Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Prospective Placebo-Controlled Assessment of Spore-Based Probiotic Supplementation on Sebum Production, Skin Barrier Function, and Acne

Sat, 11/02/2023 - 12:00
J Clin Med. 2023 Jan 23;12(3):895. doi: 10.3390/jcm12030895.ABSTRACTProbiotic supplementation has been shown to modulate the gut-skin axis. The goal of this study was to investigate whether oral spore-based probiotic ingestion modulates the gut microbiome, plasma short-chain fatty acids (SCFAs), and skin biophysical properties. This was a single-blinded, 8-week study (NCT03605108) in which 25 participants, 7 with noncystic acne, were assigned to take placebo capsules for the first 4 weeks, followed by 4 weeks of probiotic supplementation. Blood and stool collection, facial photography, sebum production, transepidermal water loss (TEWL), skin hydration measurements, and acne assessments were performed at baseline, 4, and 8 weeks. Probiotic supplementation resulted in a decreasing trend for the facial sebum excretion rate and increased TEWL overall. Subanalysis of the participants with acne showed improvement in total, noninflammatory, and inflammatory lesion counts, along with improvements in markers of gut permeability. The gut microbiome of the nonacne population had an increase in the relative abundance of Akkermansia, while the subpopulation of those with acne had an increase in the relative abundance of Lachnospiraceae and Ruminococcus gnavus. Probiotic supplementation augmented the circulating acetate/propionate ratio. There is preliminary evidence for the use of spore-based probiotic supplementation to shift the gut microbiome and augment short-chain fatty acids in those with and without acne. Further spore-based supplementation studies in those with noncystic acne are warranted.PMID:36769543 | DOI:10.3390/jcm12030895

Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Feb 3;24(3):3025. doi: 10.3390/ijms24033025.ABSTRACTTo explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.PMID:36769343 | DOI:10.3390/ijms24033025

Alanine-Dependent TCA Cycle Promotion Restores the Zhongshengmycin-Susceptibility in <em>Xanthomonas oryzae</em>

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Feb 3;24(3):3004. doi: 10.3390/ijms24033004.ABSTRACTXanthomonas oryzae pv. oryzicola (Xoo) is a plant pathogenic bacterium that can cause rice bacterial blight disease, which results in a severe reduction in rice production. Antimicrobial-dependent microbial controlling is a useful way to control the spread and outbreak of plant pathogenic bacteria. However, the abuse and long-term use of antimicrobials also cause microbial antimicrobial resistance. As far as known, the mechanism of antimicrobial resistance in agricultural plant pathogenic bacteria still lacks prospecting. In this study, we explore the mechanism of Zhongshengmycin (ZSM)-resistance in Xoo by GC-MS-based metabolomic analysis. The results showed that the down-regulation of the TCA cycle was characteristic of antimicrobial resistance in Xoo, which was further demonstrated by the reduction of activity and gene expression levels of key enzymes in the TCA cycle. Furthermore, alanine was proven to reverse the ZSM resistance in Xoo by accelerating the TCA cycle in vivo. Our results are essential for understanding the mechanisms of ZSM resistance in Xoo and may provide new strategies for controlling this agricultural plant pathogen at the metabolic level.PMID:36769324 | DOI:10.3390/ijms24033004

Ameliorating Effects of Vitamin K2 on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Feb 3;24(3):2986. doi: 10.3390/ijms24032986.ABSTRACTUlcerative colitis (UC) is a chronic recurrent inflammatory illness of the gastrointestinal system. The purpose of this study was to explore the alleviating effect of vitamin K2 (VK2) on UC, as well as its mechanism. C57BL/6J mice were given 3% DSS for seven days to establish UC, and they then received VK2 (15, 30, or 60 mg/kg·bw) and 5-aminosalicylic acid (100 mg/kg·bw) for two weeks. We recorded the clinical signs, body weights, colon lengths, and histological changes during the experiment. We detected the inflammatory factor expressions using enzyme-linked immunosorbent assay (ELISA) kits, and we detected the tight junction proteins using Western blotting. We analyzed the intestinal microbiota alterations and short-chain fatty acids (SCFAs) using 16S rRNA sequencing and targeted metabolomics. According to the results, VK2 restored the colon lengths, improved the colonic histopathology, reduced the levels of proinflammatory cytokines (such as IL-1β, TNF-α, and IL-6), and boosted the level of the immunosuppressive cytokine IL-10 in the colon tissues of the colitis mice. Moreover, VK2 promoted the expression of mucin and tight junction proteins (such as occludin and zonula occludens-1) in order to preserve the intestinal mucosal barrier function and prevent UC in mice. Additionally, after the VK2 intervention, the SCFAs and SCFA-producing genera, such as Eubacterium_ruminantium_group and Faecalibaculum, were elevated in the colon. In conclusion, VK2 alleviated the DSS-induced colitis in the mice, perhaps by boosting the dominant intestinal microflora, such as Faecalibaculum, by reducing intestinal microflora dysbiosis, and by modulating the expression of SCFAs, inflammatory factors, and intestinal barrier proteins.PMID:36769323 | DOI:10.3390/ijms24032986

Salivary Polyamines Help Detect High-Risk Patients with Pancreatic Cancer: A Prospective Validation Study

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Feb 3;24(3):2998. doi: 10.3390/ijms24032998.ABSTRACTPancreatic cancer is one of the most malignant cancer types and has a poor prognosis. It is often diagnosed at an advanced stage because of the absence of typical symptoms. Therefore, it is necessary to establish a screening method for the early detection of pancreatic cancer in high-risk individuals. This is a prospective validation study conducted in a cohort of 1033 Japanese individuals (male, n = 467, age = 63.3 ± 11.5 years; female, n = 566, age = 64.2 ± 10.6 years) to evaluate the use of salivary polyamines for screening pancreatic diseases and cancers. Patients with pancreatic cancer were not included; however, other pancreatic diseases were treated as positive cases for accuracy verification. Of the 135 individuals with elevated salivary polyamine markers, 66 had pancreatic diseases, such as chronic pancreatitis and pancreatic cysts, and 1 had gallbladder cancer. These results suggest that the salivary polyamine panel is a useful noninvasive pancreatic disease screening tool.PMID:36769322 | DOI:10.3390/ijms24032998

Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Feb 2;24(3):2934. doi: 10.3390/ijms24032934.ABSTRACTLarge-scale use of fossil fuels has brought about increasingly serious problems of environmental pollution, development and utilization of renewable energy is one of the effective solutions. Duckweed has the advantages of fast growth, high starch content and no occupation of arable land, so it is a promising starchy energy plant. A new submerged duckweed mutant (sub-1) with abundant starch accumulation was obtained, whose content of amylopectin accounts for 84.04% of the starch granules. Compared with the wild type (Lemna aequinoctialis), the branching degree of starch in sub-1 mutant was significantly increased by 19.6%. Chain length DP 6-12, DP 25-36 and DP > 36 of amylopectin significantly decreased, while chain length DP 13-24 significantly increased. Average chain length of wild-type and sub-1 mutant starches were greater than DP 22. Moreover, the crystal structure and physical properties of starch have changed markedly in sub-1 mutant. For example, the starch crystallinity of sub-1 mutant was only 8.94%, while that of wild-type was 22.3%. Compared with wild type, water solubility of starch was significantly reduced by 29.42%, whereas swelling power significantly increased by 97.07% in sub-1 mutant. In order to further analyze the molecular mechanism of efficient accumulation of amylopectin in sub-1 mutant, metabolome and transcriptome were performed. The results showed that glucose accumulated in sub-1 mutant, then degradation of starch to glucose mainly depends on α-amylase. At night, the down-regulated β-amylase gene resulted in the inhibition of starch degradation. The starch and sucrose metabolism pathways were significantly enriched. Up-regulated expression of SUS, AGPase2, AGPase3, PYG, GPI and GYS provide sufficient substrate for starch synthesis in sub-1 mutant. From the 0H to 16H light treatment, granule-bound starch synthase (GBSS1) gene was inhibited, on the contrary, the starch branching enzyme (SBE) gene was induced. Differential expression of GBSS1 and SBE may be an important reason for the decrease ratio of amylose/amylopectin in sub-1 mutant. Taken together, our results indicated that the sub-1 mutant can accumulate the amylopectin efficiently, potentially through altering the differential expression of AGPase, GBSS1, SBE, and BAM. This study also provides theoretical guidance for creating crop germplasm with high amylopectin by means of synthetic biology in the future.PMID:36769258 | DOI:10.3390/ijms24032934

Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Feb 1;24(3):2769. doi: 10.3390/ijms24032769.ABSTRACTImmune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.PMID:36769093 | DOI:10.3390/ijms24032769

Metabolomic Analyses to Identify Candidate Biomarkers of Cystinosis

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 30;24(3):2603. doi: 10.3390/ijms24032603.ABSTRACTCystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis.PMID:36768921 | DOI:10.3390/ijms24032603

Spatially Resolved Molecular Approaches for the Characterisation of Non-Invasive Follicular Tumours with Papillary-like Features (NIFTPs)

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 29;24(3):2567. doi: 10.3390/ijms24032567.ABSTRACTNoninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) are low-risk thyroid lesions most often characterised by RAS-type mutations. The histological diagnosis may be challenging, and even immunohistochemistry and molecular approaches have not yet provided conclusive solutions. This study characterises a set of NIFTPs by Matrix-Assisted Laser Desorption/Ionisation (MALDI)-Mass Spectrometry Imaging (MSI) to highlight the proteomic signatures capable of overcoming histological challenges. Archived formalin-fixed paraffin-embedded samples from 10 NIFTPs (n = 6 RAS-mutated and n = 4 RAS-wild type) were trypsin-digested and analysed by MALDI-MSI, comparing their profiles to normal tissue and synchronous benign nodules. This allowed the definition of a four-peptide signature able to distinguish RAS-mutant from wild-type cases, the latter showing proteomic similarities to hyperplastic nodules. Moreover, among the differentially expressed signals, Peptidylprolyl Isomerase A (PPIA, 1505.8 m/z), which has already demonstrated a role in the development of cancer, was found overexpressed in NIFTP RAS-mutated nodules compared to wild-type lesions. These results underlined that high-throughput proteomic approaches may add a further level of biological comprehension for NIFTPs. In the future, thanks to the powerful single-cell detail achieved by new instruments, the complementary NGS-MALDI imaging sequence might be the correct methodological approach to confirm that the current NIFTP definition encompasses heterogeneous lesions that must be further characterised.PMID:36768889 | DOI:10.3390/ijms24032567

From Classical to Modern Computational Approaches to Identify Key Genetic Regulatory Components in Plant Biology

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 28;24(3):2526. doi: 10.3390/ijms24032526.ABSTRACTThe selection of plant genotypes with improved productivity and tolerance to environmental constraints has always been a major concern in plant breeding. Classical approaches based on the generation of variability and selection of better phenotypes from large variant collections have improved their efficacy and processivity due to the implementation of molecular biology techniques, particularly genomics, Next Generation Sequencing and other omics such as proteomics and metabolomics. In this regard, the identification of interesting variants before they develop the phenotype trait of interest with molecular markers has advanced the breeding process of new varieties. Moreover, the correlation of phenotype or biochemical traits with gene expression or protein abundance has boosted the identification of potential new regulators of the traits of interest, using a relatively low number of variants. These important breakthrough technologies, built on top of classical approaches, will be improved in the future by including the spatial variable, allowing the identification of gene(s) involved in key processes at the tissue and cell levels.PMID:36768850 | DOI:10.3390/ijms24032526

Comparison between Sickle Cell Disease Patients and Healthy Donors: Untargeted Lipidomic Study of Erythrocytes

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 28;24(3):2529. doi: 10.3390/ijms24032529.ABSTRACTSickle cell disease (SCD) is one of the most common severe monogenic disorders in the world caused by a mutation on HBB gene and characterized by hemoglobin polymerization, erythrocyte rigidity, vaso-occlusion, chronic anemia, hemolysis, and vasculopathy. Recently, the scientific community has focused on the multiple genetic and clinical profiles of SCD. However, the lipid composition of sickle cells has received little attention in the literature. According to recent studies, changes in the lipid profile are strongly linked to several disorders. Therefore, the aim of this study is to dig deeper into lipidomic analysis of erythrocytes in order to highlight any variations between healthy and patient subjects. 241 lipid molecular species divided into 17 classes have been annotated and quantified. Lipidomic profiling of SCD patients showed that over 24% of total lipids were altered most of which are phospholipids. In-depth study of significant changes in lipid metabolism can give an indication of the enzymes and genes involved. In a systems biology scenario, these variations can be useful to improve the understanding of the biochemical basis of SCD and to try to make a score system that could be predictive for the severity of clinical manifestations.PMID:36768849 | DOI:10.3390/ijms24032529

Semi-Targeted Profiling of Bile Acids by High-Resolution Mass Spectrometry in a Rat Model of Drug-Induced Liver Injury

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 27;24(3):2489. doi: 10.3390/ijms24032489.ABSTRACTUsing a semi-targeted approach, we have investigated the effect of acetaminophen on circulating bile acid profiles in rats, including many known bile acids and potential isomeric structures, as well as glucuronide and sulfate conjugates. The chromatographic separation was based on an optimized reverse-phase method exhibiting excellent resolution for a complex mix of bile acids using a solid-core C18 column, coupled to a high-resolution quadrupole time-of-flight system. The semi-targeted workflow consisted of first assigning all peaks detectable in samples from 46 known bile acids contained in a standard mix, as well as additional peaks for other bile acid isomers. The presence of glucuronide and sulfate conjugates was also examined based on their elemental formulae and detectable peaks with matching exact masses were added to the list of features for statistical analysis. In this study, rats were administered acetaminophen at four different doses, from 75 to 600 mg/kg, with the highest dose being a good model of drug-induced liver injury. Statistically significant changes were found by comparing bile acid profiles between dosing levels. Some tentatively assigned conjugates were further elucidated using in vitro metabolism incubations with rat liver fractions and standard bile acids. Overall, 13 identified bile acids, 23 tentatively assigned bile acid isomers, and 9 sulfate conjugates were found to increase significantly at the highest acetaminophen dose, and thus could be linked to drug-induced liver injury.PMID:36768813 | DOI:10.3390/ijms24032489

Expression of the Z Variant of α1-Antitrypsin Suppresses Hepatic Cholesterol Biosynthesis in Transgenic Zebrafish

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 27;24(3):2475. doi: 10.3390/ijms24032475.ABSTRACTIndividuals homozygous for the Pi*Z allele of SERPINA1 (ZAAT) are susceptible to lung disease due to insufficient α1-antitrypsin secretion into the circulation and may develop liver disease due to compromised protein folding that leads to inclusion body formation in the endoplasmic reticulum (ER) of hepatocytes. Transgenic zebrafish expressing human ZAAT show no signs of hepatic accumulation despite displaying serum insufficiency, suggesting the defect in ZAAT secretion occurs independently of its tendency to form inclusion bodies. In this study, proteomic, transcriptomic, and biochemical analysis provided evidence of suppressed Srebp2-mediated cholesterol biosynthesis in the liver of ZAAT-expressing zebrafish. To investigate the basis for this perturbation, CRISPR/Cas9 gene editing was used to manipulate ER protein quality control factors. Mutation of erlec1 resulted in a further suppression in the cholesterol biosynthesis pathway, confirming a role for this ER lectin in targeting misfolded ZAAT for ER-associated degradation (ERAD). Mutation of the two ER mannosidase homologs enhanced ZAAT secretion without inducing hepatic accumulation. These insights into hepatic ZAAT processing suggest potential therapeutic targets to improve secretion and alleviate serum insufficiency in this form of the α1-antitrypsin disease.PMID:36768797 | DOI:10.3390/ijms24032475

Necrotizing Enterocolitis: The Role of Hypoxia, Gut Microbiome, and Microbial Metabolites

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 27;24(3):2471. doi: 10.3390/ijms24032471.ABSTRACTNecrotizing enterocolitis (NEC) is a life-threatening disease that predominantly affects very low birth weight preterm infants. Development of NEC in preterm infants is accompanied by high mortality. Surgical treatment of NEC can be complicated by short bowel syndrome, intestinal failure, parenteral nutrition-associated liver disease, and neurodevelopmental delay. Issues surrounding pathogenesis, prevention, and treatment of NEC remain unclear. This review summarizes data on prenatal risk factors for NEC, the role of pre-eclampsia, and intrauterine growth retardation in the pathogenesis of NEC. The role of hypoxia in NEC is discussed. Recent data on the role of the intestinal microbiome in the development of NEC, and features of the metabolome that can serve as potential biomarkers, are presented. The Pseudomonadota phylum is known to be associated with NEC in preterm neonates, and the role of other bacteria and their metabolites in NEC pathogenesis is also discussed. The most promising approaches for preventing and treating NEC are summarized.PMID:36768793 | DOI:10.3390/ijms24032471

Big Data in Gastroenterology Research

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 27;24(3):2458. doi: 10.3390/ijms24032458.ABSTRACTStudying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.PMID:36768780 | DOI:10.3390/ijms24032458

Primary Liver Cancers: Connecting the Dots of Cellular Studies and Epidemiology with Metabolomics

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 26;24(3):2409. doi: 10.3390/ijms24032409.ABSTRACTLiver cancers are rising worldwide. Between molecular and epidemiological studies, a research gap has emerged which might be amenable to the technique of metabolomics. This review investigates the current understanding of liver cancer's trends, etiology and its correlates with existing literature for hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA) and hepatoblastoma (HB). Among additional factors, the literature reports dysfunction in the tricarboxylic acid metabolism, primarily for HB and HCC, and point mutations and signaling for CCA. All cases require further investigation of upstream and downstream events. All liver cancers reported dysfunction in the WNT/β-catenin and P13K/AKT/mTOR pathways as well as changes in FGFR. Metabolites of IHD1, IDH2, miRNA, purine, Q10, lipids, phosphatidylcholine, phosphatidylethanolamine, acylcarnitine, 2-HG and propionyl-CoA emerged as crucial and there was an attempt to elucidate the WNT/β-catenin and P13K/AKT/mTOR pathways metabolomically.PMID:36768732 | DOI:10.3390/ijms24032409

Multi-Omics Profiling in PGM3 and STAT3 Deficiencies: A Tale of Two Patients

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 26;24(3):2406. doi: 10.3390/ijms24032406.ABSTRACTHyper-IgE Syndrome (HIES) is a heterogeneous group of primary immune-deficiency disorders characterized by elevated levels of IgE, eczema, and recurrent skin and lung infections. HIES that is autosomally dominant in the signal transducer and activator of transcription 3 (STAT3), and autosomal recessive mutations in phosphoglucomutase 3 (PGM3) have been reported in humans. An early diagnosis, based on clinical suspicion and immunological assessments, is challenging. Patients' metabolomics, proteomics, and cytokine profiles were compared to DOCK 8-deficient and atopic dermatitis patients. The PGM3 metabolomics profile identified significant dysregulation in hypotaurine, hypoxanthine, uridine, and ribothymidine. The eight proteins involved include bifunctional arginine demethylase and lysyl hydroxylase (JMJD1B), type 1 protein phosphatase inhibitor 4 (PPI 4), and platelet factor 4 which aligned with an increased level of the cytokine GCSF. Patients with STAT3 deficiency, on the other hand, showed significant dysregulation in eight metabolites, including an increase in protocatechuic acid, seven proteins including ceruloplasmin, and a plasma protease C1 inhibitor, in addition to cytokine VEGF being dysregulated. Using multi-omics profiling, we identified the dysregulation of endothelial growth factor (EGFR) and tumor necrosis factor (TNF) signaling pathways in PGM3 and STAT3 patients, respectively. Our findings may serve as a stepping stone for larger prospective HIES clinical cohorts to validate their future use as biomarkers.PMID:36768728 | DOI:10.3390/ijms24032406

Changes in Plasma Metabolomic Profile Following Bariatric Surgery, Lifestyle Intervention or Diet Restriction-Insights from Human and Rat Studies

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 25;24(3):2354. doi: 10.3390/ijms24032354.ABSTRACTAlthough bariatric surgery is known to change the metabolome, it is unclear if this is specific for the intervention or a consequence of the induced bodyweight loss. As the weight loss after Roux-en-Y Gastric Bypass (RYGB) can hardly be mimicked with an evenly effective diet in humans, translational research efforts might be helpful. A group of 188 plasma metabolites of 46 patients from the randomized controlled Würzburg Adipositas Study (WAS) and from RYGB-treated rats (n = 6) as well as body-weight-matched controls (n = 7) were measured using liquid chromatography tandem mass spectrometry. WAS participants were randomized into intensive lifestyle modification (LS, n = 24) or RYGB (OP, n = 22). In patients in the WAS cohort, only bariatric surgery achieved a sustained weight loss (BMI -34.3% (OP) vs. -1.2% (LS), p ≤ 0.01). An explicit shift in the metabolomic profile was found in 57 metabolites in the human cohort and in 62 metabolites in the rodent model. Significantly higher levels of sphingolipids and lecithins were detected in both surgical groups but not in the conservatively treated human and animal groups. RYGB leads to a characteristic metabolomic profile, which differs distinctly from that following non-surgical intervention. Analysis of the human and rat data revealed that RYGB induces specific changes in the metabolome independent of weight loss.PMID:36768676 | DOI:10.3390/ijms24032354

Endothelial Cell Phenotypes Demonstrate Different Metabolic Patterns and Predict Mortality in Trauma Patients

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 23;24(3):2257. doi: 10.3390/ijms24032257.ABSTRACTIn trauma patients, shock-induced endotheliopathy (SHINE) is associated with a poor prognosis. We have previously identified four metabolic phenotypes in a small cohort of trauma patients (N = 20) and displayed the intracellular metabolic profile of the endothelial cell by integrating quantified plasma metabolomic profiles into a genome-scale metabolic model (iEC-GEM). A retrospective observational study of 99 trauma patients admitted to a Level 1 Trauma Center. Mass spectrometry was conducted on admission samples of plasma metabolites. Quantified metabolites were analyzed by computational network analysis of the iEC-GEM. Four plasma metabolic phenotypes (A-D) were identified, of which phenotype D was associated with an increased injury severity score (p < 0.001); 90% (91.6%) of the patients who died within 72 h possessed this phenotype. The inferred EC metabolic patterns were found to be different between phenotype A and D. Phenotype D was unable to maintain adequate redox homeostasis. We confirm that trauma patients presented four metabolic phenotypes at admission. Phenotype D was associated with increased mortality. Different EC metabolic patterns were identified between phenotypes A and D, and the inability to maintain adequate redox balance may be linked to the high mortality.PMID:36768579 | DOI:10.3390/ijms24032257

Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics

Sat, 11/02/2023 - 12:00
Int J Mol Sci. 2023 Jan 23;24(3):2249. doi: 10.3390/ijms24032249.ABSTRACTLarge-scale high throughput metabolomic technologies are indispensable components of systems biology in terms of discovering and defining the metabolite parts of the system. However, the lack of a plant metabolite spectral library limits the metabolite identification of plant metabolomic studies. Here, we have created a plant metabolite spectral library using 544 authentic standards, which increased the efficiency of identification for untargeted metabolomic studies. The process of creating the spectral library was described, and the mzVault library was deposited in the public repository for free download. Furthermore, based on the spectral library, we describe a process of creating a pseudo-targeted method, which was applied to a proof-of-concept study of Arabidopsis leaf extracts. As authentic standards become available, more metabolite spectra can be easily incorporated into the spectral library to improve the mzVault package.PMID:36768571 | DOI:10.3390/ijms24032249

Pages