants <em>Calotropis procera</em> and <em>Atriplex halimus</em>: In Silico Molecular Docking Study

Sat, 11/02/2023 - 12:00
Plants (Basel). 2023 Jan 19;12(3):477. doi: 10.3390/plants12030477.ABSTRACTThe potential of plant-based natural compounds in the creation of new molluscicidal and antimicrobial medications has gained attention in recent years. The current study compared the metabolic profiles, antibacterial, and molluscicidal properties of the medicinal plants Calotropis procera (C. procera) and Atriplex halimus (A. halimus). In both plants, 118 metabolites were identified using gas chromatography-mass spectrometry. Palmitic acid, stigmasterol, and campesterol were the most prevalent constituents. C. procera extract showed stronger antibacterial activity than A. halimus against Escherichia coli and Proteus mirabilis. Both extracts exhibited molluscicidal activity against Biomphalaria alexandrina, with LC50 values of C. procera (135 mg/L) and A. halimus (223.8 mg/L). Survival rates of snails exposed to sub-lethal concentrations (LC25) of C. procera and A. halimus extracts were 5% and 20%, respectively. The hatchability of snail eggs exposed to both extracts has been dramatically reduced. Both extracts significantly decreased the levels of alkaline phosphatase, acid phosphatase, total protein, and albumin in snails, as well as causing DNA damage and resulting in numerous hermaphrodite and digestive gland damages and distortions. Molecular docking showed palmitic acid binding with acid, alkaline, and alanine aminotransferases in treated digestive gland snails. In conclusion, C. procera and A. halimus have antibacterial and molluscicidal properties.PMID:36771561 | DOI:10.3390/plants12030477

Combined Effect of the Potassium Dose and Plant Biofertilization by <em>Acinetobacter calcoaceticus</em> on the Growth, Mineral Content, Nutritional Quality, Antioxidant Activity, and Metabolomic Features of Tomatillo Fruits (<em>Physalis ixocarpa</em>...

Sat, 11/02/2023 - 12:00
Plants (Basel). 2023 Jan 19;12(3):466. doi: 10.3390/plants12030466.ABSTRACTAn Acinetobacter calcoaceticus UTMR2 strain was evaluated in tomatillo plants (Physalis ixocarpa Brot.) using a factorial design with different potassium doses (100, 75, 50 and 0% of the recommended dose). In addition to the agronomic parameters, an analysis of the physicochemical, antioxidant, and metabolomic properties of the fruit was performed. The application of the inoculant affected several parameters of the plant (chlorophyll, weight, and contents of several mineral elements) as well as of the fruit (yield, maturity index, FRAP antioxidant capacity, and contents of protein, fiber, and fat). A multivariate analysis was performed by means of a PCA and a heatmap, indicating that the inoculant induced a strong modulating activity in tomatillo plants for the evaluated parameters, with a remarkable effect at low K doses (0 and 50%). The inoculated treatment at 75% of the K dose resulted in similar plant and fruit characteristics to the fully fertilized control. On the other hand, the biofertilized treatment with no K addition resulted in the highest values in the plant and fruit parameters. In addition, from the metabolomics analysis of the fruits at 75% of the K dose, the up-regulation of 4,4″-bis(N-feruloyl)serotonin, salvianolic acid K, and chlorogenic acid was observed, which may have a role in anti-senescence and resistance mechanisms. In conclusion, the rhizobacterial strain had a positive effect on plant growth, nutritional quality, bioactive compounds, and antioxidant activity of tomatillo fruits at reduced doses of K fertilizer, which gives support for its consideration as an effective biofertilizer strain.PMID:36771548 | DOI:10.3390/plants12030466

NMR-Based Metabolomics for Geographical Discrimination of <em>Adhatoda vasica</em> Leaves

Sat, 11/02/2023 - 12:00
Plants (Basel). 2023 Jan 18;12(3):453. doi: 10.3390/plants12030453.ABSTRACTAdhatoda vasica (L.), Nees is a widespread plant in Asia. It is used in Ayurvedic and Unani medications for the management of various infections and health disorders, especially as a decoction to treat cough, chronic bronchitis, and asthma. Although it has a diverse metabolomic profile, this plant is particularly known for its alkaloids. The present study is the first to report a broad range of present compounds, e.g., α-linolenic acid, acetate, alanine, threonine, valine, glutamate, malate, fumaric acid, sucrose, β-glucose, kaempferol analogues, quercetin analogues, luteolin, flavone glucoside, vasicine and vasicinone, which were identified by NMR spectroscopy-based metabolomics. Multivariate data analysis was used to analyze 1H-NMR bucketed data from a number of Adhatoda vasica leave samples collected from eight different regions in Pakistan. The results showed large variability in metabolomic fingerprints. The major difference was on the basis of longitude/latitude and altitude of the areas, with both primary and secondary metabolites discriminating the samples from various regions.PMID:36771538 | DOI:10.3390/plants12030453

Wheat Omics: Advancements and Opportunities

Sat, 11/02/2023 - 12:00
Plants (Basel). 2023 Jan 17;12(3):426. doi: 10.3390/plants12030426.ABSTRACTPlant omics, which includes genomics, transcriptomics, metabolomics and proteomics, has played a remarkable role in the discovery of new genes and biomolecules that can be deployed for crop improvement. In wheat, great insights have been gleaned from the utilization of diverse omics approaches for both qualitative and quantitative traits. Especially, a combination of omics approaches has led to significant advances in gene discovery and pathway investigations and in deciphering the essential components of stress responses and yields. Recently, a Wheat Omics database has been developed for wheat which could be used by scientists for further accelerating functional genomics studies. In this review, we have discussed various omics technologies and platforms that have been used in wheat to enhance the understanding of the stress biology of the crop and the molecular mechanisms underlying stress tolerance.PMID:36771512 | DOI:10.3390/plants12030426

Fructose Stimulated Colonic Arginine and Proline Metabolism Dysbiosis, Altered Microbiota and Aggravated Intestinal Barrier Dysfunction in DSS-Induced Colitis Rats

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Feb 3;15(3):782. doi: 10.3390/nu15030782.ABSTRACTThe dysbiosis of intestinal microbiota and their metabolites is linked to the occurrence and development of metabolic syndrome. Although fructose has been proven to be associated with worsened mucus in the colon, its mechanism remains unclear. In this study, we evaluated the relatively low intake of sucrose and fructose in the experimental colitis of Sprague Dawley rats by investigating the microbiome and metabolome. Results showed that sucrose and fructose significantly reduced body weight, colon length and increased inflammation infiltration in colon. Sucrose and fructose worsen colon functions by inhibiting the expression of tight junction (TJ) protein ZO-1 and increasing the level of lipopolysaccharide neoandrographolide (LPS) in plasma, while fructose was more significant. Furthermore, sucrose and fructose significantly changed the composition of gut microbiota characterized by decreasing Adlercreutzia, Leuconostoc, Lactococcus and Oscillospira and increasing Allobaculum and Holdemania along with reducing histidine, phenylalanine, arginine, glycine, aspartic acid, serine, methionine valine, alanine, lysine, isoleucine, leucine, threonine, tryptophan, tyrosine, proline, citrulline, 4-hydroxyproline and gamma amino butyric acid (GABA). Metabolome results showed that fructose may aggravate experimental colitis symptoms by inducing amino metabolism dysbiosis in the colon. These findings suggested that fructose worsened colitis by manipulating the crosstalk between gut microbiota and their metabolites.PMID:36771488 | DOI:10.3390/nu15030782

Association of Serum Metabolites and Salt Sensitivity of Blood Pressure in Chinese Population: The EpiSS Study

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Jan 30;15(3):690. doi: 10.3390/nu15030690.ABSTRACTBACKGROUND: To identify novel metabolites associated with salt sensitivity of blood pressure (SSBP) in Chinese Han population.METHODS: A case-control study was conducted with 25 salt sensitive (SS) and 26 salt resistant (SR) participants, which was selected from the Systems Epidemiology Study on Salt Sensitivity of Blood Pressure (EpiSS) study. The modified Sullivan's acute oral saline load and diuresis shrinkage test (MSAOSL-DST) was conducted to identify SS. Untargeted, ultra-high performance liquid chromatograph-high resolution mass spectrometer (UPLC-HRMS) was conducted and orthogonal partial least squares-discriminate analysis (OPLS-DA) and multivariable logistic regression model were used to screen the metabolites related to SS, mixed linear regressions models were used to examined the association of SSBP with metabolites during saline load period and diuresis shrinkage period. Receiver operating characteristic (ROC) curve analysis was performed. The area under the curve's (AUC) sensitivity and specificity were calculated to identified metabolites biomarkers for SS.RESULTS: There were 39 differentially expressed metabolites (DE-metabolites) between SS and SR. Thirty-five and four of DE-metabolites were inversely or positively associated with SS, respectively. Four biochemical pathways demonstrated significant enrichment for identified metabolites. In single-metabolite analyses, L-Glutamine displayed the best diagnostic performance (AUC = 0.88, 95% CI: 0.78-0.97). In multi-metabolites analyses, L-Glutamine + Cholesterol ester 22:5n6 combination showed the best diagnostic performance (AUC = 0.96, 95% CI: 0.91-1.00). Adjusted for traditional risk factors, L-Glutamine and Cholesterol ester 22:5n6 explained an additional 38.3% of SS susceptibility.CONCLUSIONS: This study provide potential evidence for clarifying the mechanism of SS and provide novel biological insights into salt sensitive hypertension.PMID:36771399 | DOI:10.3390/nu15030690

New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Jan 26;15(3):640. doi: 10.3390/nu15030640.ABSTRACTThe definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome's definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS.PMID:36771347 | DOI:10.3390/nu15030640

Multidimensional Health Impact of Multicomponent Exercise and Sustainable Healthy Diet Interventions in the Elderly (MED-E): Study Protocol

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Jan 25;15(3):624. doi: 10.3390/nu15030624.ABSTRACTData concerning the combined effect of diet and exercise interventions on overall health in the elderly are scarce. The MED-E project's primary aim is to assess the effect of the different 3-month sustainable healthy diet (SHD) and multicomponent training (MT) interventions on several health outcomes in the elderly. A quasi-experimental study assigned older adults into four groups: (1) SHD, (2) MT, (3) SHD + MT, or (4) control group (CG). The SHD intervention included a weekly offer of a mixed food supply and individual and group nutritional sessions on the principles of an SHD. The MT groups were submitted to 50-min exercise sessions three times a week. The primary outcomes were blood biomarkers and metabolic profile alterations that were assessed pre- and post-intervention. Additionally, data on dietary intake and nutritional adequacy, physical fitness, body composition and anthropometry, cognitive function, quality of life, and geographical data were assessed at the same time points. The MED-E project's study protocol and future results will add to knowledge about the importance and beneficial contribution of combined SHD and MT interventions on healthy ageing policies.PMID:36771331 | DOI:10.3390/nu15030624

<em>S</em>-(-)-Oleocanthal Ex Vivo Modulatory Effects on Gut Microbiota

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Jan 25;15(3):618. doi: 10.3390/nu15030618.ABSTRACTCompelling evidence points to the critical role of bioactive extra-virgin olive oil (EVOO) phenolics and gut microbiota (GM) interplay, but reliable models for studying the consequences thereof remain to be developed. Herein, we report an optimized ex vivo fecal anaerobic fermentation model to study the modulation of GM by the most bioactive EVOO phenolic S-(-)-oleocanthal (OC), and impacts therefrom, focusing on OC biotransformation in the gut. This model will also be applicable for characterization of GM interactions with other EVOO phenolics, and moreover, for a broadly diverse range of bioactive natural products. The fecal fermentation media and time, and mouse type and gender, were the major factors varied and optimized to provide better understanding of GM-OC interplay. A novel resin entrapment technique (solid-phase extraction) served to selectively entrap OC metabolites, degradation products, and any remaining fraction of OC while excluding interfering complex fecal medium constituents. The effects of OC on GM compositions were investigated via shallow shotgun DNA sequencing. Robust metabolome analyses identified GM bacterial species selectively altered (population numbers/fraction) by OC. Finally, the topmost OC-affected gut bacterial species of the studied mice were compared with those known to be extant in humans and distributions of these bacteria at different human body sites. OC intake caused significant quantitative and qualitative changes to mice GM, which was also comparable with human GM. Results clearly highlight the potential positive health outcomes of OC as a prospective nutraceutical.PMID:36771326 | DOI:10.3390/nu15030618

A Metabolomics-Based Investigation of the Effects of a Short-Term Body Weight Reduction Program in a Cohort of Adolescents with Obesity: A Prospective Interventional Clinical Study

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Jan 19;15(3):529. doi: 10.3390/nu15030529.ABSTRACTMetabolomics applied to assess the response to a body weight reduction program (BWRP) may generate valuable information concerning the biochemical mechanisms/pathways underlying the BWRP-induced cardiometabolic benefits. The aim of the present study was to establish the BWRP-induced changes in the metabolomic profile that characterizes the obese condition. In particular, a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) targeted metabolomic approach was used to determine a total of 188 endogenous metabolites in the plasma samples of a cohort of 42 adolescents with obesity (female/male = 32/10; age = 15.94 ± 1.33 year; body mass index standard deviation score (BMI SDS) = 2.96 ± 0.46) who underwent a 3-week BWRP, including hypocaloric diet, physical exercise, nutritional education, and psychological support. The BWRP was capable of significantly improving body composition (e.g., BMI SDS, p < 0.0001), glucometabolic homeostasis (e.g., glucose, p < 0.0001), and cardiovascular function (e.g., diastolic blood pressure, p = 0.016). A total of 64 metabolites were significantly reduced after the intervention (at least p < 0.05), including 53 glycerophospholipids (23 PCs ae, 21 PCs aa, and 9 lysoPCs), 7 amino acids (tyrosine, phenylalanine, arginine, citrulline, tryptophan, glutamic acid, and leucine), the biogenic amine kynurenine, 2 sphingomyelins, and (free) carnitine (C0). On the contrary, three metabolites were significantly increased after the intervention (at least p < 0.05)-in particular, glutamine, trans-4-hydroxyproline, and the octadecenoyl-carnitine (C18:1). In conclusion, when administered to adolescents with obesity, a short-term BWRP is capable of changing the metabolomic profile in the plasma.PMID:36771236 | DOI:10.3390/nu15030529

Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Jan 19;15(3):518. doi: 10.3390/nu15030518.ABSTRACTGlycemic variability (GV) in some patients with type 1 diabetes (T1D) remains heterogeneous despite comparable clinical indicators, and whether other factors are involved is yet unknown. Metabolites in the serum indicate a broad effect of GV on cellular metabolism and therefore are more likely to indicate metabolic dysregulation associated with T1D. To compare the metabolomic profiles between high GV (GV-H, coefficient of variation (CV) of glucose ≥ 36%) and low GV (GV-L, CV < 36%) groups and to identify potential GV biomarkers, metabolomics profiling was carried out on serum samples from 17 patients with high GV, 16 matched (for age, sex, body mass index (BMI), diabetes duration, insulin dose, glycated hemoglobin (HbA1c), fasting, and 2 h postprandial C-peptide) patients with low GV (exploratory set), and another 21 (GV-H/GV-L: 11/10) matched patients (validation set). Subsequently, 25 metabolites were significantly enriched in seven Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the GV-H and GV-L groups in the exploratory set. Only the differences in spermidine, L-methionine, and trehalose remained significant after validation. The area under the curve of these three metabolites combined in distinguishing GV-H from GV-L was 0.952 and 0.918 in the exploratory and validation sets, respectively. L-methionine was significantly inversely related to HbA1c and glucose CV, while spermidine was significantly positively associated with glucose CV. Differences in trehalose were not as reliable as those in spermidine and L-methionine because of the relatively low amounts of trehalose and the inconsistent fold change sizes in the exploratory and validation sets. Our findings suggest that metabolomic disturbances may impact the GV of T1D. Additional in vitro and in vivo mechanistic studies are required to elucidate the relationship between spermidine and L-methionine levels and GV in T1D patients with different geographical and nutritional backgrounds.PMID:36771224 | DOI:10.3390/nu15030518

Glucose Metabolism and Metabolomic Changes in Response to Prolonged Fasting in Individuals with Obesity, Type 2 Diabetes and Non-Obese People-A Cohort Trial

Sat, 11/02/2023 - 12:00
Nutrients. 2023 Jan 18;15(3):511. doi: 10.3390/nu15030511.ABSTRACTMetabolic regulation of glucose can be altered by fasting periods. We examined glucose metabolism and metabolomics profiles after 12 h and 36 h fasting in non-obese and obese participants and people with type 2 diabetes using oral glucose tolerance (OGTT) and intravenous glucose tolerance testing (IVGTT). Insulin sensitivity was estimated by established indices and mass spectrometric metabolomics was performed on fasting serum samples. Participants had a mean age of 43 ± 16 years (62% women). Fasting levels of glucose, insulin and C-peptide were significantly lower in all cohorts after 36 h compared to 12 h fasting (p < 0.05). In non-obese participants, glucose levels were significantly higher after 36 h compared to 12 h fasting at 120 min of OGTT (109 ± 31 mg/dL vs. 79 ± 18 mg/dL; p = 0.001) but insulin levels were lower after 36 h of fasting at 30 min of OGTT (41.2 ± 34.1 mU/L after 36 h vs. 56.1 ± 29.7 mU/L; p < 0.05). In contrast, no significant differences were observed in obese participants or people with diabetes. Insulin sensitivity improved in all cohorts after 36 h fasting. In line, metabolomics revealed subtle baseline differences and an attenuated metabolic response to fasting in obese participants and people with diabetes. Our data demonstrate an improved insulin sensitivity after 36 h of fasting with higher glucose variations and reduced early insulin response in non-obese people only.PMID:36771218 | DOI:10.3390/nu15030511

Do Fungicides Affect Alkaloid Production in <em>Catharanthus roseus</em> (L.) G. Don. Seedlings?

Sat, 11/02/2023 - 12:00
Molecules. 2023 Feb 1;28(3):1405. doi: 10.3390/molecules28031405.ABSTRACTThe presence of endophytes in plants is undeniable, but how significant their involvement is in the host plant biosynthetic pathways is still unclear. The results reported from fungicide treatments in plants varied. Fungicide treatment in Taxus was found to decrease the taxol content. In Ipomoea asarifolia, Pronto Plus and Folicur treatments coincided with the disappearance of ergot alkaloids from the plant. In Narcissus pseudonarcissus cv. Carlton, a mixture of fungicide applications decreased the alkaloids concentration and altered the carbohydrate metabolism. Jacobaea plants treated with Folicur reduced the pyrrolizidine alkaloids content. There have not been any studies into the involvement of endophytic fungi on alkaloids production of Catharanthus roseus until now. Though there is a report on the isolation of the endophytic fungi, Fusarium oxysporum from C. roseus, which was reported to produce vinblastine and vincristine in vitro. To detect possible collaborations between these two different organisms, fungicides were applied to suppress the endophytic fungi in seedlings and then measure the metabolomes by 1HNMR and HPLC analysis. The results indicate that endophytic fungi were not directly involved in alkaloids biosynthesis. Treatment with fungicides influenced both the primary and secondary metabolism of C. roseus. The systemic fungicides Pronto Plus and Folicur caused an increase in loganin and secologanin levels. In contrast, control samples had higher level of catharanthine and vindoline. This means that fungicide treatments cause changes in plant secondary metabolism.PMID:36771067 | DOI:10.3390/molecules28031405

Metabolic Profiling and Potential Taste Biomarkers of Two Rambutans during Maturation

Sat, 11/02/2023 - 12:00
Molecules. 2023 Feb 1;28(3):1390. doi: 10.3390/molecules28031390.ABSTRACTThe metabolite-caused taste variation during rambutan maturation is unknown due to a lack of systematic investigation of all components. In this study, three growing stages, including unripe (S1), half-ripe (S2), and full-ripe (S3) BY2 and BY7 rambutans were compared and profiled by UPLC-MS/MS-based widely targeted metabolomics analysis. We demonstrated that the sugar-acid ratios of two rambutans were greatly improved between the S2 and S3 stages. A total of 821 metabolites were identified, including 232, 205, 204, and 12 differential metabolites (DMs) in BY2-S1 vs. BY2-S2, BY2-S2 vs. BY2-S3, BY7-S1 vs. BY7-S2, and BY7-S2 vs. BY7-S3, respectively. A correlation analysis showed that gamma-aminobutyric acid (GABA) could be the sugar-acid ratio biomarker of BY2 rambutan. Methionine (Met), alanine (Ala), and S-methyl-L-cysteine (SMC) could be total amino acid biomarkers of BY2 and BY7 rambutans. In addition, UPLC-MS/MS-based quantitative verification of the above biomarkers exhibited the same variations as metabolomics analysis. This study not only provides useful nutritive information on rambutans but also valuable metabolic data for rambutan breeding strategies.PMID:36771060 | DOI:10.3390/molecules28031390

Ulvophyte Green Algae <em>Caulerpa lentillifera</em>: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties

Sat, 11/02/2023 - 12:00
Molecules. 2023 Jan 31;28(3):1365. doi: 10.3390/molecules28031365.ABSTRACTMarine algae have excellent bioresource properties with potential nutritional and bioactive therapeutic benefits, but studies regarding Caulerpa lentillifera are limited. This study aims to explore the metabolites profile and the antioxidant, anticancer, anti-obesity, and in vitro cytotoxicity properties of fractionated ethanolic extract of C. lentillifera using two maceration and soxhlet extraction methods. Dried simplicia of C. lentillifera was mashed and extracted in ethanol solvent, concentrated and evaporated, then sequentially partitioned with equal volumes of ethyl acetate and n-Hexane. Six samples were used in this study, consisting of ME (Maceration-Ethanol), MEA (Maceration-Ethyl Acetate), MH (Maceration-n-Hexane), SE (Soxhletation-Ethanol), SEA (Soxhletation-Ethyl Acetate), and SH (Soxhletation-n-Hexane). Non-targeted metabolomic profiling was determined using LC-HRMS, while antioxidant, anti-obesity, and anticancer cytotoxicity were determined using DPPH and ABTS, lipase inhibition, and MTT assay, respectively. This study demonstrates that C. lentillifera has several functional metabolites, antioxidant capacity (EC50 MH is very close to EC50 of Trolox), as well as anti-obesity properties (EC50 MH < EC50 orlistat, an inhibitor of lipid hydrolyzing enzymes), which are useful as precursors for new therapeutic approaches in improving obesity-related diseases. More interestingly, ME, MH, and SE are novel bioresource agents for anticancer drugs, especially for hepatoma, breast, colorectal, and leukemia cancers. Finally, C. lentillifera can be a nutraceutical with great therapeutic benefits.PMID:36771032 | DOI:10.3390/molecules28031365

Byproducts of Globe Artichoke and Cauliflower Production as a New Source of Bioactive Compounds in the Green Economy Perspective: An NMR Study

Sat, 11/02/2023 - 12:00
Molecules. 2023 Jan 31;28(3):1363. doi: 10.3390/molecules28031363.ABSTRACTThe recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.PMID:36771031 | DOI:10.3390/molecules28031363

Pioneering Metabolomic Studies on <em>Diaporthe eres</em> Species Complex from Fruit Trees in the South-Eastern Poland

Sat, 11/02/2023 - 12:00
Molecules. 2023 Jan 25;28(3):1175. doi: 10.3390/molecules28031175.ABSTRACTFungi from the genus Diaporthe have been reported as plant pathogens, endophytes, and saprophytes on a wide range of host plants worldwide. Their precise identification is problematic since many Diaporthe species can colonize a single host plant, whereas the same Diaporthe species can inhabit many hosts. Recently, Diaporthe has been proven to be a rich source of bioactive secondary metabolites. In our initial study, 40 Diaporthe isolates were analyzed for their metabolite production. A total of 153 compounds were identified based on their spectroscopic properties-Ultraviolet-visible and mass spectrometry. From these, 43 fungal metabolites were recognized as potential chemotaxonomic markers, mostly belonging to the drimane sesquiterpenoid-phthalide hybrid class. This group included mainly phytotoxic compounds such as cyclopaldic acid, altiloxin A, B, and their derivatives. To the best of our knowledge, this is the first report on the metabolomic studies on Diaporthe eres species complex from fruit trees in the South-Eastern Poland. The results from our study may provide the basis for the future research on the isolation of identified metabolites and on their bioactive potential for agricultural applications as biopesticides or biofertilizers.PMID:36770841 | DOI:10.3390/molecules28031175

Synergistic Inhibiting Effect of Phytochemicals in <em>Rheum palmatum</em> on Tyrosinase Based on Metabolomics and Isobologram Analyses

Sat, 11/02/2023 - 12:00
Molecules. 2023 Jan 17;28(3):944. doi: 10.3390/molecules28030944.ABSTRACTTyrosinase (TYR) plays a key role in the enzymatic reaction that is responsible for a range of unwanted discoloration effects, such as food browning and skin hyperpigmentation. TYR inhibitors could, therefore, be candidates for skin care products that aim to repair pigmentation problems. In this study, we used a metabolomics approach combined with the isobologram analysis to identify anti-TYR compounds within natural resources, and evaluate their possible synergism with each other. Rheum palmatum was determined to be a model plant for observing the effect, of which seven extracts with diverse phytochemicals were prepared by way of pressurized solvent extraction. Each Rheum palmatum extract (RPE) was profiled using nuclear magnetic resonance spectroscopy and its activity of tyrosinase inhibition was evaluated. According to the orthogonal partial least square analysis used to correlate phytochemicals in RPE with the corresponding activity, the goodness of fit of the model (R2 = 0.838) and its predictive ability (Q2 = 0.711) were high. Gallic acid and catechin were identified as the active compounds most relevant to the anti-TYR effect of RPE. Subsequently, the activity of gallic acid and catechin were evaluated individually, and when combined in various ratios by using isobologram analysis. The results showed that gallic acid and catechin in the molar ratios of 9:5 and 9:1 exhibited a synergistic inhibition on TYR, with a combination index lower than 0.77, suggesting that certain combinations of these compounds may prove effective for use in cosmetic, pharmaceutical, and food industries.PMID:36770612 | DOI:10.3390/molecules28030944

Gas Chromatography-Mass Spectrometry (GC-MS) Metabolites Analysis in Endometriosis Patients: A Prospective Observational Translational Study

Sat, 11/02/2023 - 12:00
J Clin Med. 2023 Jan 24;12(3):922. doi: 10.3390/jcm12030922.ABSTRACTBACKGROUND: Endometriosis affects women of reproductive age, and its pathogenesis is still unclear. Typically, it overlaps other similar medical and surgical conditions, determining a delay in early diagnosis. Metabolomics allows studying metabolic changes in different physiological or pathological states to discover new potential biomarkers. We used the gas chromatography-mass spectrometer (GC-MS) to explore metabolic alterations in endometriosis to better understand its pathophysiology and find new biomarkers.METHODS: Twenty-two serum samples of patients with symptomatic endometriosis and ten without it were collected and subjected to GC-MS analysis. Multivariate and univariate statistical analyses were performed, followed by pathway analysis.RESULTS: Partial least squares discriminant analysis was performed to determine the differences between the two groups (p = 0.003). Threonic acid, 3-hydroxybutyric acid, and proline increased significantly in endometriosis patients, while alanine and valine decreased. ROC curves were built to test the diagnostic power of metabolites. The pathway analysis identified the synthesis and degradation of ketone bodies and the biosynthesis of phenylalanine, tyrosine, and tryptophan as the most altered pathways.CONCLUSIONS: The metabolomic approach identifies metabolic alterations in women with endometriosis. These findings may improve our understanding of the pathophysiological mechanisms of disease and the discovery of new biomarkers.PMID:36769570 | DOI:10.3390/jcm12030922

Pages