Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Effect of Enrofloxacin on the Microbiome, Metabolome, and Abundance of Antibiotic Resistance Genes in the Chicken Cecum

Sat, 25/02/2023 - 12:00
Microbiol Spectr. 2023 Feb 22:e0479522. doi: 10.1128/spectrum.04795-22. Online ahead of print.ABSTRACTEnrofloxacin is an important antibiotic for the treatment of Salmonella infections in livestock and poultry. However, the effects of different concentrations of enrofloxacin on the bacterial and metabolite compositions of the chicken gut and changes in the abundance of resistance genes in cecum contents remain unclear. To investigate the effects of enrofloxacin on chickens, we orally administered different concentrations of enrofloxacin to 1-day-old chickens and performed 16S rRNA gene sequencing to assess changes in the gut microbiomes of chickens after treatment. The abundance of fluoroquinolone (FQ) resistance genes was measured using quantitative PCR. Metabolomics techniques were used to examine the cecal metabolite composition. We found that different concentrations of enrofloxacin had different effects on cecum microorganisms, with the greatest effect on cecum microbial diversity in the low-concentration enrofloxacin group at day 7. Enrofloxacin use reduced the abundance of beneficial bacteria such as Lactobacillaceae and Oscillospira. Furthermore, cecum microbial diversity was gradually restored as the chickens grew. In addition, enrofloxacin increased the abundance of resistance genes, and there were differences in the changes in abundance among different antibiotic resistance genes. Moreover, enrofloxacin significantly affected linoleic acid metabolism, amino acid metabolism, and signaling pathways. This study helps improve our understanding of how antibiotics affect host physiological activities and provides new insights into the rational use of drugs in poultry farming. The probiotics and metabolites that we identified could be used to modulate the negative effects of antibiotics on the host, which requires further study. IMPORTANCE In this study, we investigated changes in the cecum flora, metabolites, and abundances of fluoroquinolone antibiotic resistance genes in chickens following the use of different concentrations of enrofloxacin. These results were used to determine the effects of enrofloxacin on chick physiology and the important flora and metabolites that might contribute to these effects. In addition, these results could help in assessing the effect of enrofloxacin concentrations on host metabolism. Our findings could help guide the rational use of antibiotics and mitigate the negative effects of antibiotics on the host.PMID:36840593 | DOI:10.1128/spectrum.04795-22

Capacity of a Microbial Synbiotic To Rescue the <em>In Vitro</em> Metabolic Activity of the Gut Microbiome following Perturbation with Alcohol or Antibiotics

Sat, 25/02/2023 - 12:00
Appl Environ Microbiol. 2023 Feb 22:e0188022. doi: 10.1128/aem.01880-22. Online ahead of print.ABSTRACTThe human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.PMID:36840551 | DOI:10.1128/aem.01880-22

Age- and body composition-dependent association of child gut microbial enterotype with puberty timing: a Chinese cohort

Sat, 25/02/2023 - 12:00
J Clin Endocrinol Metab. 2023 Feb 24:dgad090. doi: 10.1210/clinem/dgad090. Online ahead of print.ABSTRACTCONTEXT: Puberty timing, which is vital for adult well-being, has been suggested to be linked to specific gut taxa recently. However, the impact of comprehensive gut microbiome structure assessed by enterotype on puberty timing remains unknown.OBJECTIVE: Investigate the prospective association of gut microbial enterotype with puberty timing and the potential interaction of age and body composition.METHODS: This study included 1826 children from the Chinese Adolescent Cohort Study, a cohort that collects information on sociodemographics, dietary intake, physical activity, anthropometry, and pubertal development of children aged 6 to 8 since 2013 and follows up annually until their age of 15. Fecal samples were collected annually since 2019 and analyzed for 16S rRNA sequencing and targeted fecal metabolomics. Cox proportional hazard regression models were used to investigate the prospective association of enterotype with puberty timing and the impact of age and body mass index (BMI) sex- and age-independent standard deviation scores (SDS).RESULTS: 592 (32.4%) and 1234 (67.6%) children belonged to the Prevotella-rich enterotype and the Bacteroides-rich enterotype, respectively. Children with the Bacteroides-rich enterotype experienced their menarche/voice break later than those with the Prevotella-enterotype (hazard ratio 0.53 (95%CI, 0.28-0.98), P = 0.02). Moreover, this association was more pronounced among younger children with higher BMI SDS (P for-interaction = 0.006).CONCLUSION: Our findings supported a role for gut microbial communities in pubertal development, in which younger children with higher body mass seems more sensitive.PMID:36840481 | DOI:10.1210/clinem/dgad090

Defensive Resistance of Cowpea <em>Vigna unguiculata</em> Control <em>Megalurothrips usitatus</em> Mediated by Jasmonic Acid or Insect Damage

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 19;12(4):942. doi: 10.3390/plants12040942.ABSTRACTVigna unguiculata is a vital vegetable crop in Southeast Asia, and Megalurothrips usitatus can cause huge damage to this crop. Enhancing the resistance of V. unguiculata against M. usitatus is a promising way to protect this crop; however, there is limited information regarding the mechanism underlying the resistance of V. unguiculata against M. usitatus. Here, a behavior assay was performed to explore the resistance of V. unguiculata against M. usitatus after insect damage or treatment by jasmonic acid (JA). Furthermore, transcriptome and metabonomics analysis was used to detect the putative mechanism underlying the resistance of V. unguiculata against M. usitatus. The pre-treatment of Vigna unguiculata with JA or infestation with Megalurothrips usitatus alleviated the damage resulting from the pest insect. We further identified differentially expressed genes and different metabolites involved in flavonoid biosynthesis and alpha-linolenic acid metabolism. Genes of chalcone reductase and shikimate O-hydroxycinnamoyltransferase involved in flavonoid biosynthesis, as well as lipoxygenase and acyl-CoA oxidase involved in alpha-linolenic acid metabolism, were upregulated in plants after herbivory or JA supplementation. The upregulation of these genes contributed to the high accumulation of metabolites involved in flavonoid biosynthesis and the alpha-linolenic acid metabolism pathway. These transcriptional and metabolite changes are potentially responsible for plant defense and a putative regulatory model is thus proposed to illustrate the cowpea defense mechanism against insect attack. Our study provides candidate targets for the breeding of varieties with resistance to insect herbivory by molecular technology.PMID:36840292 | DOI:10.3390/plants12040942

Metabolic Profiling Identifies Changes in the Winter Wheat Grains Following <em>Fusarium</em> Treatment at Two Locations in Croatia

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 17;12(4):911. doi: 10.3390/plants12040911.ABSTRACTFusarium head blight (FHB) is one of the most dangerous diseases of winter wheat, resulting in reduced grain yield and quality, and production of mycotoxins by the Fusarium fungi. In the present study, changes in the grain metabolomics of winter wheat samples infected with Fusarium spp. and corresponding non-infected samples from two locations in Croatia were investigated by GC-MS. A Mann-Whitney test revealed that 24 metabolites detected were significantly separated between Fusarium-inoculated and non-infected samples during the variety by treatment interactions. The results confirmed that in grains of six FHB-resistant varieties, ten metabolites were identified as possible resistance-related metabolites. These metabolites included heptadecanoic acid, 9-(Z)-hexadecenoic acid, sophorose, and secolaganin in grains of FHB-resistant varieties at the Osijek location, as well as 2-methylaminomethyltartronic acid, maleamic acid, 4-hydroxyphenylacetonitrile, 1,4-lactonearabinonic acid, secolaganin, and alanine in grains of FHB-resistant varieties at the Tovarnik location. Moreover, on the PCA bi-plot, FHB-susceptible wheat varieties were closer to glycyl proline, decanoic acid, and lactic acid dimer that could have affected other metabolites, and thus, suppressed resistance to FHB. Although defense reactions were genetically conditioned and variety specific, resulting metabolomics changes may give insight into defense-related pathways that could be manipulated to engineer plants with improved resistance to the pathogen.PMID:36840259 | DOI:10.3390/plants12040911

Genetic and Metabolite Variability among Commercial Varieties and Advanced Lines of <em>Vicia faba</em> L

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 17;12(4):908. doi: 10.3390/plants12040908.ABSTRACTVicia faba L. (faba bean) is one of the most promising pulse crops due to its nutritional value and high nitrogen fixation capacity. The aim of the present study was to compare the genetic diversity and the seed metabolite profiles of five genetic materials of faba bean. Specifically, three newly developed advanced lines (KK18, KK14 and KK10) and two commercial cultivars (POLIKARPI and TANAGRA), were evaluated for this purpose. Genetic diversity among populations was assessed by SCoT molecular markers. Through UPGMA dendrogram, genetic distances between populations were estimated. Untargeted metabolomics analysis of the seeds was performed employing GC/EI/MS. The cultivar POLYKARPI exhibited the highest polymorphism. All varieties showed a higher within-cultivars and advanced lines variability than between. POLYKARPI and KK14 had the lowest genetic distances, while KK18 and TANAGRA presented the highest ones. The advanced line KK18 displayed the best nutritional profile, the highest concentration of desirable metabolites (lactic acid and trehalose), the lowest concentration of anti-nutritional factors (oxalic acid) and the lowest concentration of saturated fatty acids (palmitic and stearic acid). According to the results of the present study, KK18 line is a very promising material for further exploration and utilization in breeding programs.PMID:36840256 | DOI:10.3390/plants12040908

Untargeted Metabolomics for Integrative Taxonomy: Metabolomics, DNA Marker-Based Sequencing, and Phenotype Bioimaging

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 15;12(4):881. doi: 10.3390/plants12040881.ABSTRACTIntegrative taxonomy is a fundamental part of biodiversity and combines traditional morphology with additional methods such as DNA sequencing or biochemistry. Here, we aim to establish untargeted metabolomics for use in chemotaxonomy. We used three thallose liverwort species Riccia glauca, R. sorocarpa, and R. warnstorfii (order Marchantiales, Ricciaceae) with Lunularia cruciata (order Marchantiales, Lunulariacea) as an outgroup. Liquid chromatography high-resolution mass-spectrometry (UPLC/ESI-QTOF-MS) with data-dependent acquisition (DDA-MS) were integrated with DNA marker-based sequencing of the trnL-trnF region and high-resolution bioimaging. Our untargeted chemotaxonomy methodology enables us to distinguish taxa based on chemophenetic markers at different levels of complexity: (1) molecules, (2) compound classes, (3) compound superclasses, and (4) molecular descriptors. For the investigated Riccia species, we identified 71 chemophenetic markers at the molecular level, a characteristic composition in 21 compound classes, and 21 molecular descriptors largely indicating electron state, presence of chemical motifs, and hydrogen bonds. Our untargeted approach revealed many chemophenetic markers at different complexity levels that can provide more mechanistic insight into phylogenetic delimitation of species within a clade than genetic-based methods coupled with traditional morphology-based information. However, analytical and bioinformatics analysis methods still need to be better integrated to link the chemophenetic information at multiple scales.PMID:36840229 | DOI:10.3390/plants12040881

Nutritional Composition and Antioxidant Activity of <em>Gonostegia hirta</em>: An Underexploited, Potentially Edible, Wild Plant

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 15;12(4):875. doi: 10.3390/plants12040875.ABSTRACTWild, edible plants have received increasing attention as an important complement to cultivate vegetables, as they represent an easily accessible source of nutrients, mineral elements, and antioxidants. In this study, the tender stems and leaves of Gonostegia hirta, an edible species for which only scarce data are available in the literature, are thoroughly evaluated for their nutritional profile, chemical characterization, and antioxidant activity. Being considered as an underexploited, potentially edible plant, the nutritional composition of Gonostegia hirta was identified, and several beneficial compounds were highlighted: sugars, potassium, calcium, organic acids, fatty acids, phenolics, and flavonoids. A total of 418 compounds were identified by metabolomic analysis, including phenolic acids, flavonoids, amino acids, lipids, organic acids, terpenoids, alkaloids, nucleotides, tannins, lignans, and coumarin. The plant sample was found to have good antioxidant capacities, presented by DPPH, FRAP, ABTS+, hydroxyl radical scavenging capacity, and its resistance to the superoxide anion radical test. In general, Gonostegia hirta has a good nutritional and phytochemical composition. The health benefits of Gonostegia hirta as a vegetable and herbal medicine is important for both a modern diet and use in medication.PMID:36840225 | DOI:10.3390/plants12040875

Cytogenetic Characterization and Metabolomic Differences of Full-Sib Progenies of <em>Saccharum</em> spp

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 10;12(4):810. doi: 10.3390/plants12040810.ABSTRACTSugarcane smut is a worldwide fungal disease. Disease resistance breeding is the most economical and effective measure to prevent and control sugarcane smut. The cytogenetic characteristics and metabolomic differences of sugarcane F1s are closely related to disease resistance. Zhongzhe 1 and G160 sugarcane from the same parents (ROC25 and Yunzhe89-7) were used; the plants were grown in accordance with the barrel method. When the seedlings had 4-5 leaves, genomic in situ hybridization (GISH) was performed; digoxigenin (DIG)-labeled female parental (ROC25)DNA and biotin-labeled male parental (Yunzhe89-7) DNA were used as probes, and the karyotypes of two hybrids were analyzed. The new sugarcane smut-resistant variety (Zhongzhe 1) and the susceptible variety (G160) derived from the same parent were analyzed via gas chromatography-mass spectrometry technology (GC-MS) to compare the metabolomic differences between them. GISH analysis revealed that the chromosome ploidy number of Zhongzhe 1 sugarcane and G160 sugarcane were 114 and 110, respectively. However, the two contain different numbers of chromosomes from the female (ROC25) and male (Yunzhe89-7) parents. Moreover, 258 significantly changed metabolites were identified in smut-resistant Zhongzhe 1, as compared with the smut-susceptible G160 sugarcane: 56 flavonoids, 52 phenolic acids, 30 lipids, 26 organic acids, 26 amino acids and derivatives, 19 nucleotides and derivatives, 5 alkaloids, 9 terpenoids, and 35 others. Multivariate statistical analysis revealed a distinct difference in metabolic pathways between Zhongzhe 1 sugarcane and G160, and both of these varieties had unique functional metabolites. Differences in chromosome composition may constitute the genetic basis for the difference in resistance to smut disease between Zhongzhe 1 sugarcane and G160 sugarcane, and a high accumulation of flavonoids, lipids, terpenoids and tannins may constitute the basis of resistance to smut disease for the Zhongzhe 1 variety.PMID:36840158 | DOI:10.3390/plants12040810

Metabolomic Analysis Reveals the Metabolic Diversity of Wild and Cultivated Stellaria Radix (<em>Stellaria dichotoma</em> L. var. <em>lanceolata</em> Bge.)

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 9;12(4):775. doi: 10.3390/plants12040775.ABSTRACTStellaria Radix, called Yinchaihu in Chinese, is a traditional Chinese medicine, which is obtained from the dried roots of Stellaria dichotoma L. var. lanceolata Bge. Cultivated yinchaihu (YCH) has become a main source of production to alleviate the shortage of wild plant resources, but it is not clear whether the metabolites of YCH change with the mode of production. In this study, the contents of methanol extracts, total sterols and total flavonoids in wild and cultivated YCH are compared. The metabolites were analyzed by ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry. The content of methanol extracts of the wild and cultivated YCH all exceeded the standard content of the Chinese Pharmacopoeia. However, the contents of total sterols and total flavonoids in the wild YCH were significantly higher than those in the cultivated YCH. In total, 1586 metabolites were identified by mass spectrometry, and 97 were significantly different between the wild and cultivated sources, including β-sitosterol, quercetin derivatives as well as many newly discovered potential active components, such as trigonelline, arctiin and loganic acid. The results confirm that there is a rich diversity of metabolites in the wild and cultivated YCH, and provide a useful theoretical guidance for the evaluation of quality in the production of YCH.PMID:36840123 | DOI:10.3390/plants12040775

Metabolite Profiling Reveals the Effect of Cold Storage on Primary Metabolism in Nectarine Varieties with Contrasting Mealiness

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 8;12(4):766. doi: 10.3390/plants12040766.ABSTRACTChilling injury is a physiological disorder caused by cold storage in peaches and nectarines. The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh. In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy and juicy nectarines.PMID:36840114 | DOI:10.3390/plants12040766

Metabolite Profiling to Evaluate Metabolic Changes in Genetically Modified Protopanaxadiol-Enriched Rice

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 8;12(4):758. doi: 10.3390/plants12040758.ABSTRACTEvent DS rice producing protopanaxadiol (PPD) has been previously developed by inserting Panax ginseng dammarenediol-II synthase gene (PgDDS) and PPD synthase gene (CYP716A47). We performed a gas chromatography-mass spectrometry (GC-MS)-based metabolomics of the DS rice to identify metabolic alterations as the effects of genetic engineering by measuring the contents of 65 metabolites in seeds and 63 metabolites in leaves. Multivariate analysis and one-way analysis of variance between DS and non-genetically modified (GM) rice showed that DS rice accumulated fewer tocotrienols, tocopherols, and phytosterols than non-GM rice. These results may be due to competition for the same precursors because PPDs in DS rice are synthesized from the same precursors as those of phytosterols. In addition, multivariate analysis of metabolic data from rice leaves revealed that composition differed by growth stage rather than genetic modifications. Our results demonstrate the potential of metabolomics for identifying metabolic alterations in response to genetic modifications.PMID:36840106 | DOI:10.3390/plants12040758

The Combination of Both Heat and Water Stresses May Worsen Botryosphaeria Dieback Symptoms in Grapevine

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 8;12(4):753. doi: 10.3390/plants12040753.ABSTRACT(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions.PMID:36840101 | DOI:10.3390/plants12040753

Modulation of Morpho-Physiological and Metabolic Profiles of Lettuce Subjected to Salt Stress and Treated with Two Vegetal-Derived Biostimulants

Sat, 25/02/2023 - 12:00
Plants (Basel). 2023 Feb 6;12(4):709. doi: 10.3390/plants12040709.ABSTRACTSalinity in water and soil is a critical issue for food production. Using biostimulants provides an effective strategy to protect crops from salinity-derived yield losses. The research supports the effectiveness of protein hydrolysate (PH) biostimulants based on their source material. A greenhouse experiment was performed on lettuce plants under control (0 mM NaCl) and high salinity conditions (30 mM NaCl) using the Trainer (T) and Vegamin (V) PH biostimulants. The recorded data included yield parameters, mineral contents, auxiliary pigments, and polyphenolics. The plant sample material was further analyzed to uncover the unique metabolomic trace of the two biostimulants. The results showed an increased yield (8.9/4.6%, T/V) and higher photosynthetic performance (14%) compared to control and salinity treatments. Increased yield in salinity condition by T compared to V was deemed significant due to the positive modulation in stress-protecting molecules having an oxidative stress relief effect such as lutein (39.9% 0 × T vs. 30 × V), β-carotene (23.4% vs. V overall), and flavonoids (27.7% vs. V). The effects of PH biostimulants on the physio-chemical and metabolic performance of lettuce plants are formulation dependent. However, they increased plant growth under stress conditions, which can prove profitable.PMID:36840057 | DOI:10.3390/plants12040709

Metabolomics Profiling Reveals the Role of PEDF in Triple-Negative Breast Cancer Cell MDA-MB-231 under Glycaemic Loading

Sat, 25/02/2023 - 12:00
Pharmaceutics. 2023 Feb 6;15(2):543. doi: 10.3390/pharmaceutics15020543.ABSTRACTPigment epithelium-derived factor (PEDF) is a secreted glycoprotein that belongs to the serine protease inhibitor (serpin) family. An increase in PEDF activity has been shown to be a potent inhibitor of tumour progression and proliferation, suggesting a possible therapeutic target. There is still a great deal to learn about how PEDF controls metabolic pathways in breast cancer and its metastatic form. Given this, the primary purpose of this study was to use a metabolomics approach to gain a better understanding of the mechanisms driving the reprogramming of metabolic events involved in breast cancer pertaining to PEDF under various glycaemic loads. We employed gas chromatography-quadrupole mass spectrometry (GC-Q-MS) to investigate metabolic changes in the triple-negative breast cancer (TNBC) cell line MDA-MB-231 treated with PEDF under glycaemic loading. Multivariate and univariate analyses were carried out as indicative tools via MetaboAnalyst (V.5.0) and R packages to identify the significantly altered metabolites in the MDA-MB-231 cell line after PEDF exposure under glycaemic loading. A total of 61 metabolites were found, of which nine were selected to be distinctively expressed in MDA-MB-231 cells under glycaemic conditions and exhibited differential responses to PEDF (p < 0.05, VIP > 1). Abnormalities in amino acid metabolism pathways were observed. In particular, glutamic acid, glutamine, and phenylalanine showed different levels of expression across different treatment groups. The lactate and glucose-6-phosphate production significantly increased in high-glucose vs. normal conditions while it decreased when the cells were exposed to PEDF, confirming the positive influence on the Warburg effect. The TCA cycle intermediates, including malate and citric acid, showed different patterns of expression. This is an important finding in understanding the link of PEDF with metabolic perturbation in TNBC cells in response to glycaemic conditions. Our findings suggest that PEDF significantly influenced the Warburg effect (as evidenced by the significantly lower levels of lactate), one of the well-known metabolic reprogramming pathways in cancer cells that may be responsive to metabolic-targeted therapeutic strategies. Moreover, our results demonstrated that GC-MS-based metabolomics is an effective tool for identifying metabolic changes in breast cancer cells after glycaemic stress or in response to PEDF treatment.PMID:36839865 | DOI:10.3390/pharmaceutics15020543

Sonoporation of the Round Window Membrane on a Sheep Model: A Safety Study

Sat, 25/02/2023 - 12:00
Pharmaceutics. 2023 Jan 29;15(2):442. doi: 10.3390/pharmaceutics15020442.ABSTRACTSonoporation using microbubble-assisted ultrasound increases the permeability of a biological barrier to therapeutic molecules. Application of this method to the round window membrane could improve the delivery of therapeutics to the inner ear. The aim of this study was to assess the safety of sonoporation of the round window membrane in a sheep model. To achieve this objective, we assessed auditory function and cochlear heating, and analysed the metabolomics profiles of perilymph collected after sonoporation, comparing them with those of the control ear in the same animal. Six normal-hearing ewes were studied, with one sonoporation ear and one control ear for each. A mastoidectomy was performed on both ears. On the sonoporation side, Vevo MicroMarker® microbubbles (MBs; VisualSonics-Fujifilm, Amsterdam, The Netherlands) at a concentration of 2 × 108 MB/mL were locally injected into the middle ear and exposed to 1.1 MHz sinusoidal ultrasonic waves at 0.3 MPa negative peak pressure with 40% duty cycle and 100 μs interpulse period for 1 min; this was repeated three times with 1 min between applications. The sonoporation protocol did not induce any hearing impairment or toxic overheating compared with the control condition. The metabolomic analysis did not reveal any significant metabolic difference between perilymph samples from the sonoporation and control ears. The results suggest that sonoporation of the round window membrane does not cause damage to the inner ear in a sheep model.PMID:36839763 | DOI:10.3390/pharmaceutics15020442

Integrating Transcriptomics and Metabolomics to Explore the Novel Pathway of <em>Fusobacterium nucleatum</em> Invading Colon Cancer Cells

Sat, 25/02/2023 - 12:00
Pathogens. 2023 Jan 28;12(2):201. doi: 10.3390/pathogens12020201.ABSTRACTColorectal cancer (CRC) is a malignancy with a very high incidence and mortality rate worldwide. Fusobacterium nucleatum bacteria and their metabolites play a role in inducing and promoting CRC; however, no studies on the exchange of information between Fusobacterium nucleatum extracellular vesicles (Fnevs) and CRC cells have been reported. Our research shows that Fusobacterium nucleatum ATCC25586 secretes extracellular vesicles carrying active substances from parental bacteria which are endocytosed by colon cancer cells. Moreover, Fnevs promote the proliferation, migration, and invasion of CRC cells and inhibit apoptosis; they also improve the ability of CRC cells to resist oxidative stress and SOD enzyme activity. The genes differentially expressed after transcriptome sequencing are mostly involved in the positive regulation of tumor cell proliferation. After detecting differential metabolites using liquid chromatography-tandem mass spectrometry, Fnevs were found to promote cell proliferation by regulating amino acid biosynthesis in CRC cells and metabolic pathways such as central carbon metabolism, protein digestion, and uptake in cancer. In summary, this study not only found new evidence of the synergistic effect of pathogenic bacteria and colon cancer tumor cells, but also provides a new direction for the early diagnosis and targeted treatment of colon cancer.PMID:36839472 | DOI:10.3390/pathogens12020201

Anti-Hyperuricemic Effect of Anserine Based on the Gut-Kidney Axis: Integrated Analysis of Metagenomics and Metabolomics

Sat, 25/02/2023 - 12:00
Nutrients. 2023 Feb 15;15(4):969. doi: 10.3390/nu15040969.ABSTRACTNowadays, developing effective intervention substances for hyperuricemia has become a public health issue. Herein, the therapeutic ability of anserine, a bioactive peptide, was validated through a comprehensive multiomics analysis of a rat model of hyperuricemia. Anserine was observed to improve liver and kidney function and modulate urate-related transporter expressions in the kidneys. Urine metabolomics showed that 15 and 9 metabolites were significantly increased and decreased, respectively, in hyperuricemic rats after the anserine intervention. Key metabolites such as fructose, xylose, methionine, erythronic acid, glucaric acid, pipecolic acid and trans-ferulic acid were associated with ameliorating kidney injury. Additionally, anserine regularly changed the gut microbiota, thereby ameliorating purine metabolism abnormalities and alleviating inflammatory responses. The integrated multiomics analysis indicated that Saccharomyces, Parasutterella excrementihominis and Emergencia timonensis were strongly associated with key differential metabolites. Therefore, we propose that anserine improved hyperuricemia via the gut-kidney axis, highlighting its potential in preventing and treating hyperuricemia.PMID:36839325 | DOI:10.3390/nu15040969

A Novel Symbiotic Formulation Reduces Obesity and Concomitant Metabolic Syndrome in Rats by Raising the Relative Abundance of Blautia

Sat, 25/02/2023 - 12:00
Nutrients. 2023 Feb 14;15(4):956. doi: 10.3390/nu15040956.ABSTRACTObesity is regarded as an abnormal or excessive buildup of fat that may be bad for health and is influenced by a combination of intestinal flora, genetic background, physical activity level and environment. Symbiotic supplementation may be a realistic and easy therapy for the reversal of obesity and associated metabolic problems. In this study, we chose two Bifidobacterium species, three Lactobacilli species and four prebiotics to make a new symbiotic formulation. High or low doses of the symbiotic were administered to rats, and biochemical indicators were recorded to assess the biological effects in a high-fat-diet-induced rat model. The underlying mechanisms were explored by integrating 16S rRNA sequencing with an extensively targeted metabolome. High-dose symbiotic supplementation was effective in reducing obesity and concomitant metabolic syndrome. The high-dose symbiotic also significantly increased the abundance of Blautia, which was negatively correlated with taurocholic acid and the main differential metabolites involved in amino acid and bile acid metabolism. While the low-dose symbiotic had some therapeutic effects, they were not as strong as those at the high dose, demonstrating that the effects were dose-dependent. Overall, our novel symbiotic combination improved plasma glucose and lipid levels, shrunk adipocyte size, restored liver function, increased the abundance of Blautia and adjusted bile acid and amino acid metabolism.PMID:36839314 | DOI:10.3390/nu15040956

An Oxylipin-Related Nutrient Pattern and Risk of Type 1 Diabetes in the Diabetes Autoimmunity Study in the Young (DAISY)

Sat, 25/02/2023 - 12:00
Nutrients. 2023 Feb 14;15(4):945. doi: 10.3390/nu15040945.ABSTRACTOxylipins, pro-inflammatory and pro-resolving lipid mediators, are associated with the risk of type 1 diabetes (T1D) and may be influenced by diet. This study aimed to develop a nutrient pattern related to oxylipin profiles and test their associations with the risk of T1D among youth. The nutrient patterns were developed with a reduced rank regression in a nested case-control study (n = 335) within the Diabetes Autoimmunity Study in the Young (DAISY), a longitudinal cohort of children at risk of T1D. The oxylipin profiles (adjusted for genetic predictors) were the response variables. The nutrient patterns were tested in the case-control study (n = 69 T1D cases, 69 controls), then validated in the DAISY cohort using a joint Cox proportional hazards model (n = 1933, including 81 T1D cases). The first nutrient pattern (NP1) was characterized by low beta cryptoxanthin, flavanone, vitamin C, total sugars and iron, and high lycopene, anthocyanidins, linoleic acid and sodium. After adjusting for T1D family history, the HLA genotype, sex and race/ethnicity, NP1 was associated with a lower risk of T1D in the nested case-control study (OR: 0.44, p = 0.0126). NP1 was not associated with the risk of T1D (HR: 0.54, p-value = 0.1829) in the full DAISY cohort. Future studies are needed to confirm the nested case-control findings and investigate the modifiable factors for oxylipins.PMID:36839302 | DOI:10.3390/nu15040945

Pages